Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = isophorone diisocyanate (IPDI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8390 KB  
Article
Research on the Tribological Behavior of Polyurethane Acrylate Coatings with Different Matrix Constituents as Well as Graphite and PTFE
by Weihua Cao, Xiao Yang, Zhenjie Song, Jia Geng, Changxin Liu, Ning Zhang and Xiaowen Qi
Polymers 2025, 17(8), 1121; https://doi.org/10.3390/polym17081121 - 21 Apr 2025
Cited by 1 | Viewed by 1332
Abstract
With the aim of developing a wear-resistant ultraviolet (UV)-cured self-lubricating coating, this study investigated the impact of matrix components and lubricants on UV-cured interpenetrating polymer network-polyurethane acrylate (IPN-PUA) self-lubricating coatings. Four coatings with different monomer combinations were prepared, using isophorone diisocyanate (IPDI) or [...] Read more.
With the aim of developing a wear-resistant ultraviolet (UV)-cured self-lubricating coating, this study investigated the impact of matrix components and lubricants on UV-cured interpenetrating polymer network-polyurethane acrylate (IPN-PUA) self-lubricating coatings. Four coatings with different monomer combinations were prepared, using isophorone diisocyanate (IPDI) or tolylene-2,4-diisocyanate (TDI) in combination with hydroxypropyl acrylate (HPA) or 2-hydroxyethyl acrylate (HEA). These coatings were denoted as IPDI-HPA, IPDI-HEA, TDI-HPA, and TDI-HEA, respectively. The surface morphologies, compositions, friction and wear properties, as well as the comprehensive performances were investigated. The results indicated that IPDI-HPA had the lowest surface roughness and that TDI-HEA had the smallest wear rate, while TDI-HPA showed the best overall performance (roughness of 1.485 μm, coefficient of friction (COF) of 0.746, and wear rate of 10.64 × 10−14 m3/N·m). With TDI-HPA as the matrix, graphite and polytetrafluoroethylene (PTFE) particles of different sizes were added as lubricants. The T-P-25F (TDI-HPA coating with 25 μm sized PTFE) coating had self-lubricating capabilities, as was manifested by a friction coefficient of 0.395, which was 47% lower than that of the pure TDI-HPA coating, and it simultaneously showed outstanding wear-resistance performance. The wear rate of the T-P-25F coating was 3.97 × 10−14 m3/N·m, 62.7% lower than that of the pure TDI-HPA coating. This research provides valuable guidance for optimizing the performance of such coatings and yields a self-lubricating coating with excellent wear resistance. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials)
Show Figures

Figure 1

24 pages, 7758 KB  
Article
Heparin and Gelatin Co-Functionalized Polyurethane Artificial Blood Vessel for Improving Anticoagulation and Biocompatibility
by Jimin Zhang, Jingzhe Guo, Junxian Zhang, Danting Li, Meihui Zhong, Yuxuan Gu, Xiaozhe Yan and Pingsheng Huang
Bioengineering 2025, 12(3), 304; https://doi.org/10.3390/bioengineering12030304 - 18 Mar 2025
Cited by 1 | Viewed by 1894
Abstract
The primary challenges in the tissue engineering of small-diameter artificial blood vessels include inadequate mechanical properties and insufficient anticoagulation capabilities. To address these challenges, urea-pyrimidone (Upy)-based polyurethane elastomers (PIIU-B) were synthesized by incorporating quadruple hydrogen bonding within the polymer backbone. The synthesis process [...] Read more.
The primary challenges in the tissue engineering of small-diameter artificial blood vessels include inadequate mechanical properties and insufficient anticoagulation capabilities. To address these challenges, urea-pyrimidone (Upy)-based polyurethane elastomers (PIIU-B) were synthesized by incorporating quadruple hydrogen bonding within the polymer backbone. The synthesis process employed poly(L-lactide-ε-caprolactone) (PLCL) as the soft segment, while di-(isophorone diisocyanate)-Ureido pyrimidinone (IUI) and isophorone diisocyanate (IPDI) were utilized as the hard segment. The resulting PIIU-B small-diameter artificial blood vessel with a diameter of 4 mm was fabricated using the electrospinning technique, achieving an optimized IUI/IPDI composition ratio of 1:1. Enhanced by multiple hydrogen bonds, the vessels exhibited a robust elastic modulus of 12.45 MPa, an extracellular matrix (ECM)-mimetic nanofiber morphology, and a high porosity of 41.31%. Subsequently, the PIIU-B vessel underwent dual-functionalization with low-molecular-weight heparin and gelatin via ultraviolet (UV) crosslinking (designated as PIIU-B@LHep/Gel), which conferred superior biocompatibility and exceptional anticoagulation properties. The study revealed improved anti-platelet adhesion characteristics as well as a prolonged activated partial thromboplastin time (APTT) of 157.2 s and thrombin time (TT) of 64.2 s in vitro. Following a seven-day subcutaneous implantation, the PIIU-B@LHep/Gel vessel exhibited excellent biocompatibility, evidenced by complete integration with the surrounding peri-implant tissue, significant cell infiltration, and collagen formation in vivo. Consequently, polyurethane-based artificial blood vessels, reinforced by multiple hydrogen bonds and dual-functionalized with heparin and gelatin, present as promising candidates for vascular tissue engineering. Full article
(This article belongs to the Special Issue Biomaterials for Angiogenesis)
Show Figures

