Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = large-amplitude shaking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9795 KB  
Article
Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System
by Zafira Nur Ezzati Mustafa, Ryo Majima and Taiki Saito
Appl. Sci. 2025, 15(15), 8185; https://doi.org/10.3390/app15158185 - 23 Jul 2025
Viewed by 1014
Abstract
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy [...] Read more.
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy dissipation capacity of VE and RF dampers, and (2) shake table testing of a large-scale CSW structure equipped with these dampers under the white noise, sinusoidal and Kokuji waves. The experimental results are validated through numerical analysis using STERA 3D (version 11.5), a nonlinear finite element software, to simulate the dynamic response of the damped CSW system. Key performance indicators, including inter-story drift, base shear, and energy dissipation, are compared between experimental and numerical results, demonstrating strong correlation. The findings reveal that VE dampers effectively control high-frequency vibrations, while RF dampers provide stable energy dissipation across varying displacement amplitudes. The validated numerical model facilitates the optimization of damper configurations for performance-based seismic design. This study provides valuable insights into the selection and implementation of supplemental damping systems for CSW structures, contributing to improved seismic resilience in buildings. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Vibration)
Show Figures

Figure 1

21 pages, 24384 KB  
Article
Analysis of Failure Mechanism of Medium-Steep Bedding Rock Slopes under Seismic Action
by Xiuhong Zheng, Qihua Zhao, Sheqin Peng, Longke Wu, Yanghao Dou and Kuangyu Chen
Sustainability 2024, 16(17), 7729; https://doi.org/10.3390/su16177729 - 5 Sep 2024
Cited by 1 | Viewed by 1239
Abstract
Medium-steep bedding rock slopes (MBRSs) are generally considered relatively stable, because the dip angle of the rock layers (45–55°) is larger than the slope angle (40–45°). However, the stability of MBRSs was significantly impacted during the 1933 Diexi earthquake, leading to slope instability. [...] Read more.
Medium-steep bedding rock slopes (MBRSs) are generally considered relatively stable, because the dip angle of the rock layers (45–55°) is larger than the slope angle (40–45°). However, the stability of MBRSs was significantly impacted during the 1933 Diexi earthquake, leading to slope instability. Field investigations revealed that no continuous sliding surface was recognized in the failure slopes. Instead, the source areas of landslides present a “reverse steps” feature, where the step surfaces are perpendicular to the bedding surface, and their normal directions point towards the crest of the slopes. These orientations of “reverse steps” differ significantly from those of steps formed under static conditions, which makes it difficult to explain the phenomenon using traditional failure mechanism of the slope. Therefore, a large-scale shaking table test was conducted to replicate the deformation and failure processes of MBRSs under seismic action. The test revealed the elevation amplification effect, where the amplification factors of the acceleration increased with increasing elevation. As the amplitude of the input seismic wave increased, the acceleration amplification factor initially rose and subsequently decreased with the increase in the shear strain of the rock mass. The dynamic response of the slope under Z-direction seismic waves is stronger than that under X-direction seismic waves. The deformation and failure were mainly concentrated in the upper part of the slope, which was in good agreement with the field observations. Based on these findings, the deformation and failure mechanism of MBRSs was analyzed by considering both the spatial relationship between the seismogenic fault and the slope, and the propagation characteristics of seismic waves along the slope. The seismic failure mode of MBRSs in the study area was characterized as flexural–tensile failure. This work can provide a reference for post-earthquake disaster investigation, as well as disaster prevention and mitigation, in seismically active regions. Full article
(This article belongs to the Special Issue Sustainability in Natural Hazards Mitigation and Landslide Research)
Show Figures

