Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (114)

Search Parameters:
Keywords = irregularity spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1873 KiB  
Article
Stacking Order-Dependent Electronic and Optical Properties of h-BP/Borophosphene Van Der Waals Heterostructures
by Kejing Ren, Quan Zhang, Shengli Zhang and Yang Zhang
Nanomaterials 2025, 15(15), 1155; https://doi.org/10.3390/nano15151155 - 25 Jul 2025
Viewed by 182
Abstract
Van der Waals (vdW) heterostructures, typically composed of two-dimensional (2D) atomic layers, have attracted significant attention over the past few decades. Their performance is closely dependent on their composition and interlayer interactions. In this study, we constructed four types of 2D hexagonal BP [...] Read more.
Van der Waals (vdW) heterostructures, typically composed of two-dimensional (2D) atomic layers, have attracted significant attention over the past few decades. Their performance is closely dependent on their composition and interlayer interactions. In this study, we constructed four types of 2D hexagonal BP monolayer (h-BP)/borophosphene vdW heterostructures with different stacking orders: (i) B-B stacking, (ii) P-P stacking, (iii) moire-I, and (iv) moire-II. Their structural stability and their electronic and optical properties were explored by using first-principles calculations. The results show that h-BP/borophosphene heterostructures can maintain their configurations with good structural stability and minimal lattice mismatch. All vdW heterostructures exhibit semiconducting characteristics, and their band gaps are highly dependent on interlayer stacking orders. Due to the regular atomic arrangement and enhanced interlayer dipole interactions, the B-B stacking bilayer opens a relatively large band gap of 0.157 eV, while the moire-II bilayer exhibits a very small band gap of 0.045 eV because of its irregular atom arrangements. By calculating the complex dielectric function, optical absorption spectra of B-B and P-P stacking bilayers were discussed. This study suggests that h-BP/borophosphene heterostructures have desirable optical properties, broadening the potential applications of the constituent monolayers. Full article
Show Figures

Figure 1

7 pages, 1181 KiB  
Communication
The Enigmatic, Highly Variable, High-Mass Young Stellar Object Mol 12: A New Extreme Herbig Be (Proto)star
by Mauricio Tapia, Paolo Persi, Jesús Hernández and Nuria Calvet
Galaxies 2025, 13(3), 70; https://doi.org/10.3390/galaxies13030070 - 13 Jun 2025
Viewed by 490
Abstract
We report new medium-resolution spectroscopy covering the wavelength range from 0.6 to 2.4 μm, as well as multi-epoch, multi-wavelength photometry, of the Class I high-mass embedded young stellar object Mol 12 (IRAS 05373+2349). It is embedded (AV12) [...] Read more.
We report new medium-resolution spectroscopy covering the wavelength range from 0.6 to 2.4 μm, as well as multi-epoch, multi-wavelength photometry, of the Class I high-mass embedded young stellar object Mol 12 (IRAS 05373+2349). It is embedded (AV12) in the centre of a dense core at a distance of 1.59 kpc from the Sun and has a total luminosity of 1.74×103L. The spectra show a large number of permitted atomic emission lines, mostly for Fe, H, C, N, and Ca, that originate in the inner zones of a very active protoplanetary disc and no photospheric absorption lines. Conspicuously, the He I line at 1.0830 μm displays a complex P-Cygni profile. Also, the first overtone CO emission band-heads at 2.3 μm are seen in emission. From the strengths of the principal emission lines, we determined the accretion rate and luminosity to be M˙105M y−1 and Lacc103L, respectively. Decade-long light curves show a series of irregular brightness dips of more than four magnitudes in r, becoming shallower as the wavelength increases and disappearing at λ>3μm. The colour–magnitude diagrams suggest the occurrence of a series of eclipses caused by the passage of small dust cloudlets in front of the star, producing more than 10 magnitudes of extra extinction. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

