Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = keratin-associated protein 28-1 gene (KRTAP28-1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 220 KiB  
Communication
Characterisation of the Ovine KRTAP36-1 Gene in Chinese Tan Lambs and Its Impact on Selected Wool Traits
by Lingrong Bai, Huitong Zhou, Jinzhong Tao, Guo Yang and Jon G. H. Hickford
Animals 2025, 15(15), 2265; https://doi.org/10.3390/ani15152265 - 1 Aug 2025
Viewed by 155
Abstract
Wool has distinctive biological, physical, and chemical properties that contribute to its value both for the sheep and in global fibre and textile markets. Its fibres are primarily composed of proteins, principally keratin and keratin-associated proteins (KAPs). To better comprehend the genes that [...] Read more.
Wool has distinctive biological, physical, and chemical properties that contribute to its value both for the sheep and in global fibre and textile markets. Its fibres are primarily composed of proteins, principally keratin and keratin-associated proteins (KAPs). To better comprehend the genes that underpin key wool traits, this study examined the keratin-associated protein 36-1 gene (KRTAP36-1) in Chinese Tan lambs. We identified three previously reported alleles of the gene (named A, B and C) that were present in the lambs studied, with genotype frequencies as follows: 2.0% (n = 5; AA), 6.9% (n = 17; AB), 13.8% (n = 34; AC), 8.9% (n = 22; BB), 33.4% (n = 82; BC) and 35.0% (n = 86; CC). The frequencies of the individual alleles in the Chinese Tan lambs were 12.4%, 29.1% and 58.5% for alleles A, B and C, respectively. The three alleles were in Hardy–Weinberg Equilibrium. In an association analysis, it was revealed that allele C was associated with variation in the mean fibre curvature of the fine wool of the Chinese Tan lambs, but this association was not observed in their heterotypic hair fibres. This finding suggests that KRTAP36-1 might be differentially expressed in the wool follicles that produce the two fibre types, and that along with other KRTAP genes, it may be involved in determining fibre curvature and the distinctive curly coat of the lambs. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Domestic Animals)
14 pages, 1697 KiB  
Article
Characterisation of Four New Genes in the Ovine KAP19 Family
by Lingrong Bai, Huitong Zhou, Jianning He, Jinzhong Tao, Guo Yang and Jon G. H. Hickford
Int. J. Mol. Sci. 2025, 26(14), 6863; https://doi.org/10.3390/ijms26146863 - 17 Jul 2025
Viewed by 154
Abstract
This study identified four new keratin-associated protein genes (KRTAP19-n) in sheep: sKRTAP19-1, sKRTAP19-2, sKRTAP19-4, and sKRTAP19-6. These genes are closely related to the previously identified sheep genes KRTAP19-3 and KRTAP19-5, as well as to human KRTAP19-n [...] Read more.
This study identified four new keratin-associated protein genes (KRTAP19-n) in sheep: sKRTAP19-1, sKRTAP19-2, sKRTAP19-4, and sKRTAP19-6. These genes are closely related to the previously identified sheep genes KRTAP19-3 and KRTAP19-5, as well as to human KRTAP19-n genes. However, no clear orthologous relationships were found, suggesting complex evolutionary dynamics for this gene family. Extensive nucleotide sequence variation was observed across the four genes. sKRTAP19-1 had four variants, defined by four synonymous single-nucleotide polymorphisms (SNPs) and a variable number of “GGCTAC” hexanucleotide repeats. sKRTAP19-2 had five variants involving seven SNPs, three of which were non-synonymous. sKRTAP19-4 had five variants with nine SNPs (three being non-synonymous) and a three-nucleotide deletion. sKRTAP19-6 had eight variants, defined by 13 SNPs and a two-nucleotide consecutive substitution, with four of the SNPs being non-synonymous. One distinct variant each of sKRTAP19-4 and sKRTAP19-6 was found exclusively in Yanchi Tan sheep, with seven unique nucleotide differences compared to other variants. These unique variants were identical to the Romanov sheep genome in the region amplified (excluding the primer binding regions), suggesting a shared ancestral origin. The findings highlight considerable genetic diversity in ovine KRTAP19-n and lay a foundation for future research into their role in regulating wool fibre characteristics. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants—Second Edition)
Show Figures