Figure 1

32 pages, 7116 KB  
Review
Advances and Challenges in the Hunting Instability Diagnosis of High-Speed Trains
by Jiayi Liang, Jianfeng Sun, Yonghua Jiang, Weifang Pan and Weidong Jiao
Sensors 2024, 24(17), 5719; https://doi.org/10.3390/s24175719 - 2 Sep 2024
Cited by 6 | Viewed by 3049
Abstract
With the continuous increase in train running speeds and the rapid complexity of operation environments, running stability of the high-speed train is facing significant challenges. A series of abnormal vibration issues, caused by hunting instability, have emerged, including bogie instability alarm, carbody swaying, [...] Read more.
With the continuous increase in train running speeds and the rapid complexity of operation environments, running stability of the high-speed train is facing significant challenges. A series of abnormal vibration issues, caused by hunting instability, have emerged, including bogie instability alarm, carbody swaying, and carbody shaking, posing a significant threat to the safe and stable operation of high-speed trains. Therefore, the monitoring and diagnosis of hunting instability have become important research topics in rail transit. This review follows the development of fault diagnosis for bogie hunting instability and carbody hunting instability. It first summarizes the existing evaluation standards and innovative diagnostic methods. Due to the current limitation of hunting instability evaluation standards, which can only detect large-amplitude hunting, this paper addresses the gap in evaluation criteria for early-stage, small amplitude hunting instability diagnosis. A thorough overview of the progress made by researches in this field of research is given, emphasizing three primary facets: diagnostic signal sources, diagnostic features, and diagnostic targets. Furthermore, given that existing methods only classify faults into small and large amplitudes, which does not meet the practical need for quickly and accurately identifying fault types and severity during operation, this review introduces existing works on the detailed assessment and fault tracing of hunting instability, as well as the mechanisms underlying its occurrence, with the aim of achieving a comprehensive diagnosis of hunting instability. Finally, the limitations of current methods and the future development trends in hunting instability diagnostics are discussed and summarized. This paper provides readers with a framework for the research process of hunting instability diagnosis, offering valuable references and innovative perspectives for their future research efforts. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

24 pages, 12720 KB  
Article
Shaking Table Tests and Numerical Analysis Conducted on an Aluminum Alloy Single-Layer Spherical Reticulated Shell with Fully Welded Connections
by Jiawei Lu, Qiujun Ning, Xiaosong Lu, Fan Yang and Yuanshun Wang
Buildings 2024, 14(5), 1354; https://doi.org/10.3390/buildings14051354 - 9 May 2024
Cited by 1 | Viewed by 1244
Abstract
Aluminum alloy offers the advantages of being lightweight, high in strength, corrosion-resistant, and easy to process. It has a promising application prospect in large-span space structures, with its primary application form being single-layer reticulated shells. In this study, shaking table tests were conducted [...] Read more.
Aluminum alloy offers the advantages of being lightweight, high in strength, corrosion-resistant, and easy to process. It has a promising application prospect in large-span space structures, with its primary application form being single-layer reticulated shells. In this study, shaking table tests were conducted on a 1/25 scale aluminum alloy single-layer spherical reticulated shell structure. A finite element (FE) model of the reticulated shell structure was established in Ansys. Compared with the experimental results, the deviation in natural frequency, acceleration amplitude, and displacement amplitude was less than 20%, confirming the validity of the model. An extensive analysis of the various rise–span ratios and connection constraints of a single-layer spherical reticulated shell structure was carried out using the proposed FE model. The experimental and simulation results showed that as the rise–span ratio of the aluminum alloy reticulated shell increases, the natural frequency of the reticulated shell structure also increases while the dynamic performance decreases. The connection of the circumferential members changes from a rigid connection to a hinged connection. The natural frequency of the reticulated shell structure is reduced by about 40% while the acceleration and displacement response values are decreased by approximately 15%. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 10388 KB  
Article
Evaluation of DSSI Effects on the Dynamic Response of Bridges to Traffic Loads
by Sharef Farrag and Nenad Gucunski
Constr. Mater. 2023, 3(4), 354-376; https://doi.org/10.3390/constrmater3040023 - 30 Sep 2023
Cited by 3 | Viewed by 2276
Abstract
This paper presents results from numerical simulations validated by experimental results related to the effects of dynamic soil-structure interaction (DSSI) on the dynamic response of bridges. An in-service overpass was shaken using the T-Rex, a large-amplitude mobile shaker from the National Hazards Engineering [...] Read more.
This paper presents results from numerical simulations validated by experimental results related to the effects of dynamic soil-structure interaction (DSSI) on the dynamic response of bridges. An in-service overpass was shaken using the T-Rex, a large-amplitude mobile shaker from the National Hazards Engineering Research Infrastructure (NHERI) facilities. Studies implementing Finite Element Modeling (FEM) to develop time histories, response spectra, and eigenmodes were conducted in a forward-modeling problem setup. Two models were created to assess the DSSI effects on the dynamic response of the bridge. One model included elements that incorporate DSSI effects, while the other had fixed-base boundary conditions. The response from the DSSI FEM model matched the field results better than the fixed-base model in terms of the peak response amplitudes and identified natural frequencies and modes. The influence of a series of factors, such as the soil shear wave velocity, bridge height, bridge foundation embedment depth, and the corresponding rigidity, slenderness, and embedment ratios, on the bridge response is presented. Full article
(This article belongs to the Special Issue Structural Mechanics of Construction Materials)
Show Figures