12 pages, 1455 KiB  
Article
Hydrothermal Synthesis of Nanocomposites Combining Tungsten Trioxide and Zinc Oxide Nanosheet Arrays for Improved Photocatalytic Degradation of Organic Dye
by Chien-Yie Tsay, Tao-Ying Hsu, Gang-Juan Lee, Chin-Yi Chen, Yu-Cheng Chang, Jing-Heng Chen and Jerry J. Wu
Nanomaterials 2025, 15(10), 772; https://doi.org/10.3390/nano15100772 - 21 May 2025
Viewed by 416
Abstract
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy [...] Read more.
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy (FE-SEM) observations confirmed the formation of irregular oxide nanosheet arrays on the FTO surfaces. X-ray diffraction (XRD) analysis revealed the presence of hexagonal WO3 and wurtzite ZnO crystal phases. UV-Vis diffuse reflectance spectroscopy showed that integrating ZnO nanostructures with WO3 nanosheets resulted in a blue shift of the absorption edge and a reduced absorption capacity in the visible-light region. Photoluminescence (PL) spectra indicated that the WO 0.5/ZnO 2.0 sample exhibited the lowest electron-hole recombination rate among the WO3/ZnO nanocomposite sample. Photocatalytic degradation tests demonstrated that all WO3/ZnO nanocomposite samples had higher photodegradation rates for a 10 ppm methylene blue (MB) aqueous solution under visible-light irradiation compared to pristine WO3 nanosheet arrays. Among them, the WO 0.5/ZnO 2.0 sample showed the highest photocatalytic efficiency. Furthermore, it exhibited excellent recyclability and high photodegradation stability over three cycles. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

13 pages, 4618 KiB  
Article
A Facile Microwave-Assisted Hydrothermal (MAH) Method of CdWO4/CdMoO4 Heterostructures and Their Photocatalytic Properties
by Nivaldo F. Andrade Neto, Onecima B. M. Ramalho, Marcio D. Teodoro, Mauricio R. D. Bomio and Fabiana V. Motta
Ceramics 2025, 8(2), 52; https://doi.org/10.3390/ceramics8020052 - 8 May 2025
Viewed by 546
Abstract
In this study, CdWO4/CdMoO4 powders’ heterostructures were synthesized using the microwave-assisted hydrothermal method, characterized, and evaluated for their photocatalytic properties. The samples were analyzed using X-ray diffraction (XRD), Raman and ultraviolet-visible (UV-Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), and photoluminescence [...] Read more.
In this study, CdWO4/CdMoO4 powders’ heterostructures were synthesized using the microwave-assisted hydrothermal method, characterized, and evaluated for their photocatalytic properties. The samples were analyzed using X-ray diffraction (XRD), Raman and ultraviolet-visible (UV-Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL). The photocatalytic performance was assessed using methylene blue as a model pollutant. XRD patterns and Raman spectra confirmed the formation of heterostructures containing the Wolframite phase of CdWO4 and the Scheelite phase of CdMoO4. FESEM micrographs revealed that the CdWO4 phase exhibits a plate-like morphology, while the CdMoO4 phase consists of irregular nanoparticles. Photocatalytic tests demonstrated that the 20Mo sample exhibited the best performance, degrading 96% of the dye after 2 h of reaction. The findings of this study indicate that CdWO4/CdMoO4 heterostructures hold significant potential for photocatalytic applications in the degradation of cationic dyes. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

