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Abstract: The present work aims to answer three essential research questions (RQs) that have
previously not been explicitly dealt with in the field of applied machine learning (ML) in steel
process engineering. RQ1: How many training data points are needed to create a model with near-
upper-bound predictive performance on test data? RQ2: What is the near-upper-bound predictive
performance on test data? RQ3: For how long can a model be used before its predictive performance
starts to decrease? A methodology to answer these RQs is proposed. The methodology uses a
developed sampling algorithm that samples numerous unique training and test datasets. Each
sample was used to create one ML model. The predictive performance of the resulting ML models
was analyzed using common statistical tools. The proposed methodology was applied to four
disparate datasets from the steel industry in order to externally validate the experimental results. It
was shown that the proposed methodology can be used to answer each of the three RQs. Furthermore,
a few findings that contradict established ML knowledge were also found during the application of
the proposed methodology.

Keywords: machine learning; stability; predictive performance; statistical modeling; electric arc
furnace; vacuum tank degasser; ladle refining furnace; secondary metallurgy

1. Introduction

In light of the plethora of challenges facing the steel industry, machine learning (ML)
is seen as a promising technology that can overcome many of these challenges. As opposed
to deterministic models, ML models do not require explicitly defined relations between
the variables used to create the model. This is advantageous in steel processes where
some of the variables are difficult to accurately quantify or where the relationship between
certain ongoing variables and the output variable cannot be analytically defined. As such,
there have been numerous studies that have used ML models, which are in fact statistical
models, to resolve challenges in a wide range of processes and optimization problems
within the steel industry. Predicting the electrical energy (EE) consumption of the electric
arc furnace (EAF) [1], the tap temperature of the EAF [2], the temperature of molten steel
during treatment in secondary metallurgy [3], end-point prediction of temperature and
alloying elements in the basic oxygen furnace (BOF) [4], and prediction of the molten steel
temperature in the steel ladle and tundish [5] are several examples of ML models applied
in the context of steel process engineering.

Despite the prominent research activity in the field of applied ML in steel process
engineering, there are many practical challenges that have to be solved before ML can
be substantially leveraged for value creation within the steel industry. These challenges
are not specific to the steel industry itself, rather they are challenges that any industry
faces when attempting to successfully utilize ML models. Some of these challenges are
specific to the implementation, supervision, and maintenance of ML models while other
challenges are related to the infrastructure and work methodology governing both the data
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and the ML model systems [6–9]. The data governing the training and testing of any ML
model set the upper-bound predictive performance and the trustworthiness in the eyes of
domain experts for that ML model. In this work, the upper-bound predictive performance is
defined as the highest predictive performance that can be achieved by a stable ML model on a finite
test dataset. The goal of the present work is to answer three research questions (RQs) that
have previously not been explicitly dealt with in the field of applied ML in steel process
engineering. These essential RQs are:

1. How many training data points are needed to create a model with near-upper-bound
predictive performance on test data?

2. What is the near-upper-bound predictive performance on test data?
3. For how long can a model be used before its predictive performance starts to decrease?

By training and evaluating ML models on numerous samples of training data and
test data, it could be possible to answer the three RQs. The answers can then be used
by both practitioners and researchers in the field to better understand the potential of
using ML models for an arbitrary steel process under study. For example, expectations of
the predictive performance of ML models for a specific process can be established before
investing resources in implementing the model in production. These resources could
instead be used to improve the quality of the data governing the performance of the ML
model. After all, the data quality always sets the upper-bound predictive performance of
any ML model and is one of the main challenges facing the steel industry in regards to the
practical usability of ML models [10–12].

The present work is unique for three reasons. First, previous research in applied ML in
steel process engineering has not evaluated the amount of training data required to create
an ML model that achieves a near-upper-bound predictive performance on test data for the
steel processes under study. The generally accepted practice is to use as many data points
as possible as training data. However, due to changes that occur in steel processes over
time, this recommendation is not sound because the large number of historical samples
could be irrelevant to the current state of the process. Reasonably, the most recent samples
are more relevant to use as training samples due to the wear of equipment and change in
production practices over time, all of which impose changes in the distributions governing
the data. In addition, the number of training samples for any steel process is proportional
to the number of produced heats. The number of produced heats per year in steel plants
is commonly within the range 103 to 104. By having an understanding of the number of
required training samples, it is possible to assess when it is possible to have a model that
achieves a satisfactory predictive performance after, for example, a maintenance overhaul
of the process equipment. This type of equipment intervention could affect the process
data to such an extent that the predictive performance of the model is decreased. Second,
the current available research in the field of steel process engineering has not investigated
the amount of test data, in chronological order after the training data, that a model can
predict before the predictive performance of the model decreases. All processes in the
steel industry change due to, for example, wear of the equipment and changes in standard
operating procedures (SOP). Naturally, these changes will be reflected in the data collected
from the processes. Hence, it is expected that the model performance on previously unseen
data, i.e., test data, will deteriorate the longer the model is used after training. Lastly,
to externally validate the experimental results, four datasets encompassing four processes
from three different steel plants will be used. Each of these datasets represents produced
heats over 2 to 14 years of continuous steel production.

2. Background
2.1. Upper-Bound Predictive Performance

The highest possible predictive performance of any ML model is limited by how well
the data used to train the ML model represent reality and how well the ML model can adapt
its weights to accurately capture the relationship between the input variable and the output
variable. Since the ML field has mainly focused on developing ML model algorithms that
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can adapt the resulting model to complex data [12,13], the most common limitation to the
predictive performance of ML models is how well the data represent reality. For the steel
industry, the datasets produced by the processes are limited to the number of produced heats
per year, which is usually within the range of 103 to 104. Furthermore, the number of variables
needed to predict various metallurgical phenomena in steel process engineering are limited
by physico-chemical relations. This further eliminates the need for complex ML models since
the number of relevant input variables is typically within the range of 101 to 102.

In the current paper, the following definition is used: the upper-bound predictive perfor-
mance is the highest predictive performance that can be achieved by a specific ML model algorithm
on a finite test dataset that follows in chronological order from the training dataset used to adapt the
parameters of the resulting model. The model producing the upper-bound predictive performance
must be stable, i.e., the predictive performance must not be the result of a randomization procedure
within the ML model algorithm.

Near-upper-bound predictive performance builds on the aforementioned definition of
upper-bound predictive performance. The term near illuminates the fact that the upper-
bound predictive performance is the highest predictive performance that can be achieved.
How close a model comes to this theoretical limit is partly a random outcome since the ML
model algorithm used in this paper utilizes randomization procedures during the model
training phase. Near-upper-bound predictive performance should therefore be interpreted
as the highest predictive performance that can be achieved, per the above definition, given
the randomization imposed by the ML model algorithm.

2.2. Applied Machine Learning in Steel Processes

The advantage of using ML models is that they do not require explicitly defined
relationships between the input variables and the output variable. Therefore, ML models
can be used to predict physical phenomena in steel processes that are dependent on factors
that are difficult to accurately quantify. The present work demarcates the application of
ML models in the steel industry to two prediction problems that are known to be difficult
to model using deterministic models such as mass- and energy balance equations. These
are the predictions of the EE consumption in the EAF and the end-point temperature in
secondary metallurgy. Examples illuminating the reasons why these two problems are
difficult to model using deterministic models will be provided in the following sections
along with the description of each of the processes governing the four datasets used in the
present work.

2.2.1. Electrical Energy Consumption of the Electric Arc Furnace

The EAF is the main melting process in mini-mill types of steel plants. It commonly
uses steel scrap from various recycling operators, alloys, and direct reduced iron (DRI)
as raw materials to produce molten steel. The molten steel is then further processed in
downstream processes of the steel plant.

A general EAF process begins with the charging of raw materials into the furnace
using a scrap bucket. The electrodes of the EAF are then ignited and bored down into the
raw material This phase, commonly known as the melting phase, continues until enough
scrap has melted to make room for a second bucket of raw materials. After the second
charge of raw materials has been added, the process continues in yet another melting phase.
A third bucket of raw materials may be added if the target weight of steel has not been
met. Some steel plants also use burners to remove the cold spots that appear in the furnace
wall furthest away from the electric arc during the melting phase. After the majority of
the raw material has melted, the refining phase starts during which the furnace operator
has the ability to adjust the steel to its pre-specified composition. Carbon (and silicon)
can also be added together with oxygen lancing to facilitate heating through exothermic
chemical reactions. Any type of chemical heating reduces the amount of EE needed to
either melt the raw materials or raise the temperature of the molten steel. When the molten
steel has reached its target temperature and composition, it is tapped into a ladle for further
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downstream processing. Before the start of the next heat, any required preparations are
made such as the fettling of the refractories.