Figure 1

11 pages, 3130 KB  
Article
The Influence of On-Orbit Micro-Vibration on Space Gravitational Wave Detection
by Zhiwei Chen, Chao Fang, Zhenpeng Wang, Changxiang Yan and Zhi Wang
Photonics 2023, 10(8), 908; https://doi.org/10.3390/photonics10080908 - 7 Aug 2023
Cited by 3 | Viewed by 1738
Abstract
Large-aperture space telescopes have played an important role in space gravitational wave detection missions. Overcoming the influence of the space environment on interstellar laser distance measurement and realistic high-concentration laser distance measurement is one of the topics that LISA and Taiji are working [...] Read more.
Large-aperture space telescopes have played an important role in space gravitational wave detection missions. Overcoming the influence of the space environment on interstellar laser distance measurement and realistic high-concentration laser distance measurement is one of the topics that LISA and Taiji are working hard on. It includes solar temperature, spatial stress relief, pointing shake and tilt, etc. However, when considering the impact of vibration on the telescope, both LISA and Taiji only consider the resonance impact of vibration on structural parts, which greatly ignores the impact of high-frequency micro-vibration on space ranging. This paper first considers space gravitational wave detection. Then, we establish the heterodyne interference model and demodulation algorithm of the optical phase-locked loop, and then introduce the vibration component for theoretical analysis. The results show that, although the resonance effect of low-frequency vibration on the system structure is avoided in space gravitational wave detection, the influence of high-frequency micro-vibration on heterodyne interference cannot be ignored. At the same time, we quantitatively analyze the influence efficiency of amplitude and frequency; in the premise of small amplitudes, the influence of vibration frequency is related to the frequency of the heterodyne signal, which has important guiding significance in engineering. Full article
(This article belongs to the Special Issue Optical Interferometry)
Show Figures