12 pages, 1650 KiB  
Article
Effect of Citric Acid Concentration on the Transformation of Aragonite CaCO3 to Calcium Citrate Using Cockle Shells as a Green Calcium Source
by Pantita Chanwetprasat, Chaowared Seangarun, Somkiat Seesanong, Banjong Boonchom, Nongnuch Laohavisuti, Wimonmat Boonmee and Pesak Rungrojchaipon
Materials 2025, 18(9), 2003; https://doi.org/10.3390/ma18092003 - 28 Apr 2025
Cited by 1 | Viewed by 900
Abstract
Aragonite calcium carbonate (CaCO3), derived from cockle shell waste, was successfully used as a renewable calcium source to synthesize calcium citrate (CCT) using citric acid (C6H8O7). The three CCT products (CCT-2, CCT-3, and CCT-4) were [...] Read more.
Aragonite calcium carbonate (CaCO3), derived from cockle shell waste, was successfully used as a renewable calcium source to synthesize calcium citrate (CCT) using citric acid (C6H8O7). The three CCT products (CCT-2, CCT-3, and CCT-4) were prepared using three different acid concentrations: 2, 3, and 4 M. The physicochemical characteristics of the newly synthesized CCT were investigated. Fourier-transform infrared (FTIR) spectra revealed the vibrational modes of the citrate anionic group (C6H5O73−), which preliminarily confirmed the characteristics of CCT. However, X-ray diffraction (XRD) revealed that the concentration of citric acid altered the structural property and the chemical formula of the synthesized CCT. Employing 2 M citric acid, a pure tetra-hydrated phase (Ca3(C6H5O7)2·4H2O, earlandite mineral) was obtained. However, a mixture of hydrated (Ca3(C6H5O7)2·4H2O) and anhydrous (Ca3(C6H5O7)2) phases was precipitated when 3 and 4 M citric acid was used in the preparation process. The lower mass loss observed in the thermogravimetric analysis (TGA) of CCT-3 and CCT-4 compared to that of CCT-2 further confirmed that CCT-3 and CCT-4 were composed of hydrated and anhydrous CCTs. The synthesized CCT decomposed in four major processes: the first dehydration, the second dehydration, CaCO3 formation, and decarbonization, generating calcium oxide (CaO) as the final product. X-ray fluorescence (XRF) results showed that the CCT mainly consisted of CaO with a quantity of >98%. The scanning electron microscopic (SEM) image revealed the irregular plate-like CCT crystallites. The concentration of citric acid is a key factor that influences the productive parameters of CCT, including production yield, reaction time, and solubility. 2 M citric acid provided the optimal balance between productivity and cost-effectiveness, with the highest yield and soluble fraction and the lowest reaction time. The results suggest that the preparation of CCT from cockle shell waste can potentially replace the use of commercial calcite from mining, which is a limited and non-renewable resource. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

16 pages, 9366 KiB  
Article
Methane in Fluid Inclusions in Ophiolitic Chromitites Revealed by Raman Spectroscopy: Preliminary Results
by Federica Zaccarini, Gabriella B. Kiss, Giorgio Garuti, Daniela Mauro, Maria Economou-Eliopoulos, Máté Hegedűs and Cristian Biagioni
Minerals 2025, 15(4), 335; https://doi.org/10.3390/min15040335 - 23 Mar 2025
Viewed by 594
Abstract
This contribution provides a petrographic and Raman investigation of fluid inclusions found in chromitites collected in the ophiolites of Santa Elena (Costa Rica), Bracco (Italy), Otrhys and Vourinos (Greece), and Troodos (Cyprus). Most of the analyzed chromites are classified as high-Cr, with the [...] Read more.
This contribution provides a petrographic and Raman investigation of fluid inclusions found in chromitites collected in the ophiolites of Santa Elena (Costa Rica), Bracco (Italy), Otrhys and Vourinos (Greece), and Troodos (Cyprus). Most of the analyzed chromites are classified as high-Cr, with the exception of those from Bracco and some of the Othrys complexes that are high-Al. Although the investigation of fluid inclusions in chromitites is very challenging due to the poor transparency of the host chromite, the studied samples contain numerous fluid inclusions. The fluid inclusions look to be more abundant in the high-Cr chromitites, related to a subduction zone environment, compared to the high-Al chromitites generated in a mid-ocean ridge. This is in agreement with the petrogenetic model for the formation of podiform chromitites that implies the presence of a metasomatic event caused by hydrous fluids that reacted pervasively with variable depleted mantle tectonites, especially in the subduction zone setting. The fluid inclusions, between 1 and 15 µm in size, show negative crystal or irregular angular shapes. They occur when enclosed in chromite crystals that have not been affected by low-temperature processes. The fluid inclusions consist of liquid (L), vapour(V~30–50 area%) and L + V (V~40–60 area% rarely 10–80 area%). The fluid inclusions may contain only vapour and a vapour and a solid phase, too. The Raman spectra reveal the presence of CH4 in certain fluid inclusions. Considering the high number of fluid inclusions that potentially contain CH4, we suggest that the fluid inclusions in the chromite crystals and their leaching can be a possible source in order to explain the high amount of CH4 detected in some podiform chromitites, previously attributed to the Sabatier reaction. The mode of the occurrences of the studied CH4 bearing fluid inclusions, i.e., entrapped in unaltered chromite crystals formed at a magmatic temperature, suggest their abiotic origin from mantle-derived fluids, rather than those related to the low-temperature serpentinization processes. The investigation of fluid inclusions, although it is difficult and challenging or even impossible when the chromite is too opaque, can be applicable to other chromitites worldwide to verify the presence of H2O, CH4 or other gases. This information will greatly improve our understanding of the nature of the fluid phases during the formation of podiform chromitites. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 11632 KiB  
Article
Tobacco Residues Deposition at the Surface of Cobalt–Chromium Dental Alloys and the Effect of Cigarette Smoke Extract on Human Mesenchymal Stem Cells: An In Vitro Study
by Willi-Andrei Uriciuc, Bianca Adina Bosca, Mihaela Tertis, Adrian-Bogdan Țigu, Radu-Cristian Moldovan, Maria Suciu, Lucian Barbu-Tudoran, Tamara Liana Topală, Liana Crisan, Cătălin Ovidiu Popa and Aranka Ilea
Coatings 2025, 15(3), 279; https://doi.org/10.3390/coatings15030279 - 26 Feb 2025
Viewed by 1047
Abstract
The current study began with the following question: Is smoking a balanced factor between human body systems? One of the particular features of the oral cavity is its localization at the gateway of respiratory and digestive. Morphologically, the oral cavity encompasses a complex [...] Read more.
The current study began with the following question: Is smoking a balanced factor between human body systems? One of the particular features of the oral cavity is its localization at the gateway of respiratory and digestive. Morphologically, the oral cavity encompasses a complex association of soft tissues, hard tissues, salivary glands, and taste receptors. The main purpose of this study was to analyze the tobacco residues (TAR) deposited on dental materials and the alterations of artificial saliva that comes into contact with tobacco smoke, by obtaining a solution of cigarette smoke extracts (CSE) after 5, 10, 15, and 20 tobacco cigarettes. According to LC-MS analysis and FT-IR spectra, carbonyl compounds, phenols, and carboxylic acids are present in CSE, which could explain the pH decrease and acid characteristic. Moreover, the CSE solution was added to the culture medium of Mesenchymal Stem Cells (MSCs) to evaluate the cytotoxicity. The MTT study revealed decreased MSC viability; morphological changes and cell death were more intense at higher doses of CSE added to the culture medium. Scanning Electron Microscopy (SEM) indicated cellular ruffling and irregular cell surface under higher concentrations of CSE-15 and CSE-20 in culture media, which is a characteristic feature demonstrating the membrane stress. In conclusion, the present study, with its limitations, showed the negative cellular effects of tobacco cigarette smoking and the impact of this habit on the oral cavity homeostasis. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

