Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ladder junction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 785 KB  
Article
Thermoreversible Gelation with Supramolecularly Polymerized Cross-Link Junctions
by Fumihiko Tanaka
Gels 2023, 9(10), 820; https://doi.org/10.3390/gels9100820 - 15 Oct 2023
Cited by 3 | Viewed by 2681
Abstract
Structure and reversibility of cross-link junctions play pivotal roles in determining the nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer networks. We attempt to theoretically explore new types of sol–gel transitions with mechanical sharpness by allowing cross-links to grow [...] Read more.
Structure and reversibility of cross-link junctions play pivotal roles in determining the nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer networks. We attempt to theoretically explore new types of sol–gel transitions with mechanical sharpness by allowing cross-links to grow without upper bound. We consider thermoreversible gelation of the primary molecules R{Af} carrying the number f of low molecular weight functional groups (gelators) A. Gelators A are assumed to form supramolecular assemblies. Some examples are: telechelic polymers (f=2) carrying ππ stacking benzene derivatives at their both ends, and trifunctional star molecules (f=3) bearing multiple hydrogen-bonding gelators. The sol–gel transition of the primary molecules becomes sharper with the cooperativity parameter of the stepwise linear growth of the cross-links. There is a polymerization transition (crossover without singularity) of the junctions in the postgel region after the gel point is passed. If the gelator A tends to form supramolecular rings competitively with linear chains, there is another phase transition in the deep postgel region where the average molecular weight of the rings becomes infinite (Bose–Einstein condensation of rings). As a typical example of binary cross-links where gelators A and B form mixed junctions, we specifically consider metal-coordinated binding of ligands A by metal ions B. Two types of multi-nuclear supramolecular complexes are studied: (i) linear stacking (ladder) of the sandwich A2B units, and (ii) linear train of egg-box A4B units. To find the strategy towards experimental realization of supramolecular cross-links, the average molecular weight, the gel fraction, the average length of the cross-link junctions are numerically calculated for all of these models as functions of the functionality f, the concentration of the solute molecules, and the temperature. Potential candidates for the realization of these new types of thermoreversible gelation are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Thermoreversible Gelation)
Show Figures

Figure 1

9 pages, 2409 KB  
Article
Electrospinning Technique for Fabrication of Coaxial Nanofibers of Semiconductive Polymers
by William Serrano-Garcia, Seeram Ramakrishna and Sylvia W. Thomas
Polymers 2022, 14(23), 5073; https://doi.org/10.3390/polym14235073 - 22 Nov 2022
Cited by 21 | Viewed by 3492
Abstract
In this work, the electrospinning technique is used to fabricate a polymer-polymer coaxial structure nanofiber from the p-type regioregular polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and the n-type conjugated ladder polymer poly(benzimidazobenzophenanthroline) (BBL) of orthogonal solvents. Generally, the fabrication of polymeric coaxial nanostructures tends to be [...] Read more.
In this work, the electrospinning technique is used to fabricate a polymer-polymer coaxial structure nanofiber from the p-type regioregular polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and the n-type conjugated ladder polymer poly(benzimidazobenzophenanthroline) (BBL) of orthogonal solvents. Generally, the fabrication of polymeric coaxial nanostructures tends to be troublesome. Using the electrospinning technique, P3HT was successfully used as the core, and the BBL as the shell, thus conceptually forming a p-n junction that is cylindrical in form with diameters in a range from 280 nm to 2.8 µm. The UV–VIS of P3HT/PS blend solution showed no evidence of separation or precipitation, while the combined solutions of P3HT/PS and BBL were heterogeneous. TEM images show a well-formed coaxial structure that is normally not expected due to rapid reaction and solidification when mixed in vials in response to orthogonal solubility. For this reason, extruding it by using electrostatic forces promoted a quick elongation of the polymers while forming a concise interface. Single nanofiber electrical characterization demonstrated the conductivity of the coaxial surface of ~1.4 × 10−4 S/m. Furthermore, electrospinning has proven to be a viable method for the fabrication of pure semiconducting coaxial nanofibers that can lead to the desired fabrication of fiber-based electronic devices. Full article
(This article belongs to the Special Issue Progress in Polymer Membranes and Films)
Show Figures

Graphical abstract

13 pages, 3398 KB  
Article
Myotendinous Junction: Exercise Protocols Can Positively Influence Their Development in Rats
by Jurandyr Pimentel Neto, Lara Caetano Rocha-Braga, Carolina dos Santos Jacob, André Neri Tomiate and Adriano Polican Ciena
Biomedicines 2022, 10(2), 480; https://doi.org/10.3390/biomedicines10020480 - 18 Feb 2022
Cited by 3 | Viewed by 2977
Abstract
The myotendinous junction (MTJ) is an interface that different stimuli alter their morphology. One of the main stimuli to promote alterations in the MTJ morphology is physical exercise. The present study aimed to investigate the morphology and molecular MTJ adaptations of biceps brachii [...] Read more.
The myotendinous junction (MTJ) is an interface that different stimuli alter their morphology. One of the main stimuli to promote alterations in the MTJ morphology is physical exercise. The present study aimed to investigate the morphology and molecular MTJ adaptations of biceps brachii muscle in adult Wistar rats submitted to different ladder-based protocols. Forty Wistar rats (90 days old) were divided into four groups: Sedentary (S), Climbing (C), Overload Climbing (OC), Climbing, and Overload Climbing (COC). The results of light microscopy demonstrated the cell and collagen tissue reorganization in the experimental groups. The sarcomeres lengths of different regions showed a particular development according to the specific protocols. The sarcoplasmic invaginations and evaginations demonstrated positive increases that promoted the myotendinous interface development. In the extracellular matrix, the structures presented an increase principally in the COC group. Finally, the immunofluorescence analysis showed the telocytes disposition adjacent to the MTJ region in all experimental groups, revealing their network organization. Thus, we concluded that the different protocols contributed to the morphological adaptations with beneficial effects in distinct ways of tissue and cellular development and can be used as a model for MTJ remodeling to future proteomic and genetic analysis. Full article
(This article belongs to the Topic Animal Model in Biomedical Research)
Show Figures

Figure 1

19 pages, 9553 KB  
Article
Low-Voltage Low-Pass and Band-Pass Elliptic Filters Based on Log-Domain Approach Suitable for Biosensors
by Pipat Prommee, Natapong Wongprommoon, Montree Kumngern and Winai Jaikla
Sensors 2019, 19(24), 5581; https://doi.org/10.3390/s19245581 - 17 Dec 2019
Cited by 10 | Viewed by 5733
Abstract
This research proposes bipolar junction transistor (BJT)-based log-domain high-order elliptic ladder low-pass (LPF) and band-pass filters (BPF) using a lossless differentiator and lossless and lossy integrators. The log-domain lossless differentiator was realized by using seven BJTs and one grounded capacitor, the lossy integrator [...] Read more.
This research proposes bipolar junction transistor (BJT)-based log-domain high-order elliptic ladder low-pass (LPF) and band-pass filters (BPF) using a lossless differentiator and lossless and lossy integrators. The log-domain lossless differentiator was realized by using seven BJTs and one grounded capacitor, the lossy integrator using five BJTs and one grounded capacitor, and the lossless integrator using seven BJTs and one grounded capacitor. The simplified signal flow graph (SFG) of the elliptic ladder LPF consisted of two lossy integrators, one lossless integrator, and one lossless differentiator, while that of the elliptic ladder BPF contained two lossy integrators, five lossless integrators, and one lossless differentiator. Log-domain cells were directly incorporated into the simplified SFGs. Simulations were carried out using PSpice with transistor array HFA3127. The proposed filters are operable in a low-voltage environment and are suitable for mobile equipment and further integration. The log-domain principle enables the frequency responses of the filters to be electronically tunable between 10k Hz–10 MHz. The proposed filters are applicable for low-frequency biosensors by reconfiguring certain capacitors. The filters can efficiently remove low-frequency noise and random noise in the electrocardiogram (ECG) signal. Full article
Show Figures

Graphical abstract

10 pages, 1868 KB  
Article
Parametric Compact Thermal Models of Power LEDs
by Marcin Janicki, Tomasz Torzewicz, Przemysław Ptak, Tomasz Raszkowski, Agnieszka Samson and Krzysztof Górecki
Energies 2019, 12(9), 1724; https://doi.org/10.3390/en12091724 - 7 May 2019
Cited by 17 | Viewed by 3556
Abstract
Light-emitting diodes are nowadays the most dynamically developing type of light sources. Considering that temperature is the main factor affecting the electrical and lighting parameters of these devices, thermal models are essential subcomponents of the multidomain models commonly used for simulation of their [...] Read more.
Light-emitting diodes are nowadays the most dynamically developing type of light sources. Considering that temperature is the main factor affecting the electrical and lighting parameters of these devices, thermal models are essential subcomponents of the multidomain models commonly used for simulation of their operation. The authors investigated white power light-emitting diodes soldered to Metal Core Printed Circuit Boards (MCPCBs). The tested devices were placed in a light-tight box on a cold plate and their cooling curves were registered for different diode heating current values and various preset cold plate temperatures. These data allowed the computation of optical and real heating power values and consequently the generation of compact thermal models in the form of Foster and Cauer RC ladders. This also rendered possible the analysis of the influence of the considered factors on the compact model element values and their parametrization. The resulting models yield accurate values of diode junction temperature in most realistic operating conditions and they can be easily included in multidomain compact models of power light emitting diodes. Full article
(This article belongs to the Special Issue Thermal and Electro-thermal System Simulation)
Show Figures

Figure 1

Back to TopTop