Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = ladle metallurgy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 14762 KiB  
Article
The Usability of Metallurgical Production Waste as a Siliceous Component in Autoclaved Aerated Concrete Technology
by Lenka Mészárosová, Vít Černý, Jindřich Melichar, Pavlína Ondříčková and Rostislav Drochytka
Buildings 2024, 14(10), 3155; https://doi.org/10.3390/buildings14103155 - 3 Oct 2024
Cited by 1 | Viewed by 1061
Abstract
The reconstruction of buildings is a complex process that often requires the consideration of the construction load when selecting correct building materials. Autoclaved aerated concrete (AAC)—which has a lower bulk density (compared to traditional masonry materials)—is very beneficial in such applications. A current [...] Read more.
The reconstruction of buildings is a complex process that often requires the consideration of the construction load when selecting correct building materials. Autoclaved aerated concrete (AAC)—which has a lower bulk density (compared to traditional masonry materials)—is very beneficial in such applications. A current trend in AAC development is the utilization of secondary raw materials in high-performance AAC, characterized by higher bulk density and compressive strength than regular AAC. The increase in bulk density is achieved by increasing the content of quartz sand in the mixing water. In this study, part of the siliceous component was replaced by ladle slag, foundry sand, furnace lining, and chamotte block powder. These materials are generated as by-products in metallurgy. The substitution rates were 10% and 30%. The samples were autoclaved in a laboratory autoclave for 8 h of isothermal duration at 190 °C with a saturated water vapor pressure of 1.4 MPa. The physical–mechanical parameters were determined, and the microstructure was described by XRD and SEM analyses. The results were compared with traditional AAC, with silica sand being used as the siliceous component. The measurement results show that sand substitution by the secondary raw material is possible, and it does not have a significant impact on the properties of AAC, and in a proper dosage, it can be beneficial for AAC production. Full article
(This article belongs to the Special Issue Actual Trends in Rehabilitation and Reconstruction of Buildings)
Show Figures

Figure 1

17 pages, 4138 KiB  
Article
Mixing Time Prediction in a Ladle Furnace
by Xipeng Guo, Yun Liu, Yasmeen Jojo-Cunningham, Armin Silaen, Nicholas Walla and Chenn Zhou
Metals 2024, 14(5), 518; https://doi.org/10.3390/met14050518 - 29 Apr 2024
Cited by 5 | Viewed by 1682
Abstract
This paper presents a study on the effectiveness of two turbulence models, the large eddy simulation (LES) model and the k-ε turbulence model, in predicting mixing time within a ladle furnace using the computational fluid dynamics (CFD) technique. The CFD model was developed [...] Read more.
This paper presents a study on the effectiveness of two turbulence models, the large eddy simulation (LES) model and the k-ε turbulence model, in predicting mixing time within a ladle furnace using the computational fluid dynamics (CFD) technique. The CFD model was developed based on a downscaled water ladle from an industrial ladle. Corresponding experiments were conducted to provide insights into the flow field, which were used for the validation of CFD simulations. The correlation between the flow structure and turbulence kinetic energy in relation to mixing time was investigated. Flow field results indicated that both turbulence models aligned well with time-averaged velocity data from the experiments. However, the LES model not only offered a closer match in magnitude but also provided a more detailed representation of turbulence eddies. With respect to predicting mixing time, increased flow rates resulted in extended mixing times in both turbulence models. However, the LES model consistently projected longer mixing times due to its capability to capture a more intricate distribution of turbulence eddies. Full article
Show Figures

Figure 1

14 pages, 3337 KiB  
Article
Study of Assimilation of Cored Wire into Liquid Steel Baths
by Edgar-Ivan Castro-Cedeno, Julien Jourdan, Jonathan Martens, Jean-Pierre Bellot and Alain Jardy
Metals 2024, 14(4), 462; https://doi.org/10.3390/met14040462 - 15 Apr 2024
Cited by 1 | Viewed by 2511
Abstract
Cored wire is a widespread technology used for performing additions into liquid metal baths as an alternative to bulk-additions. A laboratory-scale study was performed in which the kinetics of assimilation of cored wire in liquid steel baths were studied. An original dataset of [...] Read more.
Cored wire is a widespread technology used for performing additions into liquid metal baths as an alternative to bulk-additions. A laboratory-scale study was performed in which the kinetics of assimilation of cored wire in liquid steel baths were studied. An original dataset of positions of the wire/melt interface of cored wire as a function of the time and steel bath temperature was produced. The dataset was compared against results of simulations made with a transient 1D (radial) thermal model of the assimilation of cored wire, and demonstrated reasonable agreement. Hence, this paper provides a dataset that can be used as a resource for the validation of future developments in the field of modeling cored wire injection into liquid metal baths. Full article
(This article belongs to the Topic Advanced Processes in Metallurgical Technologies)
Show Figures