14 pages, 2756 KiB  
Article
Tissue Sources Influence the Morphological and Morphometric Characteristics of Collagen Membranes for Guided Bone Regeneration
by Josefa Alarcón-Apablaza, Karina Godoy-Sánchez, Marcela Jarpa-Parra, Karla Garrido-Miranda and Ramón Fuentes
Polymers 2024, 16(24), 3499; https://doi.org/10.3390/polym16243499 - 16 Dec 2024
Cited by 1 | Viewed by 960
Abstract
(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed [...] Read more.
(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed to evaluate the morphological and chemical properties of porcine collagen membranes from five different tissue sources: skin, pericardium, dermis, tendons, and peritoneum. (2) Methods: The membrane structure was analyzed using energy-dispersive X-ray spectrometry (EDX), variable pressure scanning electron microscopy (VP-SEM), Fourier transform infrared spectroscopy (FTIR), and thermal stability via thermogravimetric analysis (TGA). The absorption capacity of the membranes for GBR was also assessed using an analytical digital balance. (3) Results: The membranes displayed distinct microstructural features. Skin- and tendon-derived membranes had rough surfaces with nanopores (1.44 ± 1.24 µm and 0.46 ± 0.1 µm, respectively), while pericardium- and dermis-derived membranes exhibited rough surfaces with macropores (78.90 ± 75.89 µm and 64.89 ± 13.15 µm, respectively). The peritoneum-derived membrane featured a rough surface of compact longitudinal fibers with irregular macropores (9.02 ± 3.70 µm). The thickness varied significantly among the membranes, showing differences in absorption capacity. The pericardium membrane exhibited the highest absorption, increasing by more than 10 times its initial mass. In contrast, the skin-derived membrane demonstrated the lowest absorption, increasing by less than 4 times its initial mass. Chemical analysis revealed that all membranes were primarily composed of carbon, nitrogen, and oxygen. Thermogravimetric and differential scanning calorimetry analyses showed no significant compositional differences among the membranes. FTIR spectra confirmed the presence of collagen, with characteristic peaks corresponding to Amide A, B, I, II, and III. (4) Conclusions: The tissue origin of collagen membranes significantly influences their morphological characteristics, which may, in turn, affect their osteogenic properties. These findings provide valuable insights into the selection of collagen membranes for GBR applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