One of the main costs of operating the EAF is electricity. Hence, a decrease in EE
consumption will result in a reduction in costs when producing steel in mini-mills. A prac-
tical application of an ML model, predicting the EE consumption, is that the predicted EE
consumption can be used by the EAF process control system operator as a reference to
optimize the process towards lower EE consumption. Quantifying the effect of various
scrap types on EE consumption is one of the main challenges in accurately predicting
EE consumption using deterministic models. The melting of scrap in the EAF depends
partly on the volume-to-surface area ratio for the charged types of scraps with various
shapes and apparent densities. Furthermore, the layering of the different types of scraps in
the scrap bucket, and thus also in the furnace, affects the melting behaviour of the scrap
during the melting phase. While there exists deterministic equations for the melting of
individual scrap pieces [14], equations that accurately quantify the effect of arbitrary blends
and volumes of various types of scraps with different shapes and apparent densities do
not exist. The use of ML modeling is therefore a valid choice of modeling framework for
predicting EAF’s EE consumption.

The present work will use data from two EAFs, which will be referred to as EAF1 and
EAF2, respectively. EAF1 produces stainless steel and EAF2 produces steel for ball bearing
rings, rods, and engineering steels. Both EAFs uses only scrap and alloys as raw materials.

2.2.2. End-Point Temperature in Secondary Metallurgy

During secondary metallurgy, the steel melt composition is further adjusted to match
the composition of the specific steel grade that is to be produced. In the present work, the La-
dle Refining Furnace (LRF) and Vacuum Tank Degasser (VTD) processes are of interest.

In the LRF, the target composition of the steel grade to be produced is achieved by both
removing unwanted elements and by adding wanted elements. Unwanted elements, such
as oxygen, are removed by adding deoxidation agents such as aluminum and ferrosilicon
while stirring the steel melt. Stirring is facilitated by injecting argon through porous plugs
in the bottom of the ladle as well as by injecting argon from the top of the melt using a
lance. The addition of wanted elements depends on the type of steel grade to be produced.
Common alloys are manganese and molybdenum. If the steel melt temperature is below
the target end temperature, the steel is heated using electricity prior to the transportation
to the continuous casting machine (CCM).

The purpose of the VTD is to reduce the level of hydrogen and nitrogen present in
the steel melt. This is conducted by inserting the ladle into the vacuum chamber where
the pressure is decreased to an extent that facilitates the removal of dissolved nitrogen
and hydrogen to their gaseous equivalents. To hasten this process, argon can be injected
during the vacuum treatment process through porous plugs located in the bottom of the
ladle. The tolerance levels of the dissolved gases vary by steel grade and the time under
vacuum pressure will therefore vary. Naturally, a longer vacuum treatment leads to a lower
temperature of the steel melt which has to be compensated for by external heating.

The importance of achieving the specific target temperature at the end of the LRF
and VTD processes is due to the pre-specified arrival temperature at the CCM. If the
temperature of the molten steel arriving at the CCM is too high, the molten steel will
be more difficult to solidify in the oscillating mold. If the steel does not solidify in the
mold, a breakthrough will happen where molten steel pours out of the mold and damages
adjacent parts of the CCM. The severe costs of a breakout are not only associated with
repairs but also with the downtime in the steel plant that is inevitable during a subsequent
reparation campaign. If the arrival temperature is too low, then the ladle must be sent
back for reheating, which requires re-planning of the present ladle and the following ladles
whose path gets interrupted by the re-planning of the present ladle. Inevitably, this incurs
a loss in productivity and therefore additional costs for the steel plant.
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The challenge in predicting the end-point temperature of any secondary metallurgy
process is partly related to the ladle heat loss. The heat loss in the ladle is substantially
dependent on the thickness of the ladle walls, which is reduced the longer the ladle is used
to transport molten steel. The ladle wear rate depends not only on its total time of use,
but also on the type of steel produced due to the different effects various steel compositions
have on the ladle refractory walls. Accurately quantifying the total ladle wear and its effect
on heat loss is therefore difficult using deterministic models. This is one of the reasons
why ML models are a valid choice in predicting the end-point temperature of processes in
secondary metallurgy.

The VTD process in the present work resides within the same steel plant as the LRF
process described in the previous section. In addition, the VTD and LRF processes reside
within the same unit called the secondary metallurgy station. This means that, after the
VTD process is finished, the operator has the ability to move the ladle to the LRF section
of the secondary metallurgy station for additional treatment. This is often carried out to
adjust the temperature of the molten steel such that it arrives at the CCM at a pre-specified
arrival temperature. The two processes will be referred to as LRF and VTD, respectively,
in the following sections of this paper.

Figure 1 illustrates the residence of each of the four processes within the three steel
plants providing the data used in the present study.

Scrap yard EAF
Argon-oxygen
Decarburizer

(AOD)
CCM

EAF1

EAF2

Scrap yard EAF Ingot casting

LRF and VTD

Basic Oxygen
Furnace (BOF) CCMDe-slagging

LRF

VTD

Secondary
Metallurgy Station

LRF

De-slagging

LRF

VTD

Secondary
Metallurgy Station

Figure 1. The location of each process EAF1, EAF2, LRF, and VTD, with respect to the upstream and
downstream processes in each steel plant.

2.2.3. Previous Work

There is a plethora of published research on using ML models to predict the EE con-
sumption of the EAF process and the end-point temperatures of the LRF and VTD processes.
A review of publications creating or using ML models to predict the EE consumption of
the EAF was published in 2019 [1], which included models starting from the early 1980s.
The review compiled information on variables used to create the models, the predictive per-
formance of each model, and the type of EAFs governing the data, with recommendations
for future work based on identified shortcomings. These recommendations were adhered
to in some further developments [15,16]. Additional developments include the comparison
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of the predictive performances from three ML trained on data from five different EAF [17]
and the evaluation of multiple ML models predicting the EE consumption with the aim to
retrieve the optimal melting time for a given heat [18]. The published papers on ML models
predicting the LRF end-point temperature are numerous [19–27]. However, the research
primarily concerns the comparison of the predictive performance of models created using
existing or newly developed ML modeling frameworks. Some notable examples are the use
of a wavelet transform-based weighting algorithm for the support vector machine (SVM)
framework [21] and the use of an outlier detection component to either replace or remove
outliers in the dataset [23]. The published ML models predicting the end-point temperature
of the VTD process are more sparse but follow the same regimen as the corresponding
research on the LRF process [28–30].

The focus of the cited previous work has mainly been to create a model with as high
predictive performance as possible using various ML modeling frameworks. While a
model with high predictive performance is important, the overall focus on this aspect
of ML models has left the field with several unconsidered aspects that are of practical
importance. One of these aspects is related to the number of training data points that are
needed to create an ML model with a near-upper-bound predictive performance. The most
commonly used approach in the field of applied ML in steel processes is to use as many
training data points as possible. Commonly, the total number of data points is divided
into 80/20 between the training and test data. However, the number of required training
data points could possibly be lower since older data are less relevant than new data for a
model whose aim is to make predictions using data from future heats. This is related to
the changes that continuously occur in production that will inevitably be reflected in the
data. Changes that occur could be, for example, changes in SOP and varying demand for
certain steel grades produced by the steel plant. Another aspect is related to how long the
model can be used before its predictive performance starts to deteriorate. This could be
evaluated by calculating the predictive performance on test datasets with varying numbers
of test data points. The near-upper-bound predictive performance on test data is another
unexplored aspect. This could also be evaluated by calculating the predictive performance
on test data for a varying number of test data points. These aspects are the basis of the RQs
of the present work which will be formulated in Section 2.4. The importance of answering
these questions for both practitioners and researchers in the field will also be illuminated.

2.3. Data from Steel Processes

All ML models, which in fact are statistical models, rely on data both to adapt their
weights during the training phase and to predict previously unseen samples during the
testing and deployment phases. Consequently, the data will always limit the upper-
bound predictive performance of any ML model and, therefore, also determine its practical
usefulness. Data originating from steel processes are, by experience, of varying quality and
subject to frequent change.