Figure 1

12 pages, 1185 KiB  
Article
Cornified Epithelial Teeth of Jawless Vertebrates Contain Proteins Similar to Keratin-Associated Proteins of Mammalian Skin Appendages
by Attila Placido Sachslehner, David A. D. Parry and Leopold Eckhart
J. Dev. Biol. 2025, 13(2), 18; https://doi.org/10.3390/jdb13020018 - 19 May 2025
Viewed by 1161
Abstract
Keratins and keratin-associated proteins (KRTAPs) are the main components of mammalian nails and hair. Comparative genomics and gene expression studies have revealed that keratins are conserved in all vertebrates, whereas KRTAPs exist only in mammals. Recently, we found hair keratin-like cysteine-rich keratins in [...] Read more.
Keratins and keratin-associated proteins (KRTAPs) are the main components of mammalian nails and hair. Comparative genomics and gene expression studies have revealed that keratins are conserved in all vertebrates, whereas KRTAPs exist only in mammals. Recently, we found hair keratin-like cysteine-rich keratins in jawless vertebrates with confirmed expression in the cornified epithelial teeth of the sea lamprey (Petromyzon marinus). Here, we report that KRTAP-like proteins are also present in the horny teeth of the lamprey. Mass spectrometry-based proteomics identified proteins that share features with KRTAPs, such as high contents of cysteine and tyrosine residues, which support intermolecular interactions, and abundant glycine residues, which endow the proteins with flexibility. Genes encoding KRTAP-like proteins are arranged in a cluster in P. marinus, and the presence of at least one KRTAP-like protein is conserved in phylogenetically diverse species of lamprey, including Lampetra fluviatilis, Lethenteron reissneri, Geotria australis, and Mordacia mordax. The KRTAP-like genes of lampreys contain two exons, whereas mammalian KRTAPs have only a single exon. Although KRTAPs and KRTAP-like proteins are products of independent evolution, their common expression in cornified skin appendages suggests that they fulfill similar functions. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

27 pages, 4782 KiB  
Review
Skin Appendage Proteins of Tetrapods: Building Blocks of Claws, Feathers, Hair and Other Cornified Epithelial Structures
by Karin Brigit Holthaus, Julia Steinbinder, Attila Placido Sachslehner and Leopold Eckhart
Animals 2025, 15(3), 457; https://doi.org/10.3390/ani15030457 - 6 Feb 2025
Cited by 1 | Viewed by 1640
Abstract
Reptiles, birds, mammals and amphibians, together forming the clade tetrapods, have a large diversity of cornified skin appendages, such as scales, feathers, hair and claws. The skin appendages consist of dead epithelial cells that are tightly packed with specific structural proteins. Here, we [...] Read more.
Reptiles, birds, mammals and amphibians, together forming the clade tetrapods, have a large diversity of cornified skin appendages, such as scales, feathers, hair and claws. The skin appendages consist of dead epithelial cells that are tightly packed with specific structural proteins. Here, we review the molecular diversity and expression patterns of major types of skin appendage proteins, namely keratin intermediate filament proteins, keratin-associated proteins (KRTAPs) and proteins encoded by genes of the epidermal differentiation complex (EDC), including corneous beta-proteins, also known as beta-keratins. We summarize the current knowledge about the components of skin appendages with a focus on keratins and EDC proteins that have recently been identified in reptiles and birds. We discuss gaps of knowledge and suggest directions of future research. Full article
Show Figures

Figure 1

13 pages, 3864 KiB  
Article
Characterisation of Three Ovine KRTAP13 Family Genes and Their Association with Wool Traits in Chinese Tan Sheep
by Lingrong Bai, Huitong Zhou, Jianning He, Jinzhong Tao and Jon G. H. Hickford
Animals 2024, 14(19), 2862; https://doi.org/10.3390/ani14192862 - 4 Oct 2024
Cited by 2 | Viewed by 1015
Abstract
Understanding the genetic basis of wool traits is crucial for improving wool production. In this study, we investigated the ovine KAP13 gene family, which in humans contains multiple members, while only one member has been identified to date in sheep. Three ovine KRTAP13 [...] Read more.
Understanding the genetic basis of wool traits is crucial for improving wool production. In this study, we investigated the ovine KAP13 gene family, which in humans contains multiple members, while only one member has been identified to date in sheep. Three ovine KRTAP13 genes, likely representing KRTAP13-1, KRTAP13-2, and KRTAP13-4, were identified through sequence analysis and phylogenetic comparisons. These genes are positioned on chromosome 1, between KRTAP15-1 and KRTAP27-1, in a pattern that is like the arrangement in humans but not identical. Analyses revealed multiple sequence variants of each gene in 356 sheep from a variety of wool, meat, and dual-purpose breeds. The effect of these genes on four fibre traits: mean fibre curvature (MFC), mean fibre diameter (MFD), coefficient of variation of fibre diameter (CVFD), and fibre diameter standard deviation (FDSD), was assessed in 240 lambs of the Chinese Tan sheep breed. An allele of KRTAP13-2 was revealed to be associated with a decrease in FDSD and CVFD in heterotypic fibres. No associations were found between KRTAP13-4 variation and wool traits, and an association analysis for KRTAP13-1 was not conducted because no variation was found in this gene in the Chinese Tan sheep studied. These findings suggest a potential role for KRTAP13-2 in regulating wool traits, particularly fibre diameter uniformity in larger heterotypic hair fibres, and suggest its potential use as a marker for improving wool traits. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

8 pages, 215 KiB  
Article
Effects of KRTAP20-1 Gene Variation on Wool Traits in Chinese Tan Sheep
by Lingrong Bai, Huitong Zhou, Jinzhong Tao and Jon G. H. Hickford
Genes 2024, 15(8), 1060; https://doi.org/10.3390/genes15081060 - 12 Aug 2024
Cited by 2 | Viewed by 1189
Abstract
Chinese Tan sheep lambs are recognised for having tight ‘spring-like’ curly wool when young, but this phenotype disappears with age. This wool consists of shorter, fine wool fibres (which are usually unmedullated) and heterotypic hair fibres (which are frequently medullated), which are referred [...] Read more.
Chinese Tan sheep lambs are recognised for having tight ‘spring-like’ curly wool when young, but this phenotype disappears with age. This wool consists of shorter, fine wool fibres (which are usually unmedullated) and heterotypic hair fibres (which are frequently medullated), which are referred to as ‘halo hair’. Both the wool and hair fibres consist of α-keratin proteins embedded in a keratin-associated protein (KAP) matrix. Of these KAPs, the KAP20-1 gene (designated KRTAP20-1) and its effect on four fibre traits (mean fibre curvature, mean fibre diameter, fibre diameter standard deviation, and coefficient of variation of fibre diameter) of Tan lambs was studied. Seven previously identified KRTAP20-1 variants (A, B, D, E, F, G, and H) of KRTAP20-1 were revealed, but the previously identified variant C was not present. Of the seven variants detected, only two (A and G) were common and present at frequencies greater than 5%, and the effect of these on the fibre traits of the finer wool fibres was assessed. It was found that variant G was associated with an increased mean fibre curvature in these wool fibres. This suggests that KRTAP20-1 might possibly be expressed differentially in the two fibre types, which may be of future value in breeding. Full article
(This article belongs to the Special Issue Genetics and Breeding in Sheep and Goats)
11 pages, 1209 KiB  
Article
Exploring Variation in Ovine KRTAP19-5 and Its Effect on Fine Wool Fibre Curvature in Chinese Tan Sheep
by Lingrong Bai, Huitong Zhou, Wenhao Li, Jinzhong Tao and Jon G. H. Hickford
Animals 2024, 14(15), 2155; https://doi.org/10.3390/ani14152155 - 24 Jul 2024
Cited by 6 | Viewed by 1124
Abstract
Sheep’s wool is known to have unique biological, physical and chemical properties. The fibre primarily consists of proteins, but these have amino acid sequence variation, and at the phenotypic level wool fibre varies considerably. This can affect its utility and value. Unravelling the [...] Read more.
Sheep’s wool is known to have unique biological, physical and chemical properties. The fibre primarily consists of proteins, but these have amino acid sequence variation, and at the phenotypic level wool fibre varies considerably. This can affect its utility and value. Unravelling the genetic factors that underpin the protein and phenotypic variability is crucial if we are to contemplate improving wool quality. Accordingly, this study investigates the high glycine and tyrosine content keratin-associated protein 19-5 gene (KRTAP19-5) in sheep. PCR-single strand confirmation polymorphism analysis, coupled with DNA sequencing of a region spanning whole coding sequence, revealed six sequence variants containing seven single nucleotide polymorphisms (SNPs). Five of the SNPs were located within the coding region, with four leading to amino acid changes if expressed. In 247 Chinese Tan sheep derived from 10 sire-lines, and renowned for their distinct ‘spring-like’ crimped wool at up to approximately 35 days after birth, one of the variants was found to be associated with decreased curvature of the fine wool fibres in the fleece. No associations were detected with other fibre traits or with variation in the heterotypic hair fibres of the Tan sheep. While these findings may be useful for developing gene markers to alter mean wool fibre curvature and improve sheep breeding, many other genes and environmental factors are known to contribute to variation in fibre traits. Full article
Show Figures

Figure 1

11 pages, 3738 KiB  
Article
Quantitative Analysis of Hair Luster in a Novel Ultraviolet-Irradiated Mouse Model
by Kyung Bae Chung, Young In Lee, Yoo Jin Kim, Hyeon Ah Do, Jangmi Suk, Inhee Jung, Do-Young Kim and Ju Hee Lee
Int. J. Mol. Sci. 2024, 25(3), 1885; https://doi.org/10.3390/ijms25031885 - 4 Feb 2024
Cited by 2 | Viewed by 2444
Abstract
Hair luster is a key attribute of healthy hair and a crucial aspect of cosmetic appeal, reflecting the overall health and vitality of hair. Despite its significance, the advancement of therapeutic strategies for hair luster enhancement have been limited due to the absence [...] Read more.
Hair luster is a key attribute of healthy hair and a crucial aspect of cosmetic appeal, reflecting the overall health and vitality of hair. Despite its significance, the advancement of therapeutic strategies for hair luster enhancement have been limited due to the absence of an effective experimental model. This study aimed to establish a novel animal model to assess hair gloss, employing ultraviolet (UV) irradiation on C57BL/6 mice. Specifically, UVB irradiation was meticulously applied to the shaved skin of these mice, simulating conditions that typically lead to hair luster loss in humans. The regrowth and characteristics of the hair were evaluated using a dual approach: an Investigator’s Global Assessment (IGA) scale for subjective assessment and an image-based pixel-count method for objective quantification. These methods provided a comprehensive understanding of the changes in hair quality post-irradiation. To explore the potential reversibility of hair luster changes, oral minoxidil was administered, a treatment known for its effects on hair growth and texture. Further, to gain insights into the underlying biological mechanisms, bulk RNA transcriptomic analysis of skin tissue was conducted. This analysis revealed significant alterations in the expression of keratin-associated protein (KRTAP) genes, suggesting modifications in hair keratin crosslinking due to UV exposure. These changes are crucial in understanding the molecular dynamics affecting hair luster. The development of this new mouse model is a significant advancement in hair care research. It not only facilitates the evaluation of hair luster in a controlled setting but also opens avenues for the research and development of innovative therapeutic strategies. This model holds promise for the formulation of more effective hair care products and treatments, potentially revolutionizing the approach towards managing and enhancing hair luster. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

12 pages, 8485 KiB  
Article
RNA Profile of Cell Bodies and Exosomes Released by Tumorigenic and Non-Tumorigenic Thyroid Cells
by Valentina Maggisano, Francesca Capriglione, Catia Mio, Stefania Bulotta, Giuseppe Damante, Diego Russo and Marilena Celano
Int. J. Mol. Sci. 2024, 25(3), 1407; https://doi.org/10.3390/ijms25031407 - 24 Jan 2024
Cited by 1 | Viewed by 2009
Abstract
Tumor cells release exosomes, extracellular vesicle containing various bioactive molecules such as protein, DNA and RNA. The analysis of RNA molecules packaged in exosomes may provide new potential diagnostic or prognostic tumor biomarkers. The treatment of radioiodine-refractory aggressive thyroid cancer is still an [...] Read more.
Tumor cells release exosomes, extracellular vesicle containing various bioactive molecules such as protein, DNA and RNA. The analysis of RNA molecules packaged in exosomes may provide new potential diagnostic or prognostic tumor biomarkers. The treatment of radioiodine-refractory aggressive thyroid cancer is still an unresolved clinical challenge, and the search for biomarkers that are detectable in early phase of the disease has become a fundamental goal for thyroid cancer research. By using transcriptome analysis, this study aimed to analyze the gene expression profiles of exosomes secreted by a non-tumorigenic thyroid cell line (Nthy-ori 3.1-exo) and a papillary thyroid cancer (TPC-1-exo) cell line, comparing them with those of cell bodies (Nthy-ori 3.1-cells and TPC-1-cells). A total of 9107 transcripts were identified as differentially expressed when comparing TPC-1-exo with TPC-1-cells and 5861 when comparing Nthy-ori 3.1-exo with Nthy-ori 3.1-cells. Among them, Sialic acid-binding immunoglobulin-like lectins 10 and 11 (SIGLEC10, SIGLEC11) and Keratin-associated protein 5 (KRTAP5-3) transcripts, genes known to be involved in cancer progression, turned out to be up-regulated only in TPC-1-exo. Gene ontology analysis revealed significantly enriched pathways, and only in TPC-1-exo were the differential expressed genes associated with an up-regulation in epigenetic processes. These findings provide a proof of concept that some mRNA species are specifically packaged in tumor-cell-derived exosomes and may constitute a starting point for the identification of new biomarkers for thyroid tumors. Full article
(This article belongs to the Special Issue Exosomes and Non-Coding RNA Research in Health and Disease)
Show Figures

Figure 1

11 pages, 2079 KiB  
Article
Spatiotemporal Expression Characterization of KRTAP6 Family Genes and Its Effect on Wool Traits
by Hongxian Sun, Zhaohua He, Fangfang Zhao, Jiang Hu, Jiqing Wang, Xiu Liu, Zhidong Zhao, Mingna Li, Yuzhu Luo and Shaobin Li
Genes 2024, 15(1), 95; https://doi.org/10.3390/genes15010095 - 14 Jan 2024
Cited by 2 | Viewed by 1847
Abstract
Keratin-related proteins (KAPs) are structural components of wool fibers and are thought to play a key role in regulating the physical and mechanical properties of fibers. Among all KAP genes (KRTAPs), KRTAP6 gene family (KRTAP6-1, KRTAP6-2, KRTAP6-3, [...] Read more.
Keratin-related proteins (KAPs) are structural components of wool fibers and are thought to play a key role in regulating the physical and mechanical properties of fibers. Among all KAP genes (KRTAPs), KRTAP6 gene family (KRTAP6-1, KRTAP6-2, KRTAP6-3, KRTAP6-4, and KRTAP6-5) is a very important member with high polymorphism and notable association with some wool traits. In this study, we used real-time fluorescence quantitative PCR (RT-qPCR) and in situ hybridization to investigate spatiotemporal expression of KRTAP6s. The results revealed that KRTAP6 family genes were significantly expressed during anagen compared to other stages (p < 0.05). And it was found the five genes were expressed predominantly in the dermal papillae, inner and outer root sheaths, and showed a distinct spatiotemporal expression pattern. Also, it was found that KRTAP6-1 and KRTAP6-5 mRNA expression was negatively correlated with wool mean fiber diameter (MFD) and mean staple strength (MSS) (p < 0.05). In summary, the KRTAP6 family genes share a similar spatiotemporal expression pattern. And KRTAP6-1 and KRTAP6-5 may regulate the MFD and MSS of Gansu Alpine fine-wool sheep wool by changing the expression. Full article
(This article belongs to the Special Issue Genetics and Breeding in Sheep and Goats)
Show Figures

Figure 1

11 pages, 1675 KiB  
Article
Ovine KRTAP36-2: A New Keratin-Associated Protein Gene Related to Variation in Wool Yield
by Huitong Zhou, Wenhao Li, Lingrong Bai, Jiqing Wang, Yuzhu Luo, Shaobin Li and Jonathan G. H. Hickford
Genes 2023, 14(11), 2045; https://doi.org/10.3390/genes14112045 - 6 Nov 2023
Cited by 4 | Viewed by 1706
Abstract
Keratin-associated proteins (KAPs) are structural components of wool fibres. High-glycine/tyrosine (HGT)-KAPs are a subset of the KAP family, and their abundance in fibres varies. In this study, we report the discovery of an ovine HGT-KAP gene to which we assigned the name KRTAP36-2 [...] Read more.
Keratin-associated proteins (KAPs) are structural components of wool fibres. High-glycine/tyrosine (HGT)-KAPs are a subset of the KAP family, and their abundance in fibres varies. In this study, we report the discovery of an ovine HGT-KAP gene to which we assigned the name KRTAP36-2. Polymerase chain reaction and single-strand conformation polymorphism (PCR-SSCP) analyses revealed four variants of this gene in a screening population of 170 sheep from a variety of breeds. The DNA sequencing of the variants revealed four single-nucleotide polymorphisms (SNPs) and a dinucleotide deletion. Three of these SNPs were in the coding region, and one of these was non-synonymous and potentially led to the amino acid substitution p.Cys27Gly near the middle of the protein. The remaining SNP was located near the putative TATA box, and the di-nucleotide deletion was near the putative transcription initiation site. The effect of this variation in KRTAP36-2 was investigated in 274 Southdown × Merino lambs that were the progeny of five sires. Variation was only found to be associated with wool yield, that is, the proportion of the greasy fleece that remained as clean fleece upon scouring (expressed as a percentage). This may have some value in increasing wool production. Full article
(This article belongs to the Special Issue Genetics and Breeding of Sheep and Goats)
Show Figures