15 pages, 9906 KiB  
Article
Physicochemical Properties, Antioxidant Capacity and Bioavailability of Whey Protein Concentrate-Based Coenzyme Q10 Nanoparticles
by Yuxue Sun, Jiafei Liu, Xiaowen Pi, Alyssa H. Kemp and Mingruo Guo
Antioxidants 2024, 13(12), 1535; https://doi.org/10.3390/antiox13121535 - 15 Dec 2024
Cited by 1 | Viewed by 966
Abstract
Coenzyme Q10 (CoQ10) is a powerful antioxidant. However, the poor water solubility and low bioavailability still remain challenges for its application. An embedded delivery system of CoQ10 based on whey protein concentrate (WPC) and polymerized whey protein concentrate (PWPC) was prepared, and the [...] Read more.
Coenzyme Q10 (CoQ10) is a powerful antioxidant. However, the poor water solubility and low bioavailability still remain challenges for its application. An embedded delivery system of CoQ10 based on whey protein concentrate (WPC) and polymerized whey protein concentrate (PWPC) was prepared, and the physicochemical properties, antioxidant capacity and bioavailability were characterized in this study. Both groups of nanoparticles showed a particle size distribution from 241 to 331 nm in the protein-to-CoQ10 mass ratio range of 100:1 to 20:1. In addition, the minimum polydispersity index value was observed at the mass ratio of 20:1. Differential scanning calorimetry and Fourier transform infrared spectra analysis revealed that the CoQ10 was successfully dispersed in the WPC and PWPC particles through hydrophobic interaction in both groups in addition to the hydrogen bond present in the WPC group. All nanoparticles exhibited irregular spherical or aggregate structure in the transmission electron microscopy diagram. The PWPC-based nanoparticles showed a slightly higher antioxidant capacity than that of the WPC, and both values were significantly higher than that of its corresponding physical mixture and free CoQ10 (p < 0.05). The results of the simulated gastrointestinal digestion experiments denoted that these two nanoparticles could protect CoQ10 from gastric digestion and then deliver it to the intestine. Compared with its free state, the bioavailability of CoQ10 embedded in WPC and PWPC increased by nearly 7.58 times and 7.48 times, respectively. The data indicated that WPC and PWPC could be effective delivery carriers to enhance the bioavailability of active substances like CoQ10. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

22 pages, 7849 KiB  
Article
Array Optimization for a Wave Energy Converter with Adaptive Resonance Using Dual Bayesian Optimization
by Aghamarshana Meduri and HeonYong Kang
J. Mar. Sci. Eng. 2024, 12(12), 2143; https://doi.org/10.3390/jmse12122143 - 24 Nov 2024
Cited by 1 | Viewed by 1124
Abstract
A novel Dual Bayesian optimization strategy is formed for an array of wave energy converters with adaptive resonance to maximize the annual performance through the energy conversion processes from irregular waves to electricity. A wave energy converter with adaptive resonance changes the natural [...] Read more.
A novel Dual Bayesian optimization strategy is formed for an array of wave energy converters with adaptive resonance to maximize the annual performance through the energy conversion processes from irregular waves to electricity. A wave energy converter with adaptive resonance changes the natural frequency of power take-off dynamics for varying irregular waves, resulting in the maximum annual energy production. The first step of the two-step Dual Bayesian optimization determines the geometric layout of the array, which maximizes the first energy conversion to the total array excitation for irregular waves occurring annually. The second step optimizes the operational parameters of individual wave energy converters in the optimized array to maximize the power generation in varying sea states through simultaneous conversion to mechanical and electrical energy. The coupled hydrodynamics are solved in the frequency domain, and the power performance is evaluated by solving the Cummins’ equation in the time domain extended for multiple floating bodies, each strongly coupled with nonlinear power take-off dynamics. The proposed method is applied to a surface-riding wave energy converter, already optimized for single unit operation at individual sea states. Investigating two array layouts, linear and random, the optimized arrays after Step 1 increase the excitation spectral area by up to 40% relative to the single unit operation, indicating the synergy enhancing the first energy conversion. Subsequently, the dual-optimized linear layout attained a q-factor up to 1.13 in commonly occurring sea states, achieving improved average power generation in 60% of the evaluated sea states. The performance of the random layout exhibited the average power fluctuating along the wave spectra with a peak q-factor of 1.07. The individual adaptive resonance is confirmed in the optimized arrays, such that each surface-riding wave energy converter of both layouts adaptively resonates with the peak of the wave excitation spectra, maximizing the power generation for the different irregular waves. Full article
(This article belongs to the Special Issue Feature Papers on Marine Energy in 2024)
Show Figures

Figure 1

16 pages, 2608 KiB  
Article
Microparticles Loaded with Bursera microphylla A. Gray Fruit Extract with Anti-Inflammatory and Antimicrobial Activity
by Víctor Alonso Reyna-Urrutia, Ramón Enrique Robles-Zepeda, Miriam Estevez, Marlen Alexis Gonzalez-Reyna, Grecia Vianney Alonso-Martínez, Juan Ramón Cáñez-Orozco, Julio César López-Romero and Heriberto Torres-Moreno
Pharmaceuticals 2024, 17(12), 1565; https://doi.org/10.3390/ph17121565 - 21 Nov 2024
Cited by 1 | Viewed by 1854
Abstract
Background: Bursera microphylla (B) A. Gray, a plant native to northwest Mexico, has long been utilized in traditional medicine for its anti-inflammatory effects. Previous studies have highlighted the bioactivity of B. microphylla fruit extract. Chitosan (Cs), a biopolymer known for its favorable [...] Read more.
Background: Bursera microphylla (B) A. Gray, a plant native to northwest Mexico, has long been utilized in traditional medicine for its anti-inflammatory effects. Previous studies have highlighted the bioactivity of B. microphylla fruit extract. Chitosan (Cs), a biopolymer known for its favorable physicochemical properties, has proven effective in encapsulating bioactive compounds. This study aimed to synthesize and characterize Cs-based microparticles containing B. microphylla fruit extract and evaluate their in vitro anti-inflammatory activity. Methods: Cs-based three-dimensional hydrogels were synthesized using physical cross-linking with ammonium hydroxide, incorporating B. microphylla fruit extract. The hydrogels were freeze-dried and mechanically ground into microparticles. The physicochemical properties of the microencapsulates were analyzed through scanning electron microscopy (SEM), optical microscopy (OM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and moisture absorption tests. Anti-inflammatory activity was assessed by measuring nitric oxide (NO) reduction in LPS-activated RAW 264.7 cells. Antimicrobial activity was evaluated against Staphylococcus aureus. Results: SEM and OM analyses revealed irregular morphologies with rounded protuberances, with particle sizes ranging from 135 to 180 µm. FTIR spectra indicated that no new chemical bonds were formed, preserving the integrity of the original compounds. TGA confirmed that the encapsulated extract was heat-protected. The moisture absorption test indicated the microparticles’ hydrophilic nature. In vitro, the microencapsulated extract reduced NO production by 46%, compared to 32% for the non-encapsulated extract. The microencapsulated extract was effective in reducing the microbial load of S. aureus between 15–24%. Conclusions: Cs-based microencapsulates containing B. microphylla fruit extract exhibited no chemical interactions during synthesis and demonstrated significant anti-inflammatory and antimicrobial activity. These results suggest that the Cs-based system is a promising candidate for managing inflammatory conditions. Full article
Show Figures

Graphical abstract

14 pages, 702 KiB  
Article
Analysis of Speech Features in Alzheimer’s Disease with Machine Learning: A Case-Control Study
by Shinichi Noto, Yuichi Sekiyama, Ryo Nagata, Gai Yamamoto and Toshiaki Tamura
Healthcare 2024, 12(21), 2194; https://doi.org/10.3390/healthcare12212194 - 4 Nov 2024
Cited by 1 | Viewed by 2082
Abstract
Background: Changes in the speech and language of patients with Alzheimer’s disease (AD) have been reported. Using machine learning to characterize these irregularities may contribute to the early, non-invasive diagnosis of AD. Methods: We conducted cognitive function assessments, including the Mini-Mental State Examination, [...] Read more.
Background: Changes in the speech and language of patients with Alzheimer’s disease (AD) have been reported. Using machine learning to characterize these irregularities may contribute to the early, non-invasive diagnosis of AD. Methods: We conducted cognitive function assessments, including the Mini-Mental State Examination, with 83 patients with AD and 75 healthy elderly participants, and recorded pre- and post-assessment conversations to evaluate participants’ speech. We analyzed the characteristics of the spectrum, intensity, fundamental frequency, and minute temporal variation (∆) of the intensity and fundamental frequency of the speech and compared them between patients with AD and healthy participants. Additionally, we evaluated the performance of the speech features that differed between the two groups as single explanatory variables. Results: We found significant differences in almost all elements of the speech spectrum between the two groups. Regarding the intensity, we found significant differences in all the factors except for the standard deviation between the two groups. In the performance evaluation, the areas under the curve revealed by logistic regression analysis were higher for the center of gravity (0.908 ± 0.036), mean skewness (0.904 ± 0.023), kurtosis (0.932 ± 0.023), and standard deviation (0.977 ± 0.012) of the spectra. Conclusions: This study used machine learning to reveal speech features of patients diagnosed with AD in comparison with healthy elderly people. Significant differences were found between the two groups in all components of the spectrum, paving the way for early non-invasive diagnosis of AD in the future. Full article
(This article belongs to the Special Issue Aging and Quality of Life: Second Edition)
Show Figures

Figure 1

13 pages, 7540 KiB  
Article
The Effect of Heat Treatment on the Sol–Gel Preparation of TiO2/ZnO Catalysts and Their Testing in the Photodegradation of Tartrazine
by Nina Kaneva and Albena Bachvarova-Nedelcheva
Appl. Sci. 2024, 14(21), 9872; https://doi.org/10.3390/app14219872 - 29 Oct 2024
Cited by 3 | Viewed by 1301
Abstract
This study aims to synthesize TiO2/ZnO powders and to study the effect of heat treatment on their photocatalytic ability against the Tartrazine anionic dye. The as-obtained powders with the following compositions—90TiO2/10ZnO and 10TiO2/90ZnO (mol%)—were obtained by the [...] Read more.
This study aims to synthesize TiO2/ZnO powders and to study the effect of heat treatment on their photocatalytic ability against the Tartrazine anionic dye. The as-obtained powders with the following compositions—90TiO2/10ZnO and 10TiO2/90ZnO (mol%)—were obtained by the sol–gel technique. The prepared gels were annealed at 500 °C and 700 °C and subsequently characterized by XRD, UV–Vis, and SEM methods. The single crystalline phase of TiO2, which has been detected at up to 500 °C is anatase, while for ZnO, it is the hexagonal wurtzite structure. Further increases in the temperature (700 °C) led to the appearance of rutile in the samples. The SEM analysis demonstrated that the binary oxide materials had irregular shaped particles with a tendency to agglomerate. The UV–Vis spectra of the gels exhibited a red shift in the cut-off of the 90TiO2/10ZnO sample compared with pure Ti(IV) butoxide. Photocatalytic tests showed that the investigated samples possessed photocatalytic activity toward Tartrazine. Compared with TiO2, the prepared TiO2/ZnO photocatalysts showed superior properties in the photodegradation of a Tartrazine water solution. The target photocatalysts’ enhanced photocatalytic activities can be explained by their reduced band gap energy, improved surface physicochemical characteristics, separation of photo-induced electron–hole pairs, and lowered recombination rate. Higher photocatalytic activity was observed for powders annealed at 500 °C, with the 10TiO2/90ZnO (mol%) sample exhibiting the highest photocatalytic degradation of the used organic dye. Full article
(This article belongs to the Special Issue Environmental Catalysis and Green Chemistry)
Show Figures

Figure 1

58 pages, 15704 KiB  
Review
Rydberg-State Double-Well Potentials of Van der Waals Molecules
by Tomasz Urbańczyk, Andrzej Kędziorski, Marek Krośnicki and Jarosław Koperski
Molecules 2024, 29(19), 4657; https://doi.org/10.3390/molecules29194657 - 30 Sep 2024
Viewed by 1094
Abstract
Recent progress in studies of Rydberg double-well electronic energy states of MeNg (Me = 12-group atom, Ng = noble gas atom) van der Waals (vdW) molecules is presented and analysed. The presentation covers approaches in experimental studies as well as ab initio-calculations of [...] Read more.
Recent progress in studies of Rydberg double-well electronic energy states of MeNg (Me = 12-group atom, Ng = noble gas atom) van der Waals (vdW) molecules is presented and analysed. The presentation covers approaches in experimental studies as well as ab initio-calculations of potential energy curves (PECs). The analysis is shown in a broader context of Rydberg states of hetero- and homo-diatomic molecules with PECs possessing complex ‘exotic’ structure. Laser induced fluorescence (LIF) excitation spectra and dispersed emission spectra employed in the spectroscopical characterization of Rydberg states are presented on the background of the diverse spectroscopic methods for their investigations such as laser vaporization–optical resonance (LV-OR), pump-and-probe methods, and polarization labelling spectroscopy. Important and current state-of-the-art applications of Rydberg states with irregular potentials in photoassociation (PA), vibrational and rotational cooling, molecular clocks, frequency standards, and molecular wave-packet interferometry are highlighted. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

14 pages, 4901 KiB  
Article
Ag/Mo Doping for Enhanced Photocatalytic Activity of Titanium (IV) Dioxide during Fuel Desulphurization
by Zahraa A. Hamza, Jamal J. Dawood and Murtadha Abbas Jabbar
Molecules 2024, 29(19), 4603; https://doi.org/10.3390/molecules29194603 - 27 Sep 2024
Viewed by 990
Abstract
Regarding photocatalytic oxidative desulphurization (PODS), titanium oxide (TiO2) is a promising contender as a catalyst due to its photocatalytic prowess and long-term performance in desulphurization applications. This work demonstrates the effectiveness of double-doping TiO2 in silver (Ag) and molybdenum (Mo) [...] Read more.
Regarding photocatalytic oxidative desulphurization (PODS), titanium oxide (TiO2) is a promising contender as a catalyst due to its photocatalytic prowess and long-term performance in desulphurization applications. This work demonstrates the effectiveness of double-doping TiO2 in silver (Ag) and molybdenum (Mo) for use as a novel catalyst in the desulphurization of light-cut hydrocarbons. FESEM, EDS, and AFM were used to characterize the morphology, doping concentration, surface features, grain size, and grain surface area of the Ag/Mo powder. On the other hand, XRD, FTIR spectroscopy, UV-Vis, and PL were used for structure and functional group detection and light absorption analysis based on TiO2’s illumination properties. The microscopic images revealed nanoparticles with irregular shapes, and a 3D-AFM image was used to determine the catalyst’s physiognomies: 0.612 nm roughness and a surface area of 811.79 m2/g. The average sizes of the grains and particles were calculated to be 32.15 and 344.4 nm, respectively. The XRD analysis revealed an anatase structure for the doped TiO2, and the FTIR analysis exposed localized functional groups, while the absorption spectra of the catalyst, obtained via UV-Vis, revealed a broad spectrum, including visible and near-infrared regions up to 1053.34 nm. The PL analysis showed luminescence with a lower emission intensity, indicating that the charge carriers were not thoroughly combined. This study’s findings indicate a desulphurization efficiency of 97%. Additionally, the promise of a nano-homogeneous particle distribution bodes well for catalytic reactions. The catalyst retains its efficiency when it is dried and reused, demonstrating its sustainable use while maintaining the desulphurization efficacy. This study highlights the potential of the double doping approach in enhancing the catalytic properties of TiO2, opening up new possibilities for improving the performance of photo-oxidative processes. Full article
(This article belongs to the Special Issue Advanced Materials for Energy Conversion and Water Sustainability)
Show Figures

Figure 1

Back to TopTop