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Abstract: We investigate a simple model for a self-propelled swimmer, which consists of a fluctuating
force acting at a point on a rigid body. The rigid body is subject to Newton’s equations with linear
friction, corresponding to drag in a viscous fluid. The force has zero time average, so net motion is
challenging. We show that the swimmer can inch forward by shaking from side to side and exploiting
friction coupled with nonlinearity. For large enough forcing amplitude it can reverse direction and
swim backward.
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1. Introduction

Microorganisms are all around us, and many self-propel through a fluid medium.
Understanding their mechanism of locomotion is key to the understanding of biological
processes, and is an interesting fundamental question in itself. As famously noted by [1],
the net motion of a swimmer in a viscous fluid in the limit of zero Reynolds number is
impossible without imposing a time-asymmetric forcing. Simple models of zero Reynolds
number swimmers include Taylor’s swimming sheet and Purcell’s scallop [2]. But it is well-
known that even a small amount of inertia can lead to a net motion for reciprocal swimmers,
as can other effects such as viscoelasticity of the fluid [3–5] and fluid vibrations [6].

Here we investigate a very simple toy model of a swimmer subjected to a force with
zero time average, so it is not a priori clear that the swimmer will experience any net
motion. We will show that, somewhat paradoxically, the swimmer can make net progress
by shaking from side to side, as long as the force is not acting at its center of mass. The
motion will require a small amount of angular inertia, but no translational inertia is needed
for it to occur (though, of course, it is also present). The mechanism also crucially depends
on drag.

2. Model

Consider a disk of radius a of uniform density subjected to a mean-zero fluctuating
force f (t) (see Figure 1). We envisage the force is due to some propulsion mechanism, such
as a flagellum for the case of a microswimmer. The line from the center of the disk to the
point of application of the force defines a geometric symmetry line for the system. We
assume the dynamics are governed by

ẋ = u, mu̇ = −σu + f ; (1a)

φ̇ = ω, Iω̇ = −κω + τ, (1b)

where x(t) is the position of the disk’s center, u(t) its velocity, and m its mass. The force is
acting in the plane of the disk ( f · ẑ = 0) at a fixed point in the disk’s reference frame, a
distance ` from its center. The disk’s angular speed is ω, its moment of inertia is I, and the
force creates a torque τẑ. We assume a linear damping in (1), with damping coefficient σ for
translation and κ for rotation. The damping could come from the disk being immersed in a
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viscous fluid, or from friction with a surface. (In the former case, we neglect the fluid inertia,
which is appropriate when the swimmer has a large density compared to the fluid [7,8]).

f

Figure 1. Disk of radius a with a force acting at a distance ` from its geometric center.

The force can be decomposed as

f (t) = fφ(t) φ̂ + fr(t) r̂, (2)

with the unit vectors

φ̂(φ) =

(
− sin φ

cos φ

)
, r̂(φ) =

(
cos φ
sin φ

)
. (3)

We refer to φ̂ and r̂ as the lateral and longitudinal directions, respectively. The torque is
then a vector out of the plane, with component

τ(t) = ` fφ(t) (4)

where 0 ≤ ` ≤ a is the distance from the center of the disk.
We define the long-time average of a bounded function F(t) as

F = lim
T→∞

1
T

∫ t0+T

t0

F(s)ds. (5)

The long-time average is independent of t0. (For periodic F(t) we can drop the limit T → ∞
and take T to be the period.) The asymptotic net velocity of the disk is(

U
V

)
= (ẋ) = lim

T→∞

1
T

∫ T

0
ẋ(s)ds. (6)

We take the imposed force to have components with zero long-time average:

fr = fφ = τ̄ = 0. (7)

The question we wish to answer is whether the disk can ‘swim’, that is, can a translational
motion in the longitudinal (r̂) direction be achieved by the fluctuating force. We will see
that this is not possible with a purely longitudinal force ( fr 6= 0, fφ = 0), but it does occur
for a purely lateral force ( fr = 0, fφ 6= 0). That is, the disk can have net forward motion
by ‘shaking’ from side-to-side, as long as I, σ, κ, and ` are all nonzero. For small force
amplitude, the motion is to the right in Figure 1, but for large enough amplitude the motion
can reverse direction.

3. Longitudinal Forcing

First take
f (t) = fr(t) r̂(φ), (8)
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that is, the force is longitudinal along the symmetry direction. Then there is no torque
(τ = 0), and φ → const. after a transient of duration I/κ. We take φ ≡ 0 without loss of
generality, and it follows from (1a) that y ≡ 0. The remaining equation is

mẍ = −σẋ + fr(t). (9)

Since fr(t) has zero mean, we can write fr(t) = mB′(t), where B(t) also has zero mean.
After a transient, x(t) achieves the asymptotic solution

x(t) =
∫ t

−∞
e−σ(t−s)/m B(s)ds =

∫ 0

−∞
eσs/m B(t + s)ds. (10)

Clearly, x(t) has zero mean:

x =
∫ 0

−∞
eσs/m B(·+ s)ds = 0, (11)

which implies that the net speed U = 0. A purely longitudinal mean-zero forcing will thus
not lead to net motion, perhaps supporting our intuition. To relate to the title of the paper:
shaking front to back (with zero mean) will not cause forward motion, even with inertia.