Figure 1

13 pages, 2642 KiB  
Article
Identification of the Keratin-Associated Protein 22-2 Gene in the Capra hircus and Association of Its Variation with Cashmere Traits
by Zhanzhao Chen, Jian Cao, Fangfang Zhao, Zhaohua He, Hongxian Sun, Jiqing Wang, Xiu Liu and Shaobin Li
Animals 2023, 13(17), 2806; https://doi.org/10.3390/ani13172806 - 4 Sep 2023
Cited by 2 | Viewed by 2011
Abstract
The Cashmere goat is an excellent local goat breed in Gansu Province of China, and it is expected to improve cashmere production and cashmere quality through selection and breeding to enhance its commercial value. Keratin-associated proteins (KAPs) play an important role in maintaining [...] Read more.
The Cashmere goat is an excellent local goat breed in Gansu Province of China, and it is expected to improve cashmere production and cashmere quality through selection and breeding to enhance its commercial value. Keratin-associated proteins (KAPs) play an important role in maintaining wool structure. The gene encoding the keratin-associated protein 22-2 (KAP22-2) gene has been identified in selected species other than goats, such as humans, mice, and sheep. In this study, the sequence of the sheep KAP22-2 gene (KRTAP22-2) was aligned into the goat genome, and the sequence with the highest homology was assumed to be the goat KRTAP22-2 sequence and used to design primers to amplify the goat gene sequence. A total of 356 Longdong Cashmere goats (Gansu Province, China) were used for screening of genetic variants. Four specific bands were detected by polymerase chain reaction-single-stranded conformational polymorphism (PCR-SSCP) analysis, and they formed a total of six band types individually or in combination. Four alleles were identified by DNA sequencing of PCR amplification products. A total of four single nucleotide polymorphic sites (SNPs) were detected in the four sequenced KRTAP22-2 alleles. Two of them are in the 5’UTR region and the other two are in the coding region, and the variants in the coding region are all non-synonymous mutations. In addition, there was a 6 bp length variation in allele C. The gene was expressed in the cortical layer of primary and secondary hair follicles, the inner root sheath, as well as hair papillae and hair maternal cells in goats. The results of the correlation analysis between genotypes and cashmere traits showed that after excluding genotypes with a gene frequency of less than 5%, the mean fiber diameter (MFD) of cashmere was significantly higher in the AB genotype than in the AA and AC genotypes. That is, the KRTAP22-2 gene variants are associated with mean fiber diameter in cashmere. The above results suggest that the goat KRTAP22-2 variant can be utilized as a molecular marker candidate gene for cashmere traits. Full article
Show Figures

Figure 1

11 pages, 1505 KiB  
Article
Sequence Variation in Caprine KRTAP6-2 Affects Cashmere Fiber Diameter
by Jian Cao, Jiqing Wang, Huitong Zhou, Jiang Hu, Xiu Liu, Shaobin Li, Yuzhu Luo and Jon G. H. Hickford
Animals 2022, 12(16), 2040; https://doi.org/10.3390/ani12162040 - 11 Aug 2022
Cited by 5 | Viewed by 1843
Abstract
Keratin-associated proteins (KAPs) are a structural component of cashmere fibers and in part determine fiber attributes. The gene encoding the high-glycine/tyrosine KAP6-2 (called KRTAP6-2) has been described in sheep, but it has not been identified goats. In this study, a 252-bp open [...] Read more.
Keratin-associated proteins (KAPs) are a structural component of cashmere fibers and in part determine fiber attributes. The gene encoding the high-glycine/tyrosine KAP6-2 (called KRTAP6-2) has been described in sheep, but it has not been identified goats. In this study, a 252-bp open reading frame with similarity to ovine KRTAP6-2 was found on goat chromosome 1, with its upstream and downstream flanking sequences are closely related with ovine KRTAP6-2 but are clearly distinct from other ovine KRTAP6-n sequences. Polymerase chain reaction amplification followed by single strand conformation polymorphism analysis of this region revealed five distinct banding patterns representing five different sequences (A to E) in 230 Longdong cashmere goats. Eleven diallelic single nucleotide polymorphisms (SNPs), a three-nucleotide sequence variation, and a 12-bp insertion/deletion were found among these five sequences, with most SNPs being either outside the coding region or synonymous. The presence of variant D was found to be associated with decreased mean fiber diameter (MFD; present: 13.26 ± 0.07 µm; absent: 13.55 ± 0.04 µm; p < 0.001), suggesting that variation in KRTAP6-2 may affect fiber diameter and have value as a molecular marker for improving the cashmere fiber diameter trait. Full article
(This article belongs to the Special Issue The Impact of Genetic Parameters on Complex Traits of Livestock)
Show Figures