Graphical abstract

16 pages, 11048 KiB  
Article
Development and Validation of Computational Fluid Dynamics Model of Ladle Furnace with Electromagnetic Stirring System
by Monika Zielinska, Hongliang Yang, Lukasz Madej and Lukasz Malinowski
Materials 2024, 17(4), 960; https://doi.org/10.3390/ma17040960 - 19 Feb 2024
Cited by 2 | Viewed by 1751
Abstract
Numerical methods are crucial to supporting the development of new technology in different industries, especially steelmaking, where many phenomena cannot be directly measured or observed under industrial conditions. As a result, further designing and optimizing steelmaking equipment and technology are not easy tasks. [...] Read more.
Numerical methods are crucial to supporting the development of new technology in different industries, especially steelmaking, where many phenomena cannot be directly measured or observed under industrial conditions. As a result, further designing and optimizing steelmaking equipment and technology are not easy tasks. At the same time, numerical approaches enable modeling of various phenomena controlling material behavior and, thus, understanding the physics behind the processes occurring in different metallurgical devices. With this, it is possible to design and develop new technological solutions that improve the quality of steel products and minimize the negative impact on the environment. However, the usage of numerical approaches without proper validation can lead to misleading results and conclusions. Therefore, in this paper, the authors focus on the development of the CFD-based (computational fluid dynamics) approach to investigate the liquid steel flow inside one metallurgical device, namely a ladle furnace combined with an EMS (electromagnetic stirring) system. First, a numerical simulation of electromagnetic stirring in a scaled mercury model of a ladle furnace was carried out. The numerical results, such as stirring speed and turbulent kinetic energy, were compared with measurements in the mercury model. It was found that the results of the transient multiphase CFD model achieve good agreement with the measurements, but a free surface should be included in the CFD model to simulate the instability of the flow pattern in the mercury model. Based on the developed model, a full-scale industrial ladle furnace with electromagnetic stirring was also simulated and presented. This research confirms that such a coupled model can be used to design new types of EMS devices that improve molten steel flow in metallurgical equipment. Full article
(This article belongs to the Special Issue Advanced Metallurgy Technologies: Physical and Numerical Modelling)
Show Figures

Figure 1

14 pages, 3906 KiB  
Article
Volumetric Flow Field inside a Gas Stirred Cylindrical Water Tank
by Yasmeen Jojo-Cunningham, Xipeng Guo, Chenn Zhou and Yun Liu
Fluids 2024, 9(1), 11; https://doi.org/10.3390/fluids9010011 - 28 Dec 2023
Cited by 5 | Viewed by 2326
Abstract
Ladle metallurgy serves as a crucial component of the steelmaking industry, where it plays a pivotal role in manipulating the molten steel to exercise precise control over its composition and properties. Turbulence in ladle metallurgy influences various important aspects of the steelmaking process, [...] Read more.
Ladle metallurgy serves as a crucial component of the steelmaking industry, where it plays a pivotal role in manipulating the molten steel to exercise precise control over its composition and properties. Turbulence in ladle metallurgy influences various important aspects of the steelmaking process, including mixing and distribution of additives, alongside the transport and removal of inclusions within the ladle. Consequently, gaining a clear understanding of the stirred flow field holds the potential of optimizing ladle design, improving control strategies, and enhancing the overall efficiency and steel quality. In this project, an advanced Particle-Tracking-Velocimetry system known as “Shake-the-Box” is implemented on a cylindrical water ladle model while compressed air injections through two circular plugs positioned at the bottom of the model are employed to actively stir the flow. To mitigate the particle images distortion caused by the cylindrical plexi-glass walls, the method of refractive matching is utilized with an outer polygon tank filled with a sodium iodide solution. The volumetric flow measurement is achieved on a 6 × 6 × 2 cm domain between the two plugs inside the cylindrical container while the flow rate of gas injection is set from 0.1 to 0.4 L per minute. The volumetric flow field result suggests double gas injection at low flow rate (0.1 L per minute) produce the least disturbed flow while highly disturbed and turbulent flow can be created at higher flow rate of gas injection. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques)
Show Figures