4. Lateral Forcing: Dimensionless Scaling

We saw in Section 3 that a mean-zero longitudinal force will never lead to net propul-
sion. The next natural question is whether a purely lateral forcing can lead to propulsion
along the longitudinal direction. We set

f (t) = fφ(t) φ̂(φ). (12)

It will be convenient to use dimensionless variables from now on. We choose the mass,
length, and time scales respectively as

M = Iσ/κ, L =
√

κ/σ, T = I/κ. (13)

The time scale is the rotational damping time, and the length scale is roughly the radius of
the disk. We do not introduce new symbols for dimensionless variables; we simply treat all
variables as dimensionless from now, with the definitions (13) implying

κ = σ = I = 1. (14)

Equation (1) can then be rewritten as coupled second-order ODEs:

mẍ = −ẋ + `−1 A′(t)φ̂; (15a)

φ̈ = −φ̇ + A′(t), (15b)

where we defined for later convenience

fφ(t) = `−1 A′(t), (16)

with

`A(t) =
∫ t

0
fφ(s)ds−

∫ t

0
fφ(s)ds (17)

such that A = 0. We implicitly assumed that A(t) is bounded, which requires∣∣∣∣∫ t

0
fφ(s)ds

∣∣∣∣ < M, t ∈ R, (18)

for some positive constant M.
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5. Temporal Evolution of the Angle

The solution to (15b) is

φ(t) = φ0 + (1− e−(t−t0))ω0 +
∫ t

t0

e−(t−s)A(s)ds (19)

where φ(t0) = φ0 and φ′(t0) = ω0. We are really only interested in what happens after an
initial transient of O(1) duration (I/κ in dimensional variables), so we take the limit t0 →
−∞ in (19) and drop some constants to obtain

φ(t) =
∫ t

−∞
e−(t−s)A(s)ds =

∫ 0

−∞
es A(t + s)ds. (20)

The form (20) is such that that φ = 0, which follows from A = 0 in the same manner as
for Equation (11).

We shall work in the limit where the damping time I/κ = 1 is small compared to the
typical time scale for changes in A(t). This means that A� A′ � A′′ . . . . In that case the
integral in (20) can be evaluated as a series using Watson’s lemma:

φ(t) =
∞

∑
n=0

(−1)n A(n)(t). (21)

The series converges for A(t) smooth enough.
For the case where fφ(t) is periodic with period T, the boundedness condition (18)

requires ∫ T

0
fφ(t)dt = 0 (22)

and it follows that A(t) is also T-periodic, as well as φ(t).

6. Temporal Evolution of Position

Following a similar approach to Section 5, we see that the asymptotic solution to
Equation (15a) is

`ẋ(t) =
∫ t

−∞
e−(t−s)/m A′(s) φ̂(s)ds. (23)

We substitute the unit vector (3) with the expansion (21) in the ẋ integral (23), and again
using Watson’s lemma solve for the slow time evolution:

`ẋ = (A′)2 cos A +
(
cos A + mA′ sin A

)′
+ O(A′′′), (24a)

`ẏ = (A′)2 sin A +
(
sin A−mA′ cos A

)′
+ O(A′′′). (24b)

The second term on the right of both equations in (24) is an exact derivative, so its long-time
average vanishes. Hence, the components in (6) are(

U
V

)
= lim

T→∞

1
`T

(∫ T

0
(A′(t))2

(
cos A(t)
sin A(t)

)
dt + O(A′′′)

)
. (25)

The simplest case is to take the forcing A(t) to be a periodic function:

A(t) = A0 sin(Ωt). (26)

The integral (25) can be taken over a period T = 2π/Ω and the limit dropped, to obtain

U = A0Ω2`−1 J1(A0) + O(Ω3), V = 0, (27)
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where J1 is a Bessel function of the first kind. (V is zero to all orders, by symmetry, since A(t)
is odd.) Restoring dimensional variables,

U =
A0 IΩ2

σ`
J1(A0) + O((ΩI/κ)3)

=
IΩ fφ0

σκ
J1
(
` fφ0/Ωκ

)
+ O((ΩI/κ)3). (28)

where fφ0 = A0Ω/κ` is the amplitude of the fluctuating force (see Equation (16)). The
dimensional form makes it clear that the net velocity goes to zero for ` = 0 (no torque).

Figure 2 shows some numerical trajectories for the forcing (26), for a few different
amplitudes A0.

Figure 2. Trajectories for A(t) = A0 cos(Ωt) and ` = 1, Ω = 0.1.

Note that the disk moves to the right (with the convention as in Figure 1) with a speed
that increases with A0. In Figure 3 we confirm Formula (27) by finding the asymptotic
swimming speed as a function of A0.

Note that the swimmer can reverse its direction of motion with a large enough ‘shaking’
amplitude. This corresponds to the swimmer shaking hard enough that it completely
reverses its direction in one half-period (see Figure 2, bottom). Clearly, this regime is
unrealistic, but is interesting to note nonetheless.

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10

15
10-3

Figure 3. The mean speed U for numerical simulations with ` = 1, Ω = 0.1 (solid line) and the
asymptotic form Equation (27).
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7. Efficient Motion

A natural question to ask is: what is the optimal forcing to progress forward as
rapidly as possible? This is a popular endeavor in the world of microswimmers; see for
instance [9–17]. As we see below, we cannot completely answer this question here without
some extra assumptions.

7.1. Power

From (15), we can get energy equations

1
2 m

d
dt
‖u‖2 = −‖u‖2 + u · f , 1

2
d
dt

ω2 = −ω2 + ωτ. (29)

The left-hand sides of (29) are the rate of change of kinetic energy; the right-hand sides
include negative quadratic dissipation terms, and power expenditure terms

Pu(t) = u · f , Pω(t) = ωτ. (30)

Averaging (29) gives the balance between power expended and dissipated:

Pu = u · f = ‖u‖2, Pω = ωτ = ω2. (31)

If we use the overdamped approximation (24a) for u and the asymptotic solution (21) for φ,
we have

P(t) =
(

1 + `−2
)
(A′)2 + O(A′A′′). (32)

Taking the long-time average yields

P = (1 + `−2)(A′)2 + O((A′′)2). (33)

For convenience we absorb the prefactor to define

P = P/(1 + `−2). (34)

7.2. Optimizing the Speed of Motion

From Equation (25), assuming a periodic forcing A(t + T) = A(t),

U = (A′)2 cos A

= P− (A′)2 (1− cos A) ≤ P, (35)

where we neglected higher derivatives of A by assuming the period T is long. It is clear
from (35) that the power P is an absolute limit to the net speed of motion. A natural
question is whether there is an optimal periodic A(t) that leads to the fastest speed. For
simplicity we take A(t) to be an odd function of t, so that V = 0 in Equation (25). Consider
the particular choice of a triangular function

A(t) =

{√
P t, − 1

4 T ≤ t ≤ 1
4 T,√

P ( 1
2 T − t), 1

4 T ≤ t ≤ 3
4 T,

(36)

defined on [− 1
4 T, 3

4 T] and extended periodically (Figure 4). This piecewise linear function
has constant power P = (A′)2, so P = P. The speed for this periodic forcing is

U = P
4
T

∫ T/4

0
cos(
√

P t)dt = P sinc(
√

P T/4) (37)



Symmetry 2022, 14, 620 7 of 8

where sinc x := x−1 sin x. But now we replace T by a sub-period T/2k, and we can see
that U → P as k → ∞. The maximum net speed U = P is thus achieved by a constant-
power forcing that ‘switches’ infinitely rapidly with a very small amplitude (Figure 4,
bottom). This is not very natural, but still suggests what kinds of motions lead to most
efficient propulsion. A follow-up investigation could involve a constraint with a second
derivative of A in order to regularize the problem, but this requires introducing additional
physics or biology.

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

Figure 4. Top: The periodically-extended triangular function (36) for P = T = 1. Bottom: The same
function with T replaced by T/4. The two functions have the same constant power P = (A′)2, but
the bottom function has smaller amplitude.

8. Discussion

In this paper, we introduced a very simple mechanical model where it’s not initially
clear that a swimmer can make forward progress. A mean-zero the forward-backward
motion does not lead to net motion, but somewhat surprisingly a sideways motion can do
so, as long as it is driven by a force that also exerts a torque. A small amount of rotational
inertia is necessary, as is some damping mechanism such as linear drag or friction with a
surface. It is likely that the mechanism would still exist in a more realistic model, though
this has yet to be verified.

In practice, the forward progress made by the swimmer is extremely slow, so this toy
model is probably not a practical means of motion. Nevertheless, it is instructive to explore
the full range of possibilities when it comes to self-propelled motion since nature often
surprises us. Moreover, the setup described here could probably be easily realized with a
simple mechanical robot.

The choice of a disk for the shape is fairly immaterial: the only consequence of the
disk shape that was used here is the isotropy of the drag. A nonisotropic drag law (with a
resistance matrix) could be used, but would complicate the math. In closing, we note that it
is also possible to solve a stochastic version of this problem [18].
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