Figure 1

8 pages, 13911 KB  
Proceeding Paper
Synthesis and Structural Characterization of Novel Urethane-Dimethacrylate Monomers with Two Quaternary Ammonium Groups Based on Cycloaliphatic Diisocyanates
by Patryk Drejka, Patrycja Kula and Izabela Barszczewska-Rybarek
Eng. Proc. 2025, 87(1), 20; https://doi.org/10.3390/engproc2025087020 - 17 Mar 2025
Viewed by 620
Abstract
Diseases such are caries affect approximately 25% of the worldwide population. Such a state requires novel, antibacterial materials. This research aimed to synthesize and characterize the structures of two urethane-dimethacrylate monomers showing possible antibacterial activity for dental composite restorative materials (DCRMs). The monomers [...] Read more.
Diseases such are caries affect approximately 25% of the worldwide population. Such a state requires novel, antibacterial materials. This research aimed to synthesize and characterize the structures of two urethane-dimethacrylate monomers showing possible antibacterial activity for dental composite restorative materials (DCRMs). The monomers were based on isophorone diisocyanate (IPDI) and dicyclohexylmethane 4,4′-diisocyanate (CHMDI). The structures of the monomers and their key elements were confirmed with the application of spectroscopy methods. Nuclear Magnetic Resonance Spectroscopy (1H and 13C NMR) and Fourier Transform Infrared Spectroscopy (FTIR) were applied. The monomers were synthesized and their structures were confirmed with the abovementioned techniques. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

18 pages, 5150 KB  
Article
Effect of Hard-Segment Structure on the Properties of Polyurethane/Poly(Ethyl Methacrylate) Damping Composites
by Jinbao Ma, Chi Ma, Risheng Long, Yan Jiang, Xingjia Wang, Chang Liu, Fan Li and Lee Tin Sin
Polymers 2025, 17(5), 636; https://doi.org/10.3390/polym17050636 - 27 Feb 2025
Cited by 2 | Viewed by 2895
Abstract
Damping material performance influences the efficacy of vibration and noise reduction. However, traditional damping materials often have low damping peaks or narrow damping temperature ranges. In this study, a series of polyurethane (PU)/poly(ethylene methacrylate) (PEMA) composites were synthesised, in which the PU hard [...] Read more.
Damping material performance influences the efficacy of vibration and noise reduction. However, traditional damping materials often have low damping peaks or narrow damping temperature ranges. In this study, a series of polyurethane (PU)/poly(ethylene methacrylate) (PEMA) composites were synthesised, in which the PU hard segments were varied using toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate. The soft segments comprised tetrahydrofuran homopolymer glycol. The influence of the hard-segment structure on the properties of the PU/PEMA composites was investigated by infrared spectroscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, and other experimental methods. The performance mechanism was explored from a molecular perspective via integration with molecular dynamics simulations. The PU/PEMA material with IPDI hard segments comprised numerous microphase-separated structures and exhibited greater free volume, fuller molecular-chain movement, and the highest damping performance, with a loss factor of 0.56. The PU/PEMA composites synthesised with TDI and MDI hard segments exhibited better compatibility, with the MDI-PU/PEMA system exhibiting a higher hydrogen-bonding force. This material also exhibited a higher thermal stability, with an initial breakdown temperature of 287.87 °C. This study provides a basis for regulating and optimising the performance of PU-based damping materials. Full article
Show Figures

Figure 1

25 pages, 3048 KB  
Article
Novel Quaternary Ammonium Urethane-Dimethacrylates for Copolymers with Low Water Sorption and Solubility
by Patryk Drejka, Patrycja Kula and Izabela Barszczewska-Rybarek
Molecules 2025, 30(4), 769; https://doi.org/10.3390/molecules30040769 - 7 Feb 2025
Cited by 1 | Viewed by 1557
Abstract
Six novel urethane-dimethacrylates with quaternary ammonium groups (QAUDMAs) were successfully synthesized from 2-(methacryloyloxy)ethyl-2-hydroxyethylmethylalkylammonium bromide (QAHAMA-n, where n was 8 and 10) and diisocyanate (isophorone diisocyanate (IPDI), 4,4′-methylenedicyclohexyl diisocyanate (CHMDI), and 4,4′-diphenylmethane diisocyanate (MDI)). Their chemical structures were confirmed through nuclear magnetic resonance spectroscopy [...] Read more.
Six novel urethane-dimethacrylates with quaternary ammonium groups (QAUDMAs) were successfully synthesized from 2-(methacryloyloxy)ethyl-2-hydroxyethylmethylalkylammonium bromide (QAHAMA-n, where n was 8 and 10) and diisocyanate (isophorone diisocyanate (IPDI), 4,4′-methylenedicyclohexyl diisocyanate (CHMDI), and 4,4′-diphenylmethane diisocyanate (MDI)). Their chemical structures were confirmed through nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). The refractive index (RI) and density (dm) were also determined. The novel QAUDMAs were compounded with common dental dimethacrylates and subsequently photopolymerized. The resulting copolymers, comprising QAUDMA 40 wt.%, bisphenol A glycerolate dimethacrylate (Bis-GMA) 40 wt.%, and triethylene glycol dimethacrylate (TEGDMA) 20 wt.%, were tested for water sorption (WS) and solubility (SL). The WS and SL values decreased following these orderings based on the diisocyanate: IPDI > CHMDI > MDI for WS, and MDI > CHMDI > IPDI for SL. The WS values ranged from 11.50 to 13.82 µg/mm3, and were significantly lower than the recommended maximum for dental materials, 40 µg/mm3. The SL values that met the recommended maximum, 7.5 µg/mm3, ranged from 2.67 to 6.75 µg/mm3. Only the copolymer having the QAHAMA-8- and MDI-derived QAUDMA had the SL slightly exceeding 7.5 µg/mm3, at 7.89 µg/mm3. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Macromolecular Chemistry)
Show Figures

Graphical abstract

40 pages, 19786 KB  
Review
State-of-the-Art Review of Microcapsule Self-Repairing Concrete: Principles, Applications, Test Methods, Prospects
by Lu Jiang, Mingli Wu, Fei Du, Dongdong Chen, Lihua Xiao, Wei Chen, Wei Du and Qingjun Ding
Polymers 2024, 16(22), 3165; https://doi.org/10.3390/polym16223165 - 13 Nov 2024
Cited by 27 | Viewed by 13882
Abstract
Cement-based materials are widely used in construction worldwide, but they are vulnerable to environmental stressors and thermal fluctuations, leading to the formation of internal cracks that compromise structural integrity and durability. Traditional repair methods such as surface coatings, grouting, and groove filling are [...] Read more.
Cement-based materials are widely used in construction worldwide, but they are vulnerable to environmental stressors and thermal fluctuations, leading to the formation of internal cracks that compromise structural integrity and durability. Traditional repair methods such as surface coatings, grouting, and groove filling are often costly and labor-intensive. In response, self-repairing technologies for cement-based materials have emerged as an innovative and promising solution, offering the potential to significantly extend the lifespan of structures and reduce maintenance costs. A particularly novel approach is the development of microcapsule-based self-repairing concrete. In this system, repair agents are encapsulated within microcapsules and combined with curing agents in the concrete matrix. When cracks form, the microcapsules rupture, releasing the repair agents to autonomously heal the damage. This self-repairing mechanism is characterized by its high efficiency, durability, environmental sustainability, and versatility, making it a promising alternative to traditional repair methods. Recent research has focused on the development of microcapsules with various core materials, such as TDI (toluene diisocyanate), IPDI (isophorone diisocyanate), or epoxy resin, as well as composite shell materials including paraffin wax, PE (polyethylene) wax, nano-SiO2, and nano-CaCO3. A novel advancement in this area involves the enhancement of microcapsules through the incorporation of magnetic nanomaterials into the shell, providing new possibilities for self-repairing systems that address cracks in cement-based materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 4820 KB  
Article
Effects of Isocyanate Structure on the Properties of Polyurethane: Synthesis, Performance, and Self-Healing Characteristics
by Hairui Wang, Lan Cao, Xiaolei Wang, Xiurui Lang, Wenwen Cong, Long Han, Hongyu Zhang, Huibin Zhou, Jujie Sun and Chengzhong Zong
Polymers 2024, 16(21), 3045; https://doi.org/10.3390/polym16213045 - 29 Oct 2024
Cited by 26 | Viewed by 8770
Abstract
Polyurethane (PU) plays a critical role in elastomers, adhesives, and self-healing materials. We selected the most commonly used aromatic isocyanates, 4,4′-methylene diphenyl diisocyanate (MDI) and tolylene-2,4-diisocyanate (TDI), and the most commonly used aliphatic isocyanates, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane-4,4′-diisocyanate (HMDI), [...] Read more.
Polyurethane (PU) plays a critical role in elastomers, adhesives, and self-healing materials. We selected the most commonly used aromatic isocyanates, 4,4′-methylene diphenyl diisocyanate (MDI) and tolylene-2,4-diisocyanate (TDI), and the most commonly used aliphatic isocyanates, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane-4,4′-diisocyanate (HMDI), as raw materials, combined with polytetramethylene ether glycol (PTMG) and 1,4-butanediol (BDO) to successfully synthesize five PU materials. The effects of isocyanate structure on polymerization rate, hydrogen bonding, thermal properties, phase separation, wettability, self-healing performance, adhesion, and mechanical properties were systematically investigated. The results show that isocyanates with higher symmetry facilitate hydrogen bonding, but excessive flexibility and crystallinity may inhibit its formation. MDI-based PU exhibits the highest hydrogen bonding index (HBI) of 4.10, along with the most distinct phase separation and the highest tensile strength of 23.4 MPa. HMDI-based PU demonstrates the best adhesion properties, with the highest lap shear strength of 7.9 MPa, and also exhibits excellent scratch healing ability. IPDI-based PU shows good self-healing performance, recovering 88.7% of its original tensile strength and 90.6% of its original lap shear strength after heating at 80 °C for 24 h. Furthermore, all the samples can be reprocessed by melt or solution methods, showing excellent recyclability. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