Figure 1

28 pages, 902 KiB  
Article
A Proposed Methodology to Evaluate Machine Learning Models at Near-Upper-Bound Predictive Performance—Some Practical Cases from the Steel Industry
by Leo S. Carlsson and Peter B. Samuelsson
Processes 2023, 11(12), 3447; https://doi.org/10.3390/pr11123447 - 18 Dec 2023
Viewed by 1545
Abstract
The present work aims to answer three essential research questions (RQs) that have previously not been explicitly dealt with in the field of applied machine learning (ML) in steel process engineering. RQ1: How many training data points are needed to create a model [...] Read more.
The present work aims to answer three essential research questions (RQs) that have previously not been explicitly dealt with in the field of applied machine learning (ML) in steel process engineering. RQ1: How many training data points are needed to create a model with near-upper-bound predictive performance on test data? RQ2: What is the near-upper-bound predictive performance on test data? RQ3: For how long can a model be used before its predictive performance starts to decrease? A methodology to answer these RQs is proposed. The methodology uses a developed sampling algorithm that samples numerous unique training and test datasets. Each sample was used to create one ML model. The predictive performance of the resulting ML models was analyzed using common statistical tools. The proposed methodology was applied to four disparate datasets from the steel industry in order to externally validate the experimental results. It was shown that the proposed methodology can be used to answer each of the three RQs. Furthermore, a few findings that contradict established ML knowledge were also found during the application of the proposed methodology. Full article
(This article belongs to the Special Issue Machine Learning in Model Predictive Control and Optimal Control)
Show Figures

Figure 1

11 pages, 3841 KiB  
Article
The Properties and Microstructure of Na2CO3 and Al-10Sr Alloy Hybrid Modified LM6 Using Ladle Metallurgy Method
by Mhd Noor Ervina Efzan and Hao Jie Kong
Materials 2023, 16(20), 6780; https://doi.org/10.3390/ma16206780 - 20 Oct 2023
Viewed by 1375
Abstract
In this work, Al-10Sr alloy and Na2CO3 were added to LM6 (reference alloy) as hybrid modifiers through ladle metallurgy. The microstructure enhancement was analyzed using an optical microscope (OM). The results were further confirmed with Scanning Electron Microscope (SEM) and [...] Read more.
In this work, Al-10Sr alloy and Na2CO3 were added to LM6 (reference alloy) as hybrid modifiers through ladle metallurgy. The microstructure enhancement was analyzed using an optical microscope (OM). The results were further confirmed with Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) spectroscopy. The results showed that Na2CO3 and Al-10Sr alloy successfully hybrid modified the sharp needle-like eutectic Si into fibrous eutectic Si. Soft primary Al dendrites were also discovered after the hybrid modification. The formation of β-Fe flakes was suppressed, and α-Fe sludge was transformed into Chinese script morphology. A 2.13% density reduction was recorded. A hardness test was also performed to investigate the mechanical improvement of the hybrid-modified LM6. 2.3% of hardness reduction was recorded in the hybrid-modified LM6 through ladle metallurgy. Brittle cracks were not observed, while ductile pile-ups were the main features that appeared on the indentations of hybrid-modified LM6, indicating a brittle to ductile transformation after hybrid modification of LM6 by Na2CO3 and Al-10Sr alloy through ladle metallurgy. Full article
Show Figures