2.3.1. Data Quality

Data quality refers to how well the data represent reality. For example, temperature
measurement of molten steel using a temperature probe or the weight of ferro-silicon
registered by a scale prior to being added into the LRF. While the goal of any measurement
is to attain a value that is as close as possible to the true value, there are numerous
sources that limit the possibility of achieving this goal. Examples of sources of errors in
data originating from steel processes are measurement limitations, equipment limitations,
inconsistent data collection and transformation procedures. An example of equipment
limitations is the precision of the temperature probe used to measure the temperature of
molten steel. While the error is typically low, it will still limit any ML model to predict the
temperature of molten steel with a higher precision than the precision of the temperature
probe. Building on the aforementioned example, limitations in accurately measuring the
temperature of molten steel are particularly prevalent in the EAF process. For example,
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the presence of solid scrap in the steel melt where the measurement is taken will produce
a value that underestimates the temperature of the steel melt. The opposite is true if the
temperature probe registers the temperature in the vicinity of the electrodes. In both of
these cases, an additional temperature sample is often taken. However, the erroneous
values must be either flagged or removed from the process database in order to remove the
risk of using these values when developing an ML model.

2.3.2. Distribution Change

The distribution of values from variables originating from the steel process is subject
to continuous change due to the changes in the processes that occur over time. If the
distribution of the variables governing an ML model changes from the training data to the
test data, then it is expected that the predictive performance on test data will be worse than
on the training data. This is because the weights of an ML model are adapted to the training
data and then used to predict data previously unseen by the model from the model testing
and model deployment phases. For example, the scrap yard in a mini-mill steel plant
consists of many different scrap types. These scrap types are combined in various amounts
in scrap buckets using pre-specified recipes. The recipes commonly provide some flexibility
by allowing the use of alternative scrap types. This makes it possible to continue producing
certain steel grades even though a specific scrap type may be unavailable. During these
circumstances, the distribution of the variables reflecting the charged weight of the scrap
types will change. The frequency of this type of change is dependent on market-based
factors such as demand for certain steel grades as well as the supply of scrap types from
scrap vendors. It is likely that these exemplified distribution changes will impact the
predictive performance of an ML model predicting the EE consumption of an EAF. It is
well known that the average size and shape of a scrap type affects the EE consumption
during the duration of the melting phase of the EAF process. In addition, if the change in
charged scrap types is frequent, one could interpret these input variables as noisy. Noisier
data makes it more difficult for any model to predict well. As a contrasting example,
the molten steel transported to the LRF and VTD processes in an integrated steel mill has
a less profound change in its distribution with respect to the weight and temperature of
the molten steel. Of course, should the SOP of the LRF or VTD process change, then the
distribution of the temperature could also change.

2.3.3. Traceability

The ability to trace variability in data quality and changes in the distribution of
data used to create ML models is important. Based on experience, however, steel plants
generally lack systems that detect whenever there is a data quality issue or a significant
change in the distribution of the data. This makes it difficult for those that are responsible
for the ML model performance to be proactive in retraining the model on data that reflects
recent changes.

The limitations in traceability also makes it difficult to know which historical data is
relevant for training an ML model. After all, the goal of any ML model is to predict well
on new data points. Newer data points will be different from older data points due to the
changes in production that occur continuously due to, for example, seasonal effects and
improvements in SOP. As mentioned earlier, it is common to use as much training data
as possible, usually by dividing the total number of data points into a training set and
test set using an 80/20 split. However, this is an arbitrary approach that has its roots in
general ML model development and is not based on a sophisticated analysis of distribution
changes, let alone considerations rooted in the application domain. Major and sudden
changes in distributions can most likely be pin-pointed to larger maintenance overhauls
and changes in SOP. However, changes that occur slowly over time are more difficult to
detect. In addition, there could be multiple confounding factors that influence the change in
a distribution. For example, the EE consumption of the EAF is influenced by factors such as
scrap types used, the amount of scrap, and the tap-to-tap time. To conduct a comprehensive
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analysis, the distributions of all variables that significantly affect the EE consumption must
be analyzed. Furthermore, the effect of one variable on the EE could cancel out the effect
of a second variable. For example, if the tap-to-tap time decreases while the amount of
charged scrap increases, the EE consumption could theoretically stay the same.

While it is possible to conduct a distribution analysis for all variables used for training
an ML model, the purpose of the present work is to develop a proposed methodology that
illuminates the consequences of the distribution changes on the predictive performance of
ML models. The purpose of the present work is not to analyze the reasons as to why the
distributions change. The authors, however, acknowledge that this kind of analysis is an
interesting direction for future work.

2.4. Research Questions

As described in Section 2.2.3, previous research in applied ML in steel process en-
gineering has left out several considerations that are of practical importance. Therefore,
the present work aims to propose a methodology to fellow researchers and practitioners in
the steel industry that answers the following RQs:

RQ1: How many training data points are needed to create a model with near-upper-
bound predictive performance on test data? An answer to this question will make it
possible for a practitioner to determine the number of heats that has to be produced
before it is possible to create a model whose usefulness in operative decision making can
be determined.

RQ2: What is the near-upper-bound predictive performance on test data? By being
able to answer this question, a practitioner can gauge whether the predictive performance
is high enough for the model to be useful in practice or if effort instead should be put on
improving, for example, the quality of the data.

RQ3: For how long can a model be used before its predictive performance starts to
decrease? With an answer to this question, a practitioner can better understand when the
predictive performance of the model is expected to deteriorate. Subsequently, the practi-
tioner can then establish model governance that determines how often the model needs to
be retrained in order to continuously uphold its predictive performance over the long-term.

From the perspective of the researchers, the answers to the three questions will provide
important information when comparing ML models with other modeling approaches such
as physico-chemical, i.e., deterministic, models of a steel process of interest.

3. Method

The methodology governing the experiments can be divided into Model Construction
(Section 3.2) and Unbiased Evaluation (Section 3.3).

The Model Construction methodology aims to find the most optimal model type with
respect to predictive performance, stability, and complexity. The predictive performance
of any model type is important since it quantifies the accuracy of the model type, i.e.,
how well it predicts the output variable on previously unseen data. A model type, in the
present work, is defined as a model with a specific set of input variables, output variable,
parameters, dataset used to train the model and dataset used to test the model. Since the
Artificial Neural Network (ANN) algorithm, which is the ML model algorithm used in the
present work, use various randomization procedures, the result of instances of these model
types will, to some extent, be a random outcome. A stable model type achieves similar
predictive performance regardless of instance, given that its input variables and parameters
are the same. Lastly, the complexity of the model type should be kept as low as possible
by adhering to the principle of parsimony. This principle states that the simplest solution
should be selected if there are two or more equally well performing solutions. Each step of
the Model Construction will be briefly explained in Section 3.2. See previous work for a
detailed explanation of the Model Construction methodology [15,16].

The Unbiased Evaluation methodology aims to sample numerous subsets of training
and test datasets, and then use these datasets to train and test ML models. The model
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parameters and variables used in the ML models will be the same as for the most optimal
model selected from the Model Construction methodology. The only difference between
the models will be the unique subsets of training and test data used for each model.
The number of sampled training and test datasets will be numerous in order to produce
enough empirical evidence to be able to answer the three RQs despite the data-related
challenges discussed in Section 2.3.

Figure 2 illustrates how the two methodologies relate and come together to answer
the three RQs.

Figure 2. Illustration of the relation between the Model Construction methodology developed in
previous work and to the Unbiased Evaluation methodology developed in the present work [15,16].
* The parameters of the selected model type in the last step of the Model Construction methodology
are used for all machine learning (ML) models that are trained and tested on the training and test
data segments, respectively, that are sampled using the sampling algorithm for Unbiased Evaluation.

3.1. Processes and Data Sets

The datasets used in the experiments are from four processes located in three different
steel plants. Two of the datasets come from two EAFs. The other two datasets come from a
VTD and an LRF, respectively. Metadata for the four datasets are shown in Table 1.

Table 1. Metadata about the datasets used in the present work. The EAF1 and EAF2 datasets have
been used in previous publications [15,16].