15 pages, 3008 KB  
Article
Development of Novel Cardanol-Derived Reactive Dispersing Agents for Bio-Based Anionic–Nonionic Waterborne Polyurethane
by Jianrong Xia, Haobin Wu, Kaidong Chen, Yanling Li, Xin Lu, Sibo Ding and Xuelin Zheng
Polymers 2024, 16(21), 2958; https://doi.org/10.3390/polym16212958 - 22 Oct 2024
Cited by 5 | Viewed by 1909
Abstract
This study successfully developed a bio-based, photocurable, anionic–nonionic dual-functional chain extender, and sulfonated cardanol-based polyethylene glycol (SCP), derived from renewable resources—cardanol and polyethylene glycol—for application in waterborne polyurethane dispersions (WPUDs). Utilizing SCP as a chain extender, WPUDs were prepared through a typical acetone [...] Read more.
This study successfully developed a bio-based, photocurable, anionic–nonionic dual-functional chain extender, and sulfonated cardanol-based polyethylene glycol (SCP), derived from renewable resources—cardanol and polyethylene glycol—for application in waterborne polyurethane dispersions (WPUDs). Utilizing SCP as a chain extender, WPUDs were prepared through a typical acetone process with poly(butylene adipate) (PBA), isophorone diisocyanate (IPDI), and ethylene diamine (EDA) at a constant NCO/OH ratio of 1:1. This research focused on the effects of polyethylene glycol molecular weight and SCP dosage on the particle size, stability, and film-forming properties of the WPUD. Optimal dispersion stability and film-forming performance were achieved with a polyethylene glycol molecular weight of 1500 and a PBA to SCP molar ratio of 4:1, yielding a particle size of 0.326 ± 0.010 μm and excellent storage stability over six months. The resulting WPU coatings exhibited a tensile strength of 11.4 MPa, which increased to 16.8 MPa after UV irradiation owing to the formation of a semi-interpenetrating network via the photopolymerization of cardanol’s unsaturated side chains. UV cross-linking also enhanced water resistance, reducing the water absorption rate (WAR) from 18.68% to 4.21% and the water vapor transmission rate (WVTR) from 6.59 × 10−5 g·m⁻¹·Pa⁻¹·d⁻¹ to 2.26 × 10⁻⁵ g·m⁻¹·Pa⁻¹·d⁻¹, while also improving thermal stability. These findings demonstrate that SCP offers a sustainable and effective solution for developing high-performance WPU coatings. Full article
(This article belongs to the Special Issue Polymer Functionalization Modification)
Show Figures

Graphical abstract

16 pages, 2337 KB  
Article
Advancing Food Packaging: Exploring Cyto-Toxicity of Shape Memory Polyurethanes
by Antonio Veloso-Fernández, José Manuel Laza, Leire Ruiz-Rubio, Ane Martín, Asier Benito-Vicente, Cesar Martín and José Luis Vilas-Vilela
Materials 2024, 17(19), 4770; https://doi.org/10.3390/ma17194770 - 28 Sep 2024
Cited by 4 | Viewed by 1821
Abstract
Cytotoxicity is a critical parameter for materials intended for biological applications, such as food packaging. Shape-memory polyurethanes (SMPUs) have garnered significant interest due to their versatile properties and adaptability in synthesis. However, their suitability for biological applications is limited by the use of [...] Read more.
Cytotoxicity is a critical parameter for materials intended for biological applications, such as food packaging. Shape-memory polyurethanes (SMPUs) have garnered significant interest due to their versatile properties and adaptability in synthesis. However, their suitability for biological applications is limited by the use of aromatic isocyanates, such as methylene diphenyl 4,4′-diisocyanate (MDI) and toluene diisocyanate (TDI), which are commonly used in SMPU synthesis but can generate carcinogenic compounds upon degradation. In this study, thermo-responsive shape-memory polyurethanes (SMPUs) were synthesized using poly(tetramethylene ether) glycol (PTMG) and castor oil (CO) as a chain extender with four different isocyanates—aromatic (MDI and TDI), aliphatic (hexamethylene diisocyanate [HDI] and isophorone diisocyanate [IPDI])—to evaluate their impact on polyurethane cytotoxicity. Cytotoxicity assays were conducted on the synthesized SMPU samples before and after exposure to light-induced degradation. The results showed that prior to degradation, all samples exhibited cell proliferation rates above 90%. However, after degradation, the SMPUs containing aromatic isocyanates demonstrated a drastic reduction in cell proliferation to values below 10%, whereas the samples with aliphatic isocyanates maintained cell proliferation above 70%. Subsequently, the influence of polyol chain length was assessed using PTMG, with molecular weights of 1000, 650, and 250 g·mol−1. The results indicated that the SMPUs with longer chain lengths exhibited higher cell proliferation rates both before and after degradation. The thermal and mechanical properties of the SMPUs were further characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermomechanical analysis (TMA), providing comprehensive insights into the behavior of these materials. Full article
(This article belongs to the Special Issue Research on Properties of Polymers and Their Engineering Applications)
Show Figures

Figure 1

14 pages, 10170 KB  
Article
AgNP Composite Silicone-Based Polymer Self-Healing Antifouling Coatings
by Xingda Liu, Jiawen Sun, Jizhou Duan, Kunyan Sui, Xiaofan Zhai and Xia Zhao
Materials 2024, 17(17), 4289; https://doi.org/10.3390/ma17174289 - 30 Aug 2024
Cited by 4 | Viewed by 1895
Abstract
Biofouling poses a significant challenge to the marine industry, and silicone anti-biofouling coatings have garnered extensive attention owing to their environmental friendliness and low surface energy. However, their widespread application is hindered by their low substrate adhesion and weak static antifouling capabilities. In [...] Read more.
Biofouling poses a significant challenge to the marine industry, and silicone anti-biofouling coatings have garnered extensive attention owing to their environmental friendliness and low surface energy. However, their widespread application is hindered by their low substrate adhesion and weak static antifouling capabilities. In this study, a novel silicone polymer polydimethylsiloxane (PDMS)-based poly(urea-thiourea-imine) (PDMS-PUTI) was synthesized via stepwise reactions of aminopropyl-terminated polydimethylsiloxane (APT-PDMS) with isophorone diisocyanate (IPDI), isophthalaldehyde (IPAL), and carbon disulfide (CS2). Subsequently, a nanocomposite coating (AgNPs-x/PDMS-PUTI) was prepared by adding silver nanoparticles (AgNPs) to the polymer PDMS-PUTI. The dynamic multiple hydrogen bonds formed between urea and thiourea linkages, along with dynamic imine bonds in the polymer network, endowed the coating with outstanding self-healing properties, enabling complete scratch healing within 10 min at room temperature. Moreover, uniformly dispersed AgNPs not only reduced the surface energy of the coating but also significantly enhanced its antifouling performance. The antibacterial efficiency against common marine bacteria Pseudomonas aeruginosa (P.sp) and Staphylococcus aureus (S.sp) was reduced by 97.08% and 96.71%, respectively, whilst the diatom settlement density on the coating surface was as low as approximately 59 ± 3 diatom cells/mm2. This study presents a novel approach to developing high-performance silicone antifouling coatings. Full article
Show Figures

Figure 1

15 pages, 10122 KB  
Article
A Study of Hydroxyl-Terminated Block Copolyether-Based Binder Curing Kinetics
by Wu Yang, Zhengmao Ding, Cong Zhu, Tianqi Li, Wenhao Liu and Yunjun Luo
Polymers 2024, 16(16), 2246; https://doi.org/10.3390/polym16162246 - 7 Aug 2024
Viewed by 1458
Abstract
In order to determine the curing reaction model and corresponding parameters of hydroxyl-terminated block copolyether (HTPE) and provide a theoretical reference for its practical application, the non-isothermal differential scanning calorimetry (DSC) method was used to analyze the curing processes of three curing systems [...] Read more.
In order to determine the curing reaction model and corresponding parameters of hydroxyl-terminated block copolyether (HTPE) and provide a theoretical reference for its practical application, the non-isothermal differential scanning calorimetry (DSC) method was used to analyze the curing processes of three curing systems with HTPE and N-100 (an aliphatic polyisocyanate curing agent), isophorone diisocyanate (IPDI), and a mixture of N-100 and IPDI as curing agents. The results show that the curing activation energy of N-100 and HTPE was about 69.37 kJ/mol, slightly lower than the curing activation energy of IPDI and HTPE (75.60 kJ/mol), and the curing activation energy of the mixed curing agent and HTPE was 69.79 kJ/mol. The curing process of HTPE conformed to the autocatalytic reaction model. The non-catalytic reaction order (n) of N-100 and HTPE was about 1.2, and the autocatalytic order (m) was about 0.3, both lower than those of IPDI and HTPE. The reaction kinetics parameters of the N-100 and IPDI mixed curing agent with HTPE were close to those of N-100 and HTPE. The verification results indicate a high degree of overlap between the experimental data and the calculated data. Full article
(This article belongs to the Special Issue Eco-Friendly Coatings and Adhesive Technology)
Show Figures

Figure 1

17 pages, 5205 KB  
Article
Controlling the Synthesis of Polyurea Microcapsules and the Encapsulation of Active Diisocyanate Compounds
by Efterpi Avdeliodi, Anastasia Tsioli, Georgios Bokias and Joannis K. Kallitsis
Polymers 2024, 16(2), 270; https://doi.org/10.3390/polym16020270 - 18 Jan 2024
Cited by 7 | Viewed by 5173
Abstract
The encapsulation of active components is currently used as common methodology for the insertion of additional functions like self-healing properties on a polymeric matrix. Among the different approaches, polyurea microcapsules are used in different applications. The design of polyurea microcapsules (MCs) containing active [...] Read more.
The encapsulation of active components is currently used as common methodology for the insertion of additional functions like self-healing properties on a polymeric matrix. Among the different approaches, polyurea microcapsules are used in different applications. The design of polyurea microcapsules (MCs) containing active diisocyanate compounds, namely isophorone diisocyanate (IPDI) or hexamethylene diisocyanate (HDI), is explored in the present work. The polyurea shell of MCs is formed through the interfacial polymerization of oil-in-water emulsions between the highly active methylene diphenyl diisocyanate (MDI) and diethylenetriamine (DETA), while the cores of MCs contain, apart from IPDI or HDI, a liquid Novolac resin. The hydroxyl functionalities of the resin were either unprotected (Novolac resin), partially protected (Benzyl Novolac resin) or fully protected (Acetyl Novolac resin). It has been found that the formation of MCs is controlled by the MDI/DETA ratio, while the shape and size of MCs depends on the homogenization rate applied for emulsification. The encapsulated active compound, as determined through the titration of isocyanate (NCO) groups, was found to decrease with the hydroxyl functionality content of the Novolac resin used, indicating a reaction between NCO and the hydroxyl groups. Through the thorough investigation of the organic phase, the rapid reaction (within a few minutes) of MDI with the unprotected Novolac resin was revealed, while a gradual decrease in the NCO groups (within two months) has been observed through the evolution of the Attenuated Total Reflectance—Fourier-Transform Infrared (ATR-FTIR) spectroscopy and titration, due to the reaction of these groups with the hydroxyl functionalities of unprotected and partially protected Novolac resin. Over longer times (above two months), the reaction of the remaining NCO groups with humidity was evidenced, especially when the fully protected Acetyl Novolac resin was used. HDI was found to be more susceptible to reactions, as compared with IPDI. Full article
Show Figures

Figure 1

18 pages, 4486 KB  
Article
Design of Experiment for Optimizing Microencapsulation by the Solvent Evaporation Technique
by Mónica V. Loureiro, António Aguiar, Rui G. dos Santos, João C. Bordado, Isabel Pinho and Ana C. Marques
Polymers 2024, 16(1), 111; https://doi.org/10.3390/polym16010111 - 29 Dec 2023
Cited by 2 | Viewed by 2913
Abstract
We employed microemulsion combined with the solvent evaporation technique to produce biodegradable polycaprolactone (PCL) MCs, containing encapsulated isophorone diisocyanate (IPDI), to act as crosslinkers in high-performance adhesive formulations. The MC production process was optimized by applying a design of experiment (DoE) statistical approach, [...] Read more.
We employed microemulsion combined with the solvent evaporation technique to produce biodegradable polycaprolactone (PCL) MCs, containing encapsulated isophorone diisocyanate (IPDI), to act as crosslinkers in high-performance adhesive formulations. The MC production process was optimized by applying a design of experiment (DoE) statistical approach, aimed at decreasing the MCs’ average size. For that, three different factors were considered, namely the concentration of two emulsifiers, polyvinyl alcohol (PVA) and gum arabic (GA); and the oil-to-water phase ratio of the emulsion. The significance of each factor was evaluated, and a predictive model was developed. We were able to decrease the average MC size from 326 μm to 70 µm, maintaining a high encapsulation yield of approximately 60% of the MCs’ weight, and a very satisfactory shelf life. The MCs’ average size optimization enabled us to obtain an improved distributive and dispersive mixture of isocyanate-loaded MCs at the adhesive bond. The MCs’ suitability as crosslinkers for footwear adhesives was assessed following industry standards. Peel tests revealed peel strength values above the minimum required for casual footwear, while the creep test results indicated an effective crosslinking of the adhesive. These results confirm the ability of the MCs to release IPDI during the adhesion process and act as crosslinkers for new adhesive formulations. Full article
Show Figures

Graphical abstract

17 pages, 2014 KB  
Article
Synthesis of a Reactive Cationic/Nonionic Waterborne Polyurethane Dye Fixative and Its Application Performance on Viscose Fiber Fabrics
by Changyu Deng, Jiacheng Jin, Hong Zhang, Jiahui Li and Kemei Pei
Polymers 2024, 16(1), 89; https://doi.org/10.3390/polym16010089 - 27 Dec 2023
Cited by 2 | Viewed by 2900
Abstract
A series of cationic waterborne polyurethane (CWPU) emulsions was synthesized with isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI) as hard segments; polyol (N210) and polyethylene glycol (PEG-2000) as soft segments; N-methyldiethanolamine (MDEA) as a hydrophilic chain extender; and trimethylolpropane (TMP) as a crosslinker. [...] Read more.
A series of cationic waterborne polyurethane (CWPU) emulsions was synthesized with isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI) as hard segments; polyol (N210) and polyethylene glycol (PEG-2000) as soft segments; N-methyldiethanolamine (MDEA) as a hydrophilic chain extender; and trimethylolpropane (TMP) as a crosslinker. Then, the effects of the R-value, MDEA content, and TMP content on the properties of the CWPU emulsion, film, and fabric treatment were investigated. The results indicated that when the R-value was 3.0, the MEDA content accounted for 4.0% of the solid and the TMP content accounted for 1.0% of the solid. CWPU has excellent storage stability. Applying it to the fixing treatment of the viscose fiber fabrics can effectively improve the color fastness to rubbing, elasticity, surface smoothness, and anti-static properties. Full article
(This article belongs to the Special Issue Advanced Composite Materials for Water Contaminant Removal)
Show Figures

Figure 1

16 pages, 6621 KB  
Article
Synthesis and Properties of Cationic Core-Shell Fluorinated Polyurethane Acrylate
by Junhua Chen, Xiaoting Lu, Jinlian Chen, Shiting Li, He Zhang, Yinping Wu, Dongyu Zhu and Xiangying Hao
Polymers 2024, 16(1), 86; https://doi.org/10.3390/polym16010086 - 27 Dec 2023
Cited by 9 | Viewed by 2928
Abstract
Vinyl-capped cationic waterborne polyurethane (CWPU) was prepared using isophorone diisocyanate (IPDI), polycarbonate diol (PCDL), N-methyldiethanolamine (MDEA), and trimethylolpropane (TMP) as raw materials and hydroxyethyl methacrylate (HEMA) as a capping agent. Then, a crosslinked FPUA composite emulsion with polyurethane (PU) as the shell [...] Read more.
Vinyl-capped cationic waterborne polyurethane (CWPU) was prepared using isophorone diisocyanate (IPDI), polycarbonate diol (PCDL), N-methyldiethanolamine (MDEA), and trimethylolpropane (TMP) as raw materials and hydroxyethyl methacrylate (HEMA) as a capping agent. Then, a crosslinked FPUA composite emulsion with polyurethane (PU) as the shell and fluorinated acrylate (PA) as the core was prepared by core-shell emulsion polymerization with CWPU as the seed emulsion, together with dodecafluoroheptyl methacrylate (DFMA), diacetone acrylamide (DAAM), and methyl methacrylate (MMA). The effects of the core-shell ratio of PA/PU on the surface properties, mechanical properties, and heat resistance of FPUA emulsions and films were investigated. The results showed that when w(PA) = 30~50%, the stability of FPUA emulsion was the highest, and the particles showed a core-shell structure with bright and dark intersections under TEM. When w(PA) = 30%, the tensile strength reached 23.35 ± 0.08 MPa. When w(PA) = 50%, the fluorine content on the surface of the coating film was 14.75% and the contact angle was as high as 98.5°, which showed good hydrophobicity; the surface flatness of the film was observed under AFM. It is found that the tensile strength of the film increases and then decreases with the increase in the core-shell ratio and the heat resistance of the FPUA film is gradually increased. The FPUA film has excellent properties such as good impact resistance, high flexibility, high adhesion, and corrosion resistance. Full article
(This article belongs to the Special Issue Progress in Polyurethane and Composites)
Show Figures

Figure 1

Back to TopTop