Figure 1

17 pages, 6640 KiB  
Article
CFD Predictions for Mixing Times in an Elliptical Ladle Using Single- and Dual-Plug Configurations
by Rohit Tiwari, Bruno Girard, Chantal Labrecque, Mihaiela M. Isac and Roderick I. L. Guthrie
Processes 2023, 11(6), 1665; https://doi.org/10.3390/pr11061665 - 30 May 2023
Cited by 7 | Viewed by 2015
Abstract
Argon bottom stirring is commonly practiced in secondary steelmaking processes due to its positive effects on achieving uniform temperatures and chemical compositions throughout a steel melt. It can also be used to facilitate slag metal refining reactions. The inter-mixing phenomena associated with argon [...] Read more.
Argon bottom stirring is commonly practiced in secondary steelmaking processes due to its positive effects on achieving uniform temperatures and chemical compositions throughout a steel melt. It can also be used to facilitate slag metal refining reactions. The inter-mixing phenomena associated with argon gas injection through porous plugs set in the bottom and its stirring efficiency can be summarized by evaluations of 95% mixing times. This study focuses on investigating the impact of different plug positions and ratios of argon flow rates from two plugs on mixing behavior within a 110-tonne, elliptical-shaped industrial ladle. A quasi-single-phase modeling technique was employed for this purpose. The CFD findings revealed that the optimal position of the second plug is to be placed diametrically opposite the existing one at an equal mid-radius distance (R/2). An equal distribution of argon flow rates yielded the best results in terms of refractory erosion. A comparative study was conducted between single- and dual-plug-configured ladles based on flow behavior and wall shear stresses using this method. Furthermore, a transient multiphase model was developed to examine the formation of slag open eyes (SOE) for both single- and dual-plug configurations using a volume of fluid (VOF) model. The results indicated that the dual-plug configuration outperformed the current single-plug configuration. Full article
(This article belongs to the Special Issue Process Analysis and Simulation in Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 4019 KiB  
Article
Two-Way PBM–Euler Model for Gas and Liquid Flow in the Ladle
by Han Zhang, Hong Lei, Changyou Ding, Shifu Chen, Yuanyou Xiao and Qiang Li
Materials 2023, 16(10), 3782; https://doi.org/10.3390/ma16103782 - 17 May 2023
Cited by 3 | Viewed by 1895
Abstract
Ladle metallurgy is an important steelmaking technology in high-quality steel production. The blowing of argon at the ladle bottom has been applied in ladle metallurgy for several decades. Until now, the issue of breakage and coalescence among bubbles was still far from being [...] Read more.
Ladle metallurgy is an important steelmaking technology in high-quality steel production. The blowing of argon at the ladle bottom has been applied in ladle metallurgy for several decades. Until now, the issue of breakage and coalescence among bubbles was still far from being solved. In order to have a deep insight into the complex process of fluid flow in the gas-stirred ladle, the Euler–Euler model and population balance model (PBM) are coupled to investigate the complex fluid flow in the gas-stirred ladle. Here, the Euler–Euler model is applied to predict the two-phase flow, and PBM is applied to predict the bubble and size distribution. The coalescence model, which considers turbulent eddy and bubble wake entrainment, is taken into account to determine the evolution of the bubble size. The numerical results show that if the mathematical model ignores the breakage of bubbles, the mathematical model gives the wrong bubble distribution. For bubble coalescence in the ladle, turbulent eddy coalescence is the main mode, and wake entrainment coalescence is the minor mode. Additionally, the number of the bubble-size group is a key parameter for describing the bubble behavior. The size group number 10 is recommended to predict the bubble-size distribution. Full article
(This article belongs to the Special Issue Advanced Metallurgy Technologies: Physical and Numerical Modelling)
Show Figures

Figure 1

11 pages, 1208 KiB  
Review
A Review of the Thermochemical Behaviour of Fluxes in Submerged Arc Welding: Modelling of Gas Phase Reactions
by Theresa Coetsee and Frederik De Bruin
Processes 2023, 11(3), 658; https://doi.org/10.3390/pr11030658 - 22 Feb 2023
Cited by 7 | Viewed by 3254
Abstract
This review is focused on the thermochemical behaviour of fluxes in submerged arc welding (SAW). The English-language literature from the 1970s onwards is reviewed. It was recognised early on that the thermochemical behaviour of fluxes sets the weld metal total ppm O and [...] Read more.
This review is focused on the thermochemical behaviour of fluxes in submerged arc welding (SAW). The English-language literature from the 1970s onwards is reviewed. It was recognised early on that the thermochemical behaviour of fluxes sets the weld metal total ppm O and the element transfer extent from the molten flux (slag) to the weld pool. Despite the establishment of this link between the flux-induced oxygen potential and element transfer, it is also well accepted that the slag–metal equilibrium does not control SAW process metallurgy. Instead, the gas phase must be taken into account to better describe SAW process metallurgy equilibrium calculations. This is illustrated in the gas–slag–metal equilibrium simulation model developed by Coetsee. This model provides improved accuracy in predicting the weld metal total ppm O values as compared to the empirical trend of Tuliani et al. Recent works on the application of Al metal powder with alloying metal powders provide new insights into the likely gas phase reactions in the SAW process and the modification of the flux oxygen behaviour via Al additions. Aluminium may lower the partial oxygen pressure in the arc cavity, and aluminium also lowers the partial oxygen pressure at the weld pool–slag interface. The weld metal total ppm O is lowered with the addition of aluminium in SAW, but not to the same extent as would be expected from steelmaking ladle metallurgy de-oxidation practice when using Al as de-oxidiser. This difference indicates that slag–metal equilibrium is not maintained in the SAW process. Full article
Show Figures