Figure 1

11 pages, 2357 KiB  
Article
Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats
by Mengli Zhao, Huitong Zhou, Yuzhu Luo, Jiqing Wang, Jiang Hu, Xiu Liu, Shaobin Li, Kaiwen Zhang, Huimin Zhen and Jon G. H. Hickford
Genes 2021, 12(5), 625; https://doi.org/10.3390/genes12050625 - 22 Apr 2021
Cited by 11 | Viewed by 2457
Abstract
Keratin-associated proteins (KAPs) and keratins determine the physical and chemical properties of cashmere fibers as they are the main components of the fibers. It has been reported that ovine KRTAP1-2 affects clean fleece weight, greasy fleece weight and yield in sheep, but the [...] Read more.
Keratin-associated proteins (KAPs) and keratins determine the physical and chemical properties of cashmere fibers as they are the main components of the fibers. It has been reported that ovine KRTAP1-2 affects clean fleece weight, greasy fleece weight and yield in sheep, but the gene has not been described in goats and its effects on fiber traits are unknown. In this study, we identify the keratin-associated protein 1-2 gene (KRTAP1-2) in the goat genome and describe its effect on cashmere fiber traits in 359 Longdong cashmere goats. Six sequence variants (named CAPHI-KRTAP1-2*A to CAPHI-KRTAP1-2*F) were revealed using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. These sequences have the highest homology with ovine KRTAP1-2 sequences. There were a 60-bp deletion, a 15-bp insertion and five single nucleotide polymorphisms (SNPs) including two non-synonymous SNPs in the coding sequence. The caprine KRTAP1-2 gene was expressed in the skin tissue, but a signal was not observed for the kidneys, liver, lungs, spleen, heart and longissimus dorsi muscle. Variation in caprine KRTAP1-2 was found to be associated with raw cashmere fiber weight, but not with fiber diameter and length. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1027 KiB  
Article
Variation in the Caprine Keratin-Associated Protein 27-1 Gene is Associated with Cashmere Fiber Diameter
by Mengli Zhao, Huitong Zhou, Yuzhu Luo, Jiqing Wang, Jiang Hu, Xiu Liu, Shaobin Li, Zhiyun Hao, Xiayang Jin, Yize Song, Xinmiao Wu, Liyan Hu and Jon G. H. Hickford
Genes 2020, 11(8), 934; https://doi.org/10.3390/genes11080934 - 13 Aug 2020
Cited by 16 | Viewed by 2972
Abstract
Variation in some caprine keratin-associated protein (KAP) genes has been associated with cashmere fiber traits, but many KAP genes remain unidentified in goats. In this study, we confirm the identification of a KAP27-1 gene (KRTAP27-1) and describe its effect on cashmere [...] Read more.
Variation in some caprine keratin-associated protein (KAP) genes has been associated with cashmere fiber traits, but many KAP genes remain unidentified in goats. In this study, we confirm the identification of a KAP27-1 gene (KRTAP27-1) and describe its effect on cashmere traits in 248 Longdong cashmere goats. A polymerase chain reaction–single strand conformation polymorphism (PCR-SSCP) analysis was used to screen for sequence variation in this gene, and three sequence variants (named A to C) were found. These sequences have the highest similarity (77% identity) to a human KRTAP27-1 sequence, while sharing some homology with a predicted caprine KRTAP27-1 sequence ENSCHIG00000023347 in the goat genome construct (ARS1:CM004562.1) at chromosome 1 position 3,966,193–3,973,677 in the forward strand. There were two single nucleotide polymorphisms (SNPs) detected in the coding sequence, including one nonsynonymous SNP (c.413C/T; p.Ala138Val) and one synonymous SNP (c.495C/T). The C variant differed from A and B at c.413C/T, having cytosine in its nucleotide sequence, while the B variant differed from A and C at c.495C/T, having thymine in its nucleotide sequence. Goats of the genotypes AB and BB produced cashmere fibers of higher mean fiber diameter (MFD) than goats of genotype AA, but no difference in MFD was detected between the AB and BB goats. These results suggest that B is associated with increased MFD. Expression of the caprine KRTAP27-1 sequence was predominantly detected in the skin tissue of goats but not or only weakly detected in other tissues, including longissimus dorsi muscle, heart, kidney, liver, lung and spleen. Full article
(This article belongs to the Special Issue Complex Genetic Loci, 2nd Edition)
Show Figures

Figure 1

Back to TopTop