Figure 1

18 pages, 4607 KB  
Article
Shaking Table Test for Seismic Response of Nuclear Power Plant on Non-Rock Site
by Xinyu Lu, Liping Jing, Ying Ma, Jianhua Yang and Wenhao Qi
Sustainability 2023, 15(13), 10366; https://doi.org/10.3390/su151310366 - 30 Jun 2023
Cited by 3 | Viewed by 1873
Abstract
In order to compare and analyze the seismic response characteristics of a safety-related nuclear structure on a non-rock site in the condition of raft and pile group foundations under unidirectional and multidirectional seismic motion input, a large-scale shaking table test of the soil-nuclear [...] Read more.
In order to compare and analyze the seismic response characteristics of a safety-related nuclear structure on a non-rock site in the condition of raft and pile group foundations under unidirectional and multidirectional seismic motion input, a large-scale shaking table test of the soil-nuclear structure system was carried out in this paper. In the test, the soil was uniform silted clay, and the shear wave velocity was 213 m/s. Considering the similarity of the superstructure natural frenquency, the actual nuclear power structure was simplified to a three-story frame shear wall structure model. The annular laminated shear model box was used to take the boundary effect of soil into consideration; the seismic motions = were input in only one horizontal direction or three directions at the same time for the shaking table test, and the results were analyzed. The results of the test show that the acceleration response of the safety-related nuclear plant is affected by the directions of input seismic motion and the forms of the foundation. When the seismic motion is input simultaneously in three directions, the acceleration responses of the horizontal motion and vertical rocking of the safety-related plant are larger than those of the single-direction input. The acceleration response of the horizontal motion and vertical rocking of the safety-related structure with the pile group foundation is smaller than that with the raft foundation. The values of most frequency bands in the horizontal acceleration Fourier amplitude spectrum at the top of the pile-foundation structure are smaller than that at the top of the raft-foundation structure, while the displacement is basically the same as that of the raft-foundation structure. This is related to the relation between the frequency component of input seismic motion and the natural frequency of the structure system. Therefore, it is more reasonable to use three-dimensional seismic input in the seismic response analysis of nuclear power plants. The seismic performance of nuclear power plants can be enhanced by using pile group foundations. Full article
(This article belongs to the Special Issue Earthquake Engineering Technology and Its Application)
Show Figures

Figure 1

17 pages, 6923 KB  
Article
Geotechnical Seismic Isolation System Based on Rubber-Sand Mixtures for Rural Residence Buildings: Shaking Table Test
by Zhiyong Yin, Haifeng Sun, Liping Jing and Rui Dong
Materials 2022, 15(21), 7724; https://doi.org/10.3390/ma15217724 - 2 Nov 2022
Cited by 17 | Viewed by 3072
Abstract
The anti-seismic problem of rural residential buildings is the weak link of seismic retrofitting in China. Recently, geotechnical seismic isolation (GSI) technology based on rubber–sand mixtures (GSI–RSM) using rubber–sand mixtures (RSM) between the structural foundation and the foundation soil has been proven to [...] Read more.
The anti-seismic problem of rural residential buildings is the weak link of seismic retrofitting in China. Recently, geotechnical seismic isolation (GSI) technology based on rubber–sand mixtures (GSI–RSM) using rubber–sand mixtures (RSM) between the structural foundation and the foundation soil has been proven to have the possibility of potential applications in rural residential buildings. Many theoretical studies exist on the effectiveness of seismic isolation of the GSI–RSM system, but few studies on either the seismic response test of model buildings placed on the RSM layer or the large-scale shaking table test exist. Therefore, this study considers a large shaking table test performed on a 1/4 single-story masonry structure model with and without a GSI–RSM system by selecting a standard input ground motion and varying input acceleration amplitudes. The test results show that the GSI–RSM system can reduce the seismic response of superstructures. The isolation effect of the GSI–RSM system is low in small earthquakes and increases with increasing earthquake magnitude. Overall, the RSM layer can filter part of the high-frequency components of the earthquake to transmit to the superstructure and consume more seismic energy by generating friction slip in the interaction with the structural foundation. Full article
(This article belongs to the Special Issue Seismic Design and Structures Analysis of Construction Materials)
Show Figures

Figure 1

15 pages, 6182 KB  
Article
Evaluation of Liquefaction Properties of East Coast Sand of New Zealand Mixed with Varied Kaolinite Contents Using the Dynamically Induced Porewater Pressure Characteristics
by Roohollah Kalatehjari and Ademola Bolarinwa
Appl. Sci. 2022, 12(18), 9115; https://doi.org/10.3390/app12189115 - 10 Sep 2022
Cited by 2 | Viewed by 2242
Abstract
In earthquake geotechnical engineering, physical model experiments have proven to be significant and valuable in understanding the complex physics and engineering behaviors of prototype undrained soils in fields. An executed literature review indicated that large-scale physical model testing, such as shaking table (ST) [...] Read more.
In earthquake geotechnical engineering, physical model experiments have proven to be significant and valuable in understanding the complex physics and engineering behaviors of prototype undrained soils in fields. An executed literature review indicated that large-scale physical model testing, such as shaking table (ST) and centrifuge devices, have associated advantages and limitations. The current paper presents the design, fabrication, and calibration of a 600N-capacity, small-scale, one-directional (1-D) laboratory ST device that enables quick and valuable assessment of soil liquefaction mechanisms. The dynamically induced porewater pressure (PWP) generation characteristics of sand soil mixed with different percentage weights of clay were evaluated and illustrated as a case study for testing the ST device’s performance. The east coast sand (ECS) of New Zealand’s North Island was mixed with different percentages of kaolinite clay to produce five variants of ECS (00, 05, 10, 20, 25, and 30). Three input sine wave ground motions of a constant frequency of 10 Hz and amplitudes of 2, 3, and 4 were applied and classified in the current study as low, intermediate, and moderate ground motions, respectively, to evaluate the evolution of the dynamic excess pore pressures in the soil samples. The results indicated that the clean ECS and mixed samples with lower clay content (ECS00, ECS05, ECS10, and ECS15) produced the highest excess PWP throughout the three shaking cycles, with higher tendencies of contraction and liquefaction properties. On the other hand, soil samples with a higher percentage of clay (ECS20 and ECS20) yielded the lowest PWP, with softening and dilative properties. Full article
(This article belongs to the Special Issue State-of-Art of Soil Dynamics and Geotechnical Engineering)
Show Figures

Graphical abstract

8 pages, 361 KB  
Article
Moving Forward by Shaking Sideways
by Jean-Luc Thiffeault
Symmetry 2022, 14(3), 620; https://doi.org/10.3390/sym14030620 - 20 Mar 2022
Cited by 3 | Viewed by 1811
Abstract
We investigate a simple model for a self-propelled swimmer, which consists of a fluctuating force acting at a point on a rigid body. The rigid body is subject to Newton’s equations with linear friction, corresponding to drag in a viscous fluid. The force [...] Read more.
We investigate a simple model for a self-propelled swimmer, which consists of a fluctuating force acting at a point on a rigid body. The rigid body is subject to Newton’s equations with linear friction, corresponding to drag in a viscous fluid. The force has zero time average, so net motion is challenging. We show that the swimmer can inch forward by shaking from side to side and exploiting friction coupled with nonlinearity. For large enough forcing amplitude it can reverse direction and swim backward. Full article
(This article belongs to the Special Issue Symmetry and Symmetry-Breaking in Fluid Dynamics)
Show Figures

Figure 1

19 pages, 7354 KB  
Article
Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones
by Maria Feng, Yoshio Fukuda, Masato Mizuta and Ekin Ozer
Sensors 2015, 15(2), 2980-2998; https://doi.org/10.3390/s150202980 - 29 Jan 2015
Cited by 132 | Viewed by 12545
Abstract
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a [...] Read more.
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. Full article
Show Figures

9 pages, 282 KB  
Article
Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals
by Yih-Min Wu and Hiroo Kanamori
Sensors 2008, 8(1), 1-9; https://doi.org/10.3390/s8010001 - 9 Jan 2008
Cited by 196 | Viewed by 28751
Abstract
As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake [...] Read more.
As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τc and the peak ground-motionvelocity (PGV) could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τc and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds. Full article
(This article belongs to the Special Issue Sensors for Disaster and Emergency Management Decision Making)
Show Figures

Back to TopTop