Figure 1

19 pages, 18566 KiB  
Article
Dissolution of Microalloying Elements in a Ladle Metallurgy Furnace
by Ogochukwu Queeneth Duruiheme, Xipeng Guo, Nicholas Walla and Chenn Zhou
Metals 2023, 13(2), 421; https://doi.org/10.3390/met13020421 - 17 Feb 2023
Cited by 4 | Viewed by 2555
Abstract
Industrial fusion of microalloying elements in steelmaking is imperative in defining and optimizing certain steel properties due to their strengthening and significant grain refinements effects at minute quantities. Copper, vanadium, and columbium are explored in this investigation to monitor their respective dissolution processes [...] Read more.
Industrial fusion of microalloying elements in steelmaking is imperative in defining and optimizing certain steel properties due to their strengthening and significant grain refinements effects at minute quantities. Copper, vanadium, and columbium are explored in this investigation to monitor their respective dissolution processes in a ladle metallurgy furnace (LMF), with concise parametric studies on effects of number of plugs and variations in argon gas flow rates for stirring. To track particle disintegration in the molten bath inside, intricate numerical processing was carried out with the use of mathematical models and to simulate the mixing process; turbulent multiphase computational fluid dynamics (CFD) models were combined with a user-defined function. The numerical findings highlight the connection between mixing time and gas blowing since the quantity of stirring plugs employed and the gas flow rates directly affect mixing effectiveness. The amount of particles to be injected and their total injection time were validated using industrial measurement; an average difference of 9.9% was achieved. In order to establish the need for an exceptionally high flow rate and inevitably reduce resource waste, extreme charging of flow rates for gas stirring were compared to lesser gas flow rates in both dual- and single-plug ladles. The results show that a single-plug ladle with a flow rate of 0.85 m3/min and a dual-plug ladle with a total flow rate of 1.13 m3/min have the same mixing time of 5.6 min, which was the shortest among all scenarios. Full article
Show Figures

Figure 1

25 pages, 5257 KiB  
Article
Coarsening Mechanisms of CaS Inclusions in Ca-Treated Steels
by Keyan Miao, Muhammad Nabeel and Neslihan Dogan
Metals 2022, 12(5), 707; https://doi.org/10.3390/met12050707 - 20 Apr 2022
Cited by 3 | Viewed by 2183
Abstract
In this work, the coarsening mechanisms of CaS inclusions in liquid steel were investigated by analyzing inclusions in experimental and industrial samples. A detailed particle size distribution evolution was reported. The observed CaS coarsening rate was compared with the theoretical coarsening rate calculated [...] Read more.
In this work, the coarsening mechanisms of CaS inclusions in liquid steel were investigated by analyzing inclusions in experimental and industrial samples. A detailed particle size distribution evolution was reported. The observed CaS coarsening rate was compared with the theoretical coarsening rate calculated by using the models proposed in the literature. For both experimental and industrial data, it was observed that the coarsening mechanisms varied during different stages of Ca treatment. It was found that in the early stage (after Ca addition) of experiments and during Ca addition under industrial conditions, the coarsening of CaS was governed by diffusion-controlled growth. As the Ca dissolved in steel diminished, the coarsening was governed by collision-dependent mechanisms. For experimental conditions, the growth of CaS was controlled by the Brownian collisions, while the coarsening by turbulent collisions was the dominant mechanism under industrial conditions. Full article
(This article belongs to the Special Issue Development of Clean Steel Production)
Show Figures