Data Set Steel Types Steel Plant Type Steel Plant Target Variable Data (Year)

EAF1 Stainless steel Mini-mill (scrap based) A EE consumption 2017–2019
EAF2 Ball bearing rings, rods,

and engineering steel
Mini-mill (scrap based) B EE consumption 2019–2020

VTD Wear plates Integrated C End-point steel temperature 2008–2022
LRF Wear plates Integrated C End-point steel temperature 2008–2022

The ML models created using datasets EAF1 and EAF2 predicted the EE consumption
at the end of each heat in the EAF and have been published previously [15,16]. The ML
models created using the datasets from the VTD and the LRF predict the molten steel
temperature at the end of the process. The true value of the output variable is the last
temperature sample taken in the process for each heating.

3.2. Model Construction

Details about the Model Construction methodology used and the corresponding
Model Construction for the ML models trained on the EAF1 and EAF2 datasets have been
thoroughly explained in previous research [15,16]. Thus, the following sections briefly
describe the Model Construction methodology for the models trained on the LRF and VTD



Processes 2023, 11, 3447 10 of 28

datasets. Both datasets have not been involved in previously published research in the field
of ML in steel process engineering.

3.2.1. Variable Selection

The selected input variables for the ML models for both LRF and VTD datasets were
selected based on metallurgical domain knowledge and knowledge about the specific
processes in the steel plant from where the data originates.

Table 2 describes the input variables used for the LRF and VTD datasets, respectively.
Since it is not possible to know which subset of variables produces the most optimal
model with respect to complexity, stability, and predictive performance, several variable
batches were created. The variable batches were created based on variable groups, which
are presented in Tables A1 and A3 for LRF and VTD in the Appendix A, respectively.
The created variable batches will be used as parameters in the grid search for LRF and VTD
and are presented in detail in Tables A2 and A4 in the Appendix A.

3.2.2. Data Treatment

Since the LRF and VTD processes reside within the same secondary metallurgy station,
both processes can be used multiple times for the same heat. However, this is not frequently
occurring and these heats were subsequently removed from the dataset used in the present
work. In addition, the VTD dataset contains data from all heats that have passed either
the VTD only or both the LRF and the VTD. The reason is that it is very rare that heat gets
treated by the VTD and not heated in the LRF as the subsequent step. In addition, some raw
material types can only be added in the LRF. The LRF dataset, on the other hand, contains
data from heats that have only been treated by the LRF. From hereon, the following data
treatment was conducted separately for the LRF and VTD datasets and performed using
metallurgical process knowledge. This means that the removal of data points was not based
on statistical heuristics.

Table 2. The variables used to create the ML models for the LRF and VTD datasets. * Boosting is a
mode of gas injection that temporarily accelerates the rate of gas injected.

Data Set (s) Variable Unit Description

LRF/VTD First measured temperature ◦C The first temperature sample taken in the process
LRF/VTD First predicted temperature ◦C The predicted temperature by the proprietary physico-chemical model at

the time of the first temperature sample
LRF/VTD Last measured temperature ◦C The last temperature sample taken in the process. This is the target

variable of the developed ML models.
LRF/VTD Last predicted temperature ◦C The predicted temperature by the proprietary physico-chemical model at

the time of the last temperature sample
LRF/VTD Process time min The time between the first and last measured temperatures
LRF/VTD Start weight kg The weight of the molten steel and slag at the time of first tempera-

ture measurement
LRF/VTD Addition weight kg The weight of all added materials during the process
LRF/VTD Porous plug time s The total time the porous plugs were used
LRF/VTD Porous plug volume Nm3 The total volume of gas injected through the porous plugs
VTD Number of boosts * - The total number of porous plug boosts performed
VTD Vacuum time s The total time when the ladle is in vacuum pressure
LRF Lance stirring time s The total time the lance were used
LRF Lance stirring volume Nm3 The total volume of gas injected through the lance
LRF/VTD Electrode time s The total time when the electrodes were powered on
LRF/VTD Electrode energy kWh Energy consumed by the heating electrodes
LRF/VTD Ladle empty time min For how long the ladle was empty before the tapping from the BOF to

the ladle
LRF/VTD Ladle trips - Number of heats the ladle has been used since the last ladle re-bricking

Any negative values in the datasets were removed. This is straightforward since the
values for all variables in the dataset as shown in Table 2 can only be either zero or positive.
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Furthermore, the time between the first and last temperature samples must be reasonable.
If the time between the samples is too short, then the temperature prediction becomes
trivial. On the other hand, if the time between the samples is too long, then there is an
increased risk of including heats that have been exposed to rare production delays and
irregularities. The predicted and measured temperature values were filtered between the
lower bound and upper bound of possible temperature values. Values representing the
empty time of the ladle that was similar to the time of major maintenance overhauls were
also removed. This was carried out to ensure that heats produced directly after the major
maintenance overhauls were not included in the dataset. These heats are often challenging
to process and therefore non-representative of regular production. Lastly, any rows where
the lance stirring time, porous plugs time, electrode time, or vacuum time were reported to
be longer than the process time were removed.

The aforementioned data treatment steps had the following impacts on the LRF and
VTD datasets. For the LRF dataset, the number of data points was reduced from 32,890 to
29,033, representing a reduction of 11.7%. The number of data points in the VTD dataset,
on the other hand, was reduced from 45,714 to 43,294, representing a reduction of 5.3%.

3.2.3. Model Framework and Parameter Selection

For the sake of comparability, the model framework used to create the ML models for
the LRF and VTD datasets will be the same as the model framework used for the models
created for the EAF1 and EAF2 datasets. Hence, the ANN model framework will be used.
The selected values for the parameters specific to the ANN model framework are shown in
Table 3.

Table 3. The parameters specific to the Artificial Neural Network (ANN) model framework that is
used during the grid search for both the LRF and VTD datasets. The total number of model-specific
parameter combinations is 96 (2 · 3 · 16).

Parameter Description Values #

Activation function The activation function influences the training phase since the updating
step of the gradient descent algorithm will be different.

[tanh, logistic] 2

Learning rate The learning rate adjusts the step size taken in loss space during gradient
descent and therefore influences both the predictive performance of the
end model and the training time.

[0.001, 0.01, 0.1] 3

Topology of the hid-
den nodes

The number of hidden layers and hidden nodes in each layer correlates
with a higher model complexity. On the other hand, a more complex
model has the ability to learn more complicated relations between vari-
ables in the data set.

(z) or (z, z) where z ∈
1, 4, . . . , 22

16

The rest of the available parameters were left as default per the documentation of
the software package in the Python programming language which was used to create the
models [31].

3.2.4. Grid Search

A total of 96 (Table 3) parameters, together with a total of 48 (Tables A2 and A4)
variable batches (VB), represent the total number of model types that will be created
in the grid search for the LRF and VTD datasets. For LRF, the total number of model
types is 1536, while the number of model types for VTD is 3072. Grid search is a well-
known and frequently used framework that enables the modeler to find the parameters
that create the most optimal model. In the Model Construction methodology, the goal
is to find and select the most optimal model type with respect to stability, complexity,
and predictive performance.

In the present work, model type refers to a model with a specific set of parameters
and data used to train and test the model. A model instance, on the other hand, is a
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specific instance of a specific model type. By analyzing the predictive performance of
each model instance of a specific model type, it is possible to evaluate the stability of
the model type. In the present work, 10 instances of each model type will be created.
In addition, the random state of each of the 10 model instances will be held fixed for all
model types. There are two important reasons for this. First, keeping a random state
constant ensures that the 10 model instances can be reproduced given the same dataset
and model parameters. Second, the predictive performance between the model types
should not depend on the randomness introduced by the ANN algorithm. It should only
be dependent on the sampled training dataset and test dataset. By fixing the random state,
the randomization procedure will be identical for all models trained using that specific
random state. The values of the random states are immaterial. The important aspect is
that each of the 10 values is unique and that they are kept fixed for all model types in the
experiments. The random state is defined in the documentation for the software package
used to create the models [31].

The selected random state values, Zs, in order of model instance are:

Zs ∈ [41, 901, 203, 61, 10, 1001, 53, 201, 702, 311] (1)

3.2.5. Predictive Performance Metric

The predictive performance metric used in the present work is the adjusted-R2, which
is also known as the adjusted coefficient of determination. It is defined as:

R2
adj = 1 − (1 − R2)

n − 1
n − p − 1

(2)

where R2 is the regular R2 metric, p is the number of input variables used by the ML model,
and n is the number of data points in the dataset under consideration. The reason that
the adjusted R-squared metric is used is because it enables the comparison between ML
models that use a varying number of data points and input variables [32]. In addition,
the adjusted R-squared metric was used as a predictive performance metric in previous
work that reported the most optimal models for EAF1 and EAF2 [15,16]. The present work
does not aim to modify the Model Construction methodology.

Since 10 model instances will be created for each model type in order to evaluate its
stability, the following statistical quantities, derived from the R2

adj-values of the 10 model
instances, will also be used:

• R̄2
tr—the mean adjusted-R2 on training data for a model type.

• R̄2
te—the mean adjusted-R2 on test data for a model type.

• R2
min,te—the minimum adjusted-R2 on test data for a model type.

• R2
max,te—the maximum adjusted-R2 on test data for a model type.

3.2.6. Model Selection

As previously mentioned, the most optimal model is a model that is stable, achieves
high predictive performance, and has low complexity. Since these three aspects are difficult
to achieve simultaneously, the following model selection criteria were used [15].

1. Remove any model that does not satisfy the following condition: R2
max,te − R2

min,te ≤ 0.05.
This ensures that models passing the criterion are stable.

2. Sort the model types on decreasing R̄2
te of the 10 model instances. This ensures that

the model type with the highest predictive performance is selected among the stable
model types.

3. Select the first model type in the resulting list.

The metadata showing the variable batch, model parameters, and predictive per-
formance for each of the most optimal model types for the four datasets are shown in
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Table 4. The selected model type for each of the four datasets will be used in the Unbiased
Evaluation methodology, which will be explained in detail in the next section.

Table 4. Relevant metadata about the most optimal model types for the four datasets. The metadata
from the ML models trained and evaluated on data from EAF1 and EAF2 are provided from previous
work [15,16]. Details about the parameters specific to the ANN algorithm are explained in the
documentation of the software used [31].

Data
Set

Variable
Batch

Activation
Function

Learning
Rate

Topology of the HIDDEN Layers R̄2
te Training Data

Points
Test Data
Points

EAF1 [15] logistic 0.001 (11) 0.731 10,966 362

EAF2 [16] tanh 0.01 (29) 0.490 2571 187

VTD VB11 tanh 0.001 (22, 22) 0.679 28,255 286

LRF VB7 logistic 0.001 (16) 0.634 42,861 433

3.3. Unbiased Evaluation
3.3.1. Data Sets and Model Parameters

There are two aspects that relate to the trade-off between the number of numerical
experiments and the empirical strength of the experimental results that have to be discussed.
First, the model complexity must be high enough to encompass the complexity of the data
that is used to adapt the model. Second, the selected variables may not be the subset of
variables that produce the model with the highest predictive performance on the test data
for all subsets of training and test data produced by the sampling algorithm. The following
paragraphs motivate why the model parameters and input variables of the most optimal
models from the Model Construction methodology will be used in the models created
in the Unbiased Evaluation methodology. Model Complexity: It is important that the
model complexity is high enough to enable the model to accurately adapt its parameters
to the data used to train the model. The results presented in Table 4 indicate the optimal
complexity for each model needed to create a stable model with the highest predictive
performance on test data for each of the datasets. It is reasonable to assume that the data
complexity is larger for a dataset with a larger number of data points compared to one that
has a relatively few number of data points. This is because a larger dataset represents the
process conditions over a longer period of time. The process conditions always change
over time due to varying demand for certain steel grades, general process development,
and wear of process equipment. This is why the model complexity, i.e., number of hidden
nodes, number of hidden layers, and number of input variables will be selected based
on the best performing model from the Model Construction methodology, which used
the complete dataset. In addition, in the Model Construction methodology, the fraction
of training data accounted for between 93% and 99% of the number of data points in the
complete datasets. This means that the parameters of the models reported in Table 4 were
adapted on training sets that encompass the overhanging majority of the complete dataset.
Hence, the assumption can be made that the model parameters specified in Table 4 produce
models that are complex enough to be used for any subset of their corresponding complete
data sets. Selected Variables: It is not possible to know, a priori, if the selected variables
will be the best performing subset of variables for all subsets of training and test data
collected from the sampling algorithm. Ideally, one should conduct a grid search to select
the best input variable subset and the best model-specific parameters for each subset of
training data and test data. However, this introduces a significant number of additional
parameter combinations for an already large number of model instances that are required
for the Unbiased Evaluation methodology experiments. The current number of model
instances per dataset is in the order of 104 to 105. A meaningful grid search on each subset
would require at least 107 model instances on each dataset. One approach could be to
use all available variables gathered from the process systems by ignoring the principle of
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parsimony. However, this is ill-advised since the resulting model will contain variables that
are highly correlated. This, in turn, diminishes the trustworthiness of the model because
these variables will then share feature importance, which results in inaccurate feature
importance values [33]. Another approach could be to use the same variables as the best
model determined on the complete dataset. While it is not possible to know, with certainty,
that these variables will be the best performing for each subset of training data and test
data, they have been selected using domain expertise. The advantage of this approach is
two-fold. First, the models must make sense from a domain-specific point of view to be
trusted among domain experts. Second, the number of selected variables will be fewer
than the available variables in the processing system since the domain experts know, from
experience, which process variables significantly influence the target variable. Based on the
above reasoning, the specific input variables used for the most optimal model for each of
the four datasets, as reported in Table 4, will be used as input variables for the models that
will be created in the Unbiased Evaluation methodology.

This means that the exact same model parameters and input variables that were used
to create the most optimal models in the Model Construction methodology will be used
in the Unbiased Evaluation methodology. The only differences between the model types
are the start points, end points, and total number of data points in the training and test
datasets, respectively.

3.3.2. Sampling Algorithm for Unbiased Evaluation

It is important to conduct the selection of the start point of the training data and the
number of training data and test data points in an unbiased manner. In essence, this allows
the resulting datasets to become the basis of which to answer the three RQs of the present
work. Furthermore, the nature of steel processes demands that the ML model is always
evaluated on test data that follow in chronological order after the training data. Hence,
Algorithm 1 will be used to achieve unbiased sampling start point of the training data,
the number of training data points, and the number of test data points. Naturally, the start
of the test data is the data point that occurs right after the last data point in the training data.

Algorithm 1: Sampling algorithm

• Define N as the total number of data points in the dataset.
• Define mintr as the minimum number of training data points allowed in any

sample
• Define minte as the minimum number of test data points allowed in any sample
• Select the number of samples, Sn.
• For each s ∈ Sn, do:

1. Sample the start point of the training data, ptr
start from the uniform

distribution [ 0, N − (mintr + minte)]
2. Sample the size of the training data, str, set from the uniform distribution

[ mintr, N − (ptr
start + minte)]

3. Sample the size of the test data, ste, from the uniform distribution
[ minte, N − (ptr

start + str)]
4. Calculate the end point of the training data as ptr

end = ptr
start + str

5. Calculate the start point of the test data as pte
start = ptr

start + str + 1
6. Calculate the end point of the test data as pte

end = ptr
start + str + 1 + ste

7. Add each randomized value and calculated value into corresponding lists
• Append the lists into a table which will be used to retrieve the specific training

and test data points for the next step of the experiments.

One sample from the sampling algorithm is illustrated in Figure 3.
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Figure 3. Illustration of one generated sample of start point of the training data, number of training
data points, and number of test data points, using the sampling algorithm.

To run the sampling algorithm, three parameters have to be pre-specified. These are
the number of samples, Sn, the minimum number of training data points, mintr, and the
minimum number of test data points, minte. In the present work, the selection of Sn was set
equal to the number of available data points in the dataset, N. This gives a high probability
that each possible start point of the training data gets sampled once. This, in turn, ensures
a high diversity with respect to the selected training data points and test data points since
these are sampled from distributions that are dependent on the start point of the training
data, ptr

start. mintr was always set to 100 so that the model attains some relevant experience
prior to predicting test data. To ensure that the predictive performance on test data for each
model is valid, minte was also set to 100.

The distributions of the sampled and calculated values are shown in Figure 4. The types
of distributions are a direct outcome of the requirements that are set on the relationship
between the training and test data as well as the total available number of samples. For ex-
ample, it is obvious that samples that have approximately 200 training data points are more
common than samples that have approximately 10,000 training data points. This is because
the number of different ways to sample segments of 200 training data points is significantly
larger than the corresponding 10,000 training data points. The reason is that the sampled
start point of the training data is sampled randomly and, per definition, demarcates the
upper bound of the number of training data points to sample. Analogously, the number of
test data points is dependent on both the start points of the training data and the number
of training data points.

Figure 4. Illustration over the distribution of the parameters ptr
start, str, and ste, and the calculated

values ptr
end, pte

start and pte
end, using the sampling algorithm.
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3.3.3. Filtering Stable Models

Since the ANN algorithm introduces randomness, there is a probability that instances
of the same model type will have different predictive performance values. To account for
this, the same approach reported in the Model Construction methodology will be used.
In short, 10 model instances will be created for each model type and the difference between
the maximum and minimum adjusted-R2 metric for the 10 models will be calculated. While
all models have to be retained for visualization, all model types that fail to satisfy the
criterion, R2

max,te − R2
min,te ≤ 0.05, will be flagged so that they can be omitted from the

analysis if needed. This criterion is the same as the one used to remove unstable models in
the Model Construction methodology. Furthermore, the same random state values as the
ones used in the Model Construction methodology will be used. Hence, the total number
of model instances will be 10 times the number of model types, which is determined using
the sampling algorithm presented in Section 3.3.2. This filtration criterion ascertains that
the models satisfy the stability requirement in the definition of upper-bound predictive
performance as explained in Section 2.1: The model producing the upper-bound predictive
performance must be stable, i.e., the predictive performance must not be the result of a randomization
procedure within the ML model algorithm. Hence, the filtered models become the basis of the
analysis answering the three RQs in the present work.

3.3.4. Statistical Analysis of the Stable Models

To analyze the predictive performance of the stable models, several statistical tools and
metrics will be used. As basis of the analysis, R̄2

te will be plotted against str, ste, and Pte
start,

all of which were defined in Sections 3.2.5 and 3.3.2.
Furthermore, two statistical analysis methods will be used to enable an easier interpre-

tation of the scatter plots. The first method is known as Pearson correlation which quantifies
the linear relationship between two random variables through a test of significance [34].
The Pearson correlation can assume values between −1 and 1, where a positive value
indicates that the variables are positively correlated and a negative value indicates that the
variables are negatively correlated. A correlation value of 0 means that the variables lack
correlation. The test of significance produces a value known as the p-value, which measures
the probability of obtaining the specific correlation value, assuming that the null hypothesis
is true. The null hypothesis for the Pearson correlation test is that the correlation coefficient
is not significantly different from zero. A low p-value, usually p ≤ 0.05, means that the
observed correlation value is statistically significant. The second method is the moving
average of the values on the y-axis per a determined interval on the x-axis. The y-axis will
represent R̄2

te and the x-axis will represent str, ste, or Pte
start. The moving average curve in the

present work will use an interval of size 200. This value was not selected arbitrarily, rather it
was selected based on how well it illuminates the local trends in the graphs. The calculation
for a specific interval, j, of the 200-moving average curve is as follows:

Mavg,j
200 =

∑
nj
i=1 yi

nj
(3)

where i ∈ 1, 2, . . . , nj and nj is the total number of stable models in a specific interval,
j ∈ 1, 2, . . . , Nv. Nv is the total number of 200-value intervals.

It is important to reiterate that the Pearson correlation statistic considers all data points
to produce a single value while the 200-value moving average calculates its average based
on the values present in trailing 200-value segments. Hence, these two metrics show a
global and local relationship between two variables, respectively.

4. Results and Discussion

The sampling algorithm results for the four datasets are shown in Table 5. Per the
definition of the sampling algorithm for Unbiased Evaluation and the selected total number
of models, the total number of models equals the number of data points. However, for EAF1,



Processes 2023, 11, 3447 17 of 28

EAF2, and LRF, the algorithm produced several training and test data intervals with the
same length and start positions. Since these samples are identical, they were removed.

Table 5. Sampling algorithm results for the four datasets. The stability filter used was R2
max,te −

R2
min,te ≤ 0.05 which is the same stability filter used in the process of selecting the most optimal

model with respect to stability, predictive performance, and complexity.

Data Set No. Data
Points

No. Models No. Models after Sta-
bility Filter

Removed by Stabil-
ity Filter

EAF1 11,328 11,324 1048 90.7%

EAF2 2758 2757 95 96.6%

VTD 29,033 29,033 24,560 15.4%

LRF 43,294 43,292 33,888 21.4%

It is evident that the fraction of models that are removed by the stability filter is
significantly larger for the EAF datasets. This agrees well with the known behavior of the
EAF that is consequently reflected in the data. Frequent changes in charged scrap in the
EAF, which also affect the EE consumption, make it challenging to consistently produce
stable models since the frequent changes will be interpreted as noise. The number of
models passing the stability filter for EAF2 is low compared to the other processes. While
95 models can be used to draw conclusions, the empirical evidence of these conclusions
will not be as strong as for the other datasets, which have between 1048 and 33,888 models
passing the stability filter. The following graphs (Figures 5–7) were created using the results
from the experiments that were filtered using R2

max,te − R2
min,te ≤ 0.05. Each graph contains

a line representing a 200-value moving average over the x-axis. Furthermore, each graph
also has a corresponding Pearson correlation test calculated using the variables represented
by the x-axis and y-axis.

4.1. Research Question 1

It is possible to determine the number of training data points that are needed to create
an ML model with near-upper-bound predictive performance on test data by observing the
highest R̄2

te-value. However, the highest R̄2
te-value may reside in a region of str where R̄2

te
has large variance indicating that R̄2

te could be lower than the near-upper-bound predictive
performance for a similar number of training data points. Thus, a relatively low variance of
R̄2

te at the highest R̄2
te-values will also be an indicator when answering this RQ. In addition,

the maximum of the 200-value moving average curve shows what the R̄2
te-value is expected

to be by taking into account all R̄2
te-values for every 200-value segment of str.

For the EAF1 dataset, as observed in Figure 5, the highest R̄2
te occurs at around

10,500 training samples where it varies between 0.67 and 0.78. R̄2
te is almost as high around

2000 training samples but the variance is considerably larger since R̄2
te varies between 0.23

and 0.76. The Pearson correlation value of 0.51 and the 200-value moving average curve
provide further evidence that the highest R̄2

te is expected to occur when str is around its
maximum value. Since the Pearson correlation value is positive, R̄2

te increases linearly
with increasing str. The 200-value moving average curve is also steadily increasing, albeit
irregularly, and peaks at around 10,500 training samples.

For the EAF2 dataset, the highest R̄2
te occurs when str is around 1700 and 2200 where

the variance is slightly higher in the former segment. The Pearson correlation value is
−0.29, which indicates that R̄2

te will decrease with higher str. The 200-value moving average
line adds additional empirical evidence that R̄2

te decreases with higher str.
Two distinct regions can be observed for R̄2

te produced by the models on the LRF
dataset. The first region exists when str is between 100 and 13,800 where R̄2

te between 0.40
and 0.93. Simultaneously, the second region extends from 13,800 to the maximum number
of possible str where R̄2

te varies between 0.37 and 0.81. One possible explanation for the
high variance of R̄2

te for the LRF dataset is that the LRF production pattern changed due to



Processes 2023, 11, 3447 18 of 28

changes in steel types produced, which in turn is due to changes in demand during the
past 14 years. The Pearson correlation value is 0.03, which indicates that a higher str barely
increases the R̄2

te of the created models. However, the 200-value moving average line peaks
at an str-value of 4500 and decreases significantly after a str-value of 27,000. Again, this
indicates a difference between the global and local relationship between R̄2

te and str.

Figure 5. The mean R-squared on the test data (R̄2
te) plotted against the number of data points in

the training set (str) for all randomized samples whose model types satisfy R2
max,te − R2

min,te ≤ 0.05.
Pearson correlation tests (statistic, p-value). - EAF1: (0.51, 0.0) - EAF2: (−0.29, 0.004) - LRF: (0.03, 0.0)
- VTD: (0.22, 0.0).

A similar reasoning can be conducted for the VTD results as for the LRF results. How-
ever, the VTD has only one main region but the variance of R̄2

te is even larger, i.e., between
0.28 and 0.93. Furthermore, the Pearson correlation value is 0.22 while the peak of the
200-value moving average line occurs when str is around 30,000. However, the value of the
200-value moving average line does not increase significantly after the str-value exceeds
10,000. The most prominent change in the average line occurs when the str-value is between
100 and 10,000. Lastly, the moving average decrease at the end is more prominent than the
corresponding curve for LRF. The reason why the curve jumps back from the decrease at
the end of the curve is because the last point is the only point available in the 200-value
segment used to calculate that specific 200-value moving average value.

The decrease in the moving average curve for the LRF and VTD means that almost
all available training data used by the models makes the models perform worse on the
test data compared to when the models are trained on other segments of training data.
If a model is trained on almost all available training data then it will also be tested on
a subset, or the full set, of remaining data points according to the sampling algorithm
described in Section 3.3.2. Since the predictive performance decreases for this segment of
test data points, the distribution change reflected in this segment makes the test dataset
different from the training dataset to such an extent that it warrants a significant decrease
in R̄2

te. Significant changes in the process layout were performed in steel plant C during
the year 2021. The datasets from both LRF and VTD represent production from 2008 until
the middle of 2022. Hence, the aforementioned change is a reasonable explanation for this
decrease in R̄2

te.
The challenge in answering this RQ is illuminated by the fact that the three indicators

used, i.e., the highest R̄2
te-values, a relatively low variance of R̄2

te at the highest R̄2
te-values,
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and the maximum of the 200-value moving average curve, do not always coincide in the
graphs. Consequently, it is here where where the utility of the proposed method shows itself
since it facilitates the analysis of the models to enable stakeholders to deduce the number of
training data points required to create a model with near-upper-bound predictive predictive
performance on test data.

4.2. Research Question 2

Determining the near-upper-bound predictive performance on test data could be
performed by analyzing the same figure that was used to answer RQ1, i.e., Figure 5.
However, this figure does not provide information on which segment of test data produces
the near-upper-bound predictive performance. On the other hand, Figure 6 shows the
relationship between R̄2

te and Pte
start.

For EAF1, the model with the highest R̄2
te-value, i.e., 0.77, is located where Pte

start is
above 11,000, which is almost at the end of the complete dataset. In addition, the Pearson
correlation value is 0.73 and the trend of the 200-value moving average curve is positive
when Pte

start is above 11,000. However, some caution should be exercised on these results
since it is not possible to know if this trend in predictive performance will continue in
subsequent produced heats. After all, the R̄2

te-values when Pte
start is below 9700 varies

between 0.2 and 0.55. It is only after the abrupt jump, which occurs when Pte
start is around

9800, that the R̄2
te-values concentrate between 0.55 and 0.77. In addition, the reason behind

this sudden improvement in R̄2
te is not known.

Figure 6. The mean R-squared on the test data (R̄2
te) plotted against the start of test set (Pte

start) for all
randomized samples whose model types satisfies R2

max,te − R2
min,te ≤ 0.05. Pearson correlation tests

(statistic, p-value). EAF1: (0.73, 0.0) - EAF2: (−0.52, 0.60) - LRF: (−0.46, 0.0) - VTD: (−0.27, 0.0).

Like EAF1, R̄2
te-values for EAF2 are highest when Pte

start is at the end of the dataset, i.e.,
when Pte

start is above 2500. The 200-value moving average curve indicates that R̄2
te recovers

from its lows, occurring at a Pte
start-value of 2120, and ends at its highest when Pte

start is
between 2500 and 2678. Hence, the near-upper-bound predictive performance on test data
for EAF2 is a R̄2

te-value 0.44.
The results of the LRF dataset show a steady decrease in R̄2

te for test data from earlier
segments to the last segment of the dataset. This is shown by both the 200-value moving
average curve and the Pearson correlation value of −0.46. While the near-upper-bound
predictive performance is a R̄2

te-value of 0.93, it is not expected to reoccur soon considering
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that the long-term effects of the previously mentioned production overhaul performed
in steel plant C has not yet been established. Furthermore, both the negative Pearson
correlation value and the negative trend of the 200-value moving average curve illuminate
a continuing decrease in predictive performance. Since the LRF and VTD processes are
located in the same steel plant, similar reasoning can be used for the results from the VTD
process. Here, the 200-value moving average also trends downward in the last segment of
the dataset and the Pearson correlation value is −0.27. The near-upper-bound predictive
performance for the VTD is a R̄2

te-value of 0.92.
It should be noted that there are very few stable models when Pte

start occurs at the earli-
est segment of the dataset for all four processes. The corresponding graph, i.e., Figure A1
in the Appendix A, contains the R̄2

te-values for all models and illuminates the minimum
number of training data points needed to create stable models. If Pte

start occurs early in the
dataset, then str will also be low per the definition of the sampling algorithm.

4.3. Research Question 3

By observing Figure 7, it is possible to understand how long a model can be used
before its predictive performance starts to decrease. Here, the start point of a decrease in
the 200-value moving average curve will be determined as the ste-value that indicates how
long the model can be used.

For EAF1, R̄2
te decreases significantly immediately following the start of the 200-value

moving average curve, i.e., when ste is 200. This means that models predicting the EE of
the EAF1 should be retrained after predicting on 200 test data points.

Figure 7. The mean R-squared on the test data (R̄2
te) plotted against the number of data points in the

test set (ste) for all randomized samples whose model types satisfy R2
max,te − R2

min,te ≤ 0.05 Pearson
correlation tests (statistic, p-value). - EAF1: (−0.64, 0.0) - EAF2: (0.45, 0.0) - LRF: (0.19, 0.0) - VTD:
(0.05, 0.0).

For EAF2, the models with the highest R̄2
te-values are the ones that have ste-values

below 200. However, the 200-value moving average curve indicates that a higher ste-
values leads to a slightly higher R̄2

te-value. This increase in R̄2
te, albeit low, is contradictory

to established ML knowledge since a decrease in R̄2
te is expected if the model has been

applied on more test data points, i.e., when the ste-value is higher. Data points that are
chronologically adjacent are more similar than data points that are chronologically far
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apart, which is partly explained by changes in the steel process under study. The Pearson
correlation value of 0.45 provides further evidence that R̄2

te increases when ste increases.
For LRF, the models with the highest R̄2

te-values are the ones that have ste-values in
the lower region. However, this region also produces models that have the largest range of
possible R̄2

te-values. The range of R̄2
te-values are between 0.35 and 0.93. The range decreases

significantly when ste approaches 15,000 and even more so beyond 20,000. However,
the similarity between test datasets that approaches the maximum number of possible test
data points is large, per definition of the sampling algorithm. Therefore, it is expected
that the variance of R̄2

te decreases when ste approaches its maximum value. Contrary to
expectations and similarly to EAF2, both the 200-value moving average curve and the
Pearson correlation value of 0.19 illustrate that the R̄2

te increases when ste increases. Hence,
the LRF model can be used for 24,000 heats before its predictive performance starts to
deteriorate. The severe sudden decrease in the moving average curve at its end is because
only one stable model with a relatively low R̄2

te-value exists in the last 200-value interval.
The results from the VTD models are similar to those for the LRF models, reflecting

the fact that these two processes have similar process characteristics and reside in the same
steel plant. The Pearson correlation value is 0.05 and the 200-value moving average curve
increases. However, the moving average curve only increases when the ste-value is between
100 and 2000. Beyond an ste-value of 2000, the moving average curve slowly decreases
from 0.79 to 0.72.

Table 6 summarizes the answers to the three RQs as discussed in this section.

Table 6. Summary and answer to the three research questions (RQs) for the four data sets.

RQ1: How many training data points are needed to create a model with near
upper-bound predictive performance on test data?

Process str
% of complete

dataset Pearson p-value

EAF1 10,500 92.7% 0.51 0.0
EAF2 2200 79.8% −0.29 0.004
LRF 4500 15.5% 0.03 0.0
VTD 30,000 69.3% 0.22 0.0

RQ2: What is the near-upper-bound predictive performance on test data?

Process R̄2
te Pearson p-value

EAF1 0.77 0.73 0.0
EAF2 0.44 −0.52 0.60
LRF 0.93 −0.46 0.0
VTD 0.92 −0.27 0.0

RQ3: For how long can a model be used before its predictive performance
starts to decrease?

Process ste Pearson p-value

EAF1 200 −0.64 0.0
EAF2 200 0.45 0.0
LRF 24,000 0.19 0.0
VTD 2000 0.05 0.0

5. Conclusions

In the process of answering the three RQs, several other observations with corre-
sponding conclusions could be made. First, the removal of 91% and 97% of the EAF1 and
EAF2 models, respectively, using the stability filter provides evidence that EAF datasets
are noisier than LRF and VTD datasets. This agrees well with practical experience and is
likely due to frequent changes in the amount and variety of charged scrap types as well as
other factors influencing the process. The corresponding percentages for the LRF and VTD
datasets were 15% and 22%, respectively. Second, the commonly used 80/20 split of all data
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into a training set and test set, respectively, is not a one-size-fits-all approach for training
and evaluating ML models applied in the context of steel processes. The training data
needed for the four processes varied between 15.5% and 92.7% of the complete datasets.
To find the number of training data points needed, an analysis using the proposed sampling
algorithm could be used. One should not use all data points unless necessary. For example,
if the number of relevant training data points is less than the total number of data points,
then the most recent segment of data should be used as training data. Third, contrary
to the established ML knowledge, there was higher predictive performance of test data
with higher test data samples for the EAF2 and LRF models. It is commonly expected
that the predictive performance of test data decreases the longer a model is used. Lastly,
the predictive performance on test data can be expected to have high variability both
within specific segments of test data and between segments of test data. To understand the
reason behind this variability, one could use historical reports of changes conducted within
the steel plant and the specific steel process in conjunction with the dataset presented in
chronological order. These historical reports could, for example, explain when maintenance
was conducted or an SOP was changed. Ideally, however, the steel industry ought to invest
in a more systematic way of tracking the changes in the data imposed by changes in the
process itself or in the steel plant where the process resides.

The concluding answers to the three RQs are as follows:

• RQ1: How many training data points are needed to create a model with near-upper-bound pre-
dictive performance on test data? The fraction of training data points of the total number
of data points needed to create a model with near-upper-bound predictive perfor-
mance on test data varies between 15.5% and 92.7% for the four datasets. Hence, using
as much training data as possible is not always required to create a model with near-
upper-bound predictive performance on test data. The number of training data points
required should be based on an analysis using the proposed sampling algorithm.

• RQ2: What is the near-upper-bound predictive performance on test data? This RQ can easily
be answered by observing the highest R̄2

te in any of the provided graphs. For the
processes in order of EAF1, EAF2, LRF, and VTD, the near-upper-bound R̄2

te were
0.77, 0.44, 0.93, and 0.92. However, it is of value to determine if the near-upper-bound
predictive performance is sustained for heats following in chronological order of the
present dataset. Since the 200-value moving average curve for EAF1 and EAF2, at their
ends, have an upward trajectory in Figure 6, one could assume the R̄2

te will be at least
as high for future heats. However, for EAF1 there is a sudden increase in R̄2

te at the end
of the dataset which warrants some caution about whether this predictive performance
can be sustained for future heats. For the LRF and VTD datasets, the 200-value moving
average curves decrease significantly when Pte

start approaches the end of the respective
dataset. The reason is because of the production overhaul that occurred during the
year 2021 in steel plant C, which made the latest segment of the dataset different
from the earlier segments. Since the long-term effects of this change have not yet
been established, it is difficult to expect that the current near-upper-bound predictive
performance value will reoccur in the near future.

• RQ3: For how long can a model be used before its predictive performance starts to decrease?
For the EAF processes, the predictive performance of the models starts to decrease
after 200 predictions on test data. For the VTD process, the model can be used
for 2000 predictions. Surprisingly, the LRF model can be used to predict the end-
point temperature of 24,000 heats. Assuming a yearly production between 103 and
104 illuminates the varying frequency of model retraining for the four processes.
In addition, R̄2

te moving average curve increases from 0 to 24,000 pointing to the
fact that R̄2

te improves with larger test datasets. This is contrary to established ML
modeling knowledge.
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Abbreviations
The following abbreviations are used in this manuscript:

EAF Electric Arc Furnace
EE Electrical Energy
VTD Vacuum Tank Degasser
LRF Ladle Refining Furnace
BOF Basic Oxygen Furnace
CCM Continuous Casting Machine
DRI Direct Reduced Iron
ANN Artificial Neural Network
SVM Support Vector Machine
ML Machine Learning
SOP Standard Operating Procedure
RQ Research Question
Nomenclature
R̄2

tr the mean adjusted coefficient of determination on training data for a model type
R̄2

te the mean adjusted coefficient of determination on test data for a model type
R2

min,te the minimum adjusted coefficient of determination on test data for a model type
R2

max,te the maximum adjusted coefficient of determination on test data for a model type
Zs the set of 10 selected random state values
N the total number of data points in a dataset
mintr the minimum number of training data points
minte the minimum number of test data points
Sn number of sampled training and test datasets
s an arbitrary sample
ptr

start the start point of a training dataset
pte

start the start point of a test dataset
ptr

end the end point of a training dataset
pte

end the end point of a test dataset
str the sample size of a training dataset
ste the sample size of a test dataset
r Pearson correlation coefficient
p p-value of the Pearson correlation test
Mavg,j

200 the 200-moving average curve
nj the total number of stable models in interval j
Nv the total number of 200-value intervals
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Appendix A

Table A1. Variable groups for the LRF models.

Variable Group Variables No. Variables

Base First measured temperature 11
First predicted temperature
Last measured temperature
Last predicted temperature

Process time
Start weight

Addition weight
Ladle empty time
Electrode energy

Porous plugs volume
Lance stirring volume

Porous plugs time Porous plugs time 1

Lance stirring time Lance stirring time 1

Electrode time Electrode time 1

Ladle trips Ladle trips 1

Table A2. Variable batches for the LRF models. Variable groups, as specified in Table A1, that
included in a variable batch is marked with x. Empty cells indicates that the variable group is not
included in the variable batch.

Variable
Batch Base Porous

Plugs Time Lance Stirring Time Electrode
Time Ladle Trips

VB1 x x

VB2 x x x

VB3 x x

VB4 x x

VB5 x x x

VB6 x x x

VB7 x x x

VB8 x x x

VB9 x x x

VB10 x x x

VB11 x x x x

VB12 x x x x

VB13 x x x x

VB14 x x x x

VB15 x

VB16 x x x x x
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Table A3. Variable groups for the VTD models.

Variable Group Variables No. Variables

Base First measured temperature 10
First predicted temperature
Last measured temperature
Last predicted temperature

Process time
Start weight

Addition weight
Ladle empty time
Electrode energy

Porous plugs volume

Porous plugs time Porous plugs time 1

Electrode time Electrode time 1

Number of boosts Number of boosts 1

Vacuum time Vacuum time 1

Ladle trips Ladle trips 1

Table A4. Variable batches for the VTD models. Variable groups, as specified in Table A3, that
included in a variable batch is marked with x. Empty cells indicates that the variable group is not
included in the variable batch.

Variable
Batch Base Porous Plugs Time Electrode

Time
Number
of Boosts

Vacuum
Time Ladle Trips

VB1 x x

VB2 x x

VB3 x x

VB4 x x

VB5 x x

VB6 x x x

VB7 x x x

VB8 x x x

VB9 x x x

VB10 x x x

VB11 x x x

VB12 x x x

VB13 x x x

VB14 x x x

VB15 x x x

VB16 x x x x

VB17 x x x x

VB18 x x x x

VB19 x x x x

VB20 x x x x

VB21 x x x x
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Table A4. Cont.

Variable
Batch Base

Porous
Plugs
Time

Electrode
Time

Number of
Boosts

Vacuum
Time Ladle Trips

VB22 x x x x

VB23 x x x x

VB24 x x x x

VB25 x x x x

VB26 x x x x x

VB27 x x x x x

VB28 x x x x x

VB29 x x x x x

VB30 x x x x x

VB31 x

VB32 x x x x x x

Figure A1. The mean R-squared on the test data (R̄2
te) plotted against the start of test set (Pte

start) for all
models types created using the Unbiased Evaluation methodology.
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