Figure 1

15 pages, 27444 KiB  
Article
Influence of the Gas Bubble Size Distribution on the Ladle Stirring Process
by Mengkun Li and Lintao Zhang
Processes 2020, 8(12), 1663; https://doi.org/10.3390/pr8121663 - 16 Dec 2020
Cited by 9 | Viewed by 3380
Abstract
This work aims at figuring out the influence of gas bubble size distribution on the ladle stirring process. The work is conducted through three-dimensional (3D) numerical simulation based on the finite volume method. Mesh sensitivity test and the cross-validation are performed to ensure [...] Read more.
This work aims at figuring out the influence of gas bubble size distribution on the ladle stirring process. The work is conducted through three-dimensional (3D) numerical simulation based on the finite volume method. Mesh sensitivity test and the cross-validation are performed to ensure the results are mesh independent and the numerical set-up is correct. Two distributions, uniform and Log-normal function, are investigated under different gas flow rates and number of porous plugs. The results indicate that the results, e.g., the axial velocity and the area of the slag eye, have little difference for low flow rate. The difference becomes dominant whilst the flow rate is increasing, such as 600 NL/min. The Log-normal function bubble size distribution gives a larger axial velocity and a smaller slag eye area compared to the uniform bubble size distribution. This work indicated that, at a higher flow rate, the Log-normal function is a better choice to predict the melt behavior and the slag open eye in the ladle refining process if the bubble interaction is not considered. Full article
Show Figures

Figure 1

27 pages, 675 KiB  
Review
A Review of the Influence of Steel Furnace Slag Type on the Properties of Cementitious Composites
by Alexander S. Brand and Ebenezer O. Fanijo
Appl. Sci. 2020, 10(22), 8210; https://doi.org/10.3390/app10228210 - 19 Nov 2020
Cited by 74 | Viewed by 8027
Abstract
The type of steel furnace slag (SFS), including electric arc furnace (EAF) slag, basic oxygen furnace (BOF) slag, ladle metallurgy furnace (LMF) slag, and argon oxygen decarburization (AOD) slag, can significantly affect the composite properties when used as an aggregate or as a [...] Read more.
The type of steel furnace slag (SFS), including electric arc furnace (EAF) slag, basic oxygen furnace (BOF) slag, ladle metallurgy furnace (LMF) slag, and argon oxygen decarburization (AOD) slag, can significantly affect the composite properties when used as an aggregate or as a supplementary cementitious material in bound applications, such as concretes, mortars, alkali-activated materials, and stabilized soils. This review seeks to collate the findings from the literature to express the variability in material properties and to attempt to explain the source(s) of the variability. It was found that SFS composition and properties can be highly variable, including different compositions on the exterior and interior of a given SFS particle, which can affect bonding conditions and be one source of variability on composite properties. A suite of tests is proposed to better assess a given SFS stock for potential use in bound applications; at a minimum, the SFS should be evaluated for free CaO content, expansion potential, mineralogical composition, cementitious composite mechanical properties, and chemical composition with secondary tests, including cementitious composite durability properties, microstructural characterization, and free MgO content. Full article
(This article belongs to the Special Issue Utilization of Steel Furnace Slag in Cementitious Composites)
Show Figures

Figure 1

19 pages, 1936 KiB  
Article
Stabilization of a Clayey Soil with Ladle Metallurgy Furnace Slag Fines
by Alexander S. Brand, Punit Singhvi, Ebenezer O. Fanijo and Erol Tutumluer
Materials 2020, 13(19), 4251; https://doi.org/10.3390/ma13194251 - 24 Sep 2020
Cited by 42 | Viewed by 4416
Abstract
The research study described in this paper investigated the potential to use steel furnace slag (SFS) as a stabilizing additive for clayey soils. Even though SFS has limited applications in civil engineering infrastructure due to the formation of deleterious expansion in the presence [...] Read more.
The research study described in this paper investigated the potential to use steel furnace slag (SFS) as a stabilizing additive for clayey soils. Even though SFS has limited applications in civil engineering infrastructure due to the formation of deleterious expansion in the presence of water, the free CaO and free MgO contents allow for the SFS to be a potentially suitable candidate for clayey soil stabilization and improvement. In this investigation, a kaolinite clay was stabilized with 10% and 15% ladle metallurgy furnace (LMF) slag fines by weight. This experimental study also included testing of the SFS mixtures with the activator calcium chloride (CaCl2), which was hypothesized to accelerate the hydration of the dicalcium silicate phase in the SFS, but the results show that the addition of CaCl2 was not found to be effective. Relative to the unmodified clay, the unconfined compressive strength increased by 67% and 91% when 10% and 15% LMF slag were utilized, respectively. Likewise, the dynamic modulus increased by 212% and 221% by adding 10% and 15% LMF slag, respectively. Specifically, the LMF slag fines are posited to primarily contribute to a mechanical rather than chemical stabilization mechanism. Overall, these findings suggest the effective utilization of SFS as a soil stabilization admixture to overcome problems associated with dispersive soils, but further research is required. Full article
(This article belongs to the Special Issue Advances in Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop