Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = intestinal drug efflux/uptake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1160 KiB  
Review
Presence, Pathogenicity, Antibiotic Resistance, and Virulence Factors of Escherichia coli: A Review
by Natalie Naidoo and Oliver T. Zishiri
Bacteria 2025, 4(1), 16; https://doi.org/10.3390/bacteria4010016 - 11 Mar 2025
Cited by 2 | Viewed by 5813
Abstract
Escherichia coli (E. coli) is a Gram-negative, commensal/pathogenic bacteria found in human intestines and the natural environment. Pathogenic E. coli is known as extra-intestinal pathogenic E. coli (ExPEC) or intestinal pathogenic E. coli (InPEC). InPEC E. coli strains are separated into [...] Read more.
Escherichia coli (E. coli) is a Gram-negative, commensal/pathogenic bacteria found in human intestines and the natural environment. Pathogenic E. coli is known as extra-intestinal pathogenic E. coli (ExPEC) or intestinal pathogenic E. coli (InPEC). InPEC E. coli strains are separated into six pathogenic groups, known as enteropathogenic (EPEC), enterotoxigenic (ETEC), enteroinvasive (EIEC), enteroaggregative (EAEC), enterohaemorrhagic (EHEC), and diffusely adherent (DAEC), that have various virulence factors that cause infection. Virulence factors refer to a combination of distinctive accessory traits that affect a broad range of cellular processes in pathogens. There are two important virulence factors that directly interact with cells to cause diarrhoeal diseases within the intestines: adhesion and colonization factors and exotoxins. Virulence factors are crucial for bacteria to overcome the host’s immune system and result in antibiotic resistance. Antibiotics are used to combat the symptoms and duration of infection by pathogenic E. coli. However, the misuse and overuse of antibiotics have led to the global concern of antibiotic resistance. Currently, the antibiotic colistin is the last-resort drug to fight infection caused by this bacterium. Antibiotic resistance can be achieved in two main ways: horizontal gene transfer and mutation in different genes. The genetic basis for developing antibiotic resistance in E. coli occurs through four mechanisms: limiting drug uptake, modification of the drug target, inactivation of the drug, and active efflux of the drug. These mechanisms use different processes to remove the antibiotic from the bacterial cell or prevent the antibiotic from entering the bacterial cell or binding to targets. This prevents drugs from working effectively, and bacteria can acquire antibiotic resistance. E. coli is classified into different phylogenetic groups (A, B1, B2, D1, D2, E, and clade I). It is a very versatile bacterium that can easily adapt to different environmental factors. The present review gathered information about the pathogenicity, antimicrobial resistance, and phylogenetics of E. coli. These aspects are interconnected; thus, it will provide information on tracking the spread of pathogenic strains and antibiotic resistance genes of different strains using phylogenetics and how antibiotic resistance genes evolve. Understanding genetic variation in E. coli will help in monitoring and controlling outbreaks and in developing novel antibiotics and treatment. The increasing rate of antibiotic resistance, and the ability of E. coli to evolve rapidly, suggest that in-depth research is needed in these areas. Full article
Show Figures

Figure 1

17 pages, 3794 KiB  
Article
Exploring the Impact of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Mycophenolic Acid Through In Vitro and In Vivo Experiments
by Chaoji Li, Min Zhang, Yanni Zhao, Dan Yang, Mei Zhao, Leyuan Shang, Xiaodong Sun, Shuo Zhang, Pengjiao Wang and Xiuli Gao
Int. J. Mol. Sci. 2025, 26(1), 72; https://doi.org/10.3390/ijms26010072 - 25 Dec 2024
Cited by 2 | Viewed by 1127
Abstract
Mycophenolic acid (MPA) is a commonly used immunosuppressant. In the human body, MPA is metabolized into mycophenolic acid 7-O-glucuronide (MPAG) and mycophenolic acid acyl-glucuronide (AcMPAG) mainly through liver glucuronidation, which involves UDP-glucuronosyltransferase (UGTs) and transfer proteins. Research has indicated that the pharmaceutical excipient [...] Read more.
Mycophenolic acid (MPA) is a commonly used immunosuppressant. In the human body, MPA is metabolized into mycophenolic acid 7-O-glucuronide (MPAG) and mycophenolic acid acyl-glucuronide (AcMPAG) mainly through liver glucuronidation, which involves UDP-glucuronosyltransferase (UGTs) and transfer proteins. Research has indicated that the pharmaceutical excipient PEG400 can impact drug processes in the body, potentially affecting the pharmacokinetics of MPA. Due to the narrow therapeutic window of MPA, combination therapy is often used, and PEG400 is widely used in pharmaceutical preparations. Therefore, investigating the pharmacokinetic influence of PEG400 on MPA could offer valuable insights for optimizing MPA’s clinical use. In this study, we examined the impact of a single oral dose of PEG400 on the blood levels of MPA in rats through pharmacokinetic analysis. We also investigated the distribution of MPA in various tissues using mass spectrometry imaging. We explored the potential mechanism by which PEG400 affects the metabolism of MPA using hepatic and intestinal microsomes and the Caco-2 cellular transporter model. Our findings reveal that the overall plasma concentrations of MPA were elevated in rats following the co-administration of PEG400, with the AUC0-t of MPA and its metabolite MPAG increasing by 45.53% and 29.44%, respectively. Mass spectrometry imaging showed increased MPA content in tissues after PEG400 administration, with significant differences in the metabolites observed across different tissues. Microsomal and transport experiments showed that PEG400 accelerated the metabolism of MPA, promoted the uptake of MPA, and inhibited efflux. In conclusion, PEG400 alters the in vivo metabolism of MPA, potentially through the modulation of metabolic enzymes and transport. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

22 pages, 1361 KiB  
Review
Extracellular Vesicles as Surrogates for Drug Metabolism and Clearance: Promise vs. Reality
by Anna Gagliardi, Gzona Bajraktari-Sylejmani, Elisabetta Barocelli, Johanna Weiss and Juan Pablo Rigalli
Life 2023, 13(8), 1745; https://doi.org/10.3390/life13081745 - 14 Aug 2023
Cited by 5 | Viewed by 2676
Abstract
Drug-metabolizing enzymes (DMEs) and transporters play a major role in drug efficacy and safety. They are regulated at multiple levels and by multiple factors. Estimating their expression and activity could contribute to predicting drug pharmacokinetics and their regulation by drugs or pathophysiological situations. [...] Read more.
Drug-metabolizing enzymes (DMEs) and transporters play a major role in drug efficacy and safety. They are regulated at multiple levels and by multiple factors. Estimating their expression and activity could contribute to predicting drug pharmacokinetics and their regulation by drugs or pathophysiological situations. Determining the expression of these proteins in the liver, intestine, and kidney requires the collection of biopsy specimens. Instead, the isolation of extracellular vesicles (EVs), which are nanovesicles released by most cells and present in biological fluids, could deliver this information in a less invasive way. In this article, we review the use of EVs as surrogates for the expression and activity of DMEs, uptake, and efflux transporters. Preliminary evidence has been provided for a correlation between the expression of some enzymes and transporters in EVs and the tissue of origin. In some cases, data obtained in EVs reflect the induction of phase I-DMEs in the tissues. Further studies are required to elucidate to what extent the regulation of other DMEs and transporters in the tissues reflects in the EV cargo. If an association between tissues and their EVs is firmly established, EVs may represent a significant advancement toward precision therapy based on the biotransformation and excretion capacity of each individual. Full article
(This article belongs to the Special Issue New Insights into Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

22 pages, 6377 KiB  
Article
Changes in Disposition of Ezetimibe and Its Active Metabolites Induced by Impaired Hepatic Function: The Influence of Enzyme and Transporter Activities
by Ningjie Xie, Hong Wang, Hua Qin, Zitao Guo, Hao Xue, Jiafeng Hu and Xiaoyan Chen
Pharmaceutics 2022, 14(12), 2743; https://doi.org/10.3390/pharmaceutics14122743 - 8 Dec 2022
Cited by 6 | Viewed by 2823
Abstract
Ezetimibe (EZE) is a selective cholesterol absorption inhibitor. Hepatic impairment significantly increases the systemic exposure of EZE and its main active phenolic glucuronide, EZE-Ph. Although changes in efflux transporter activity partly explain the changes in EZE-Ph pharmacokinetics, the causes of the changes to [...] Read more.
Ezetimibe (EZE) is a selective cholesterol absorption inhibitor. Hepatic impairment significantly increases the systemic exposure of EZE and its main active phenolic glucuronide, EZE-Ph. Although changes in efflux transporter activity partly explain the changes in EZE-Ph pharmacokinetics, the causes of the changes to EZE and the effects of the administration route on EZE-Ph remain unclear. A carbon tetrachloride (CCl4)-induced hepatic failure rat model was combined with in vitro experiments to explore altered EZE and EZE-Ph disposition caused by hepatic impairment. The plasma exposure of EZE and EZE-Ph increased by 11.1- and 4.4-fold in CCl4-induced rats following an oral administration of 10 mg/kg EZE, and by 2.1- and 16.4-fold after an intravenous injection. The conversion of EZE to EZE-Ph decreased concentration-dependently in CCl4-induced rat liver S9 fractions, but no change was observed in the intestinal metabolism. EZE-Ph was a substrate for multiple efflux and uptake transporters, unlike EZE. In contrast to efflux transporters, no difference was seen in the hepatic uptake of EZE-Ph between control and CCl4-induced rats. However, bile acids that accumulated due to liver injury inhibited the uptake of EZE-Ph by organic anion transporting polypeptides (OATPs) (glycochenodeoxycholic acid and taurochenodeoxycholic acid had IC50 values of 15.1 and 7.94 μM in OATP1B3-overexpressed cells). In conclusion, the increased plasma exposure of the parent drug EZE during hepatic dysfunction was attributed to decreased hepatic glucuronide conjugation, whereas the increased exposure of the metabolite EZE-Ph was mainly related to transporter activity, particularly the inhibitory effects of bile acids on OATPs after oral administration. Full article
(This article belongs to the Special Issue Advances in Pharmacokinetics, Pharmacodynamics and Drug Interactions)
Show Figures

Figure 1

19 pages, 2267 KiB  
Article
P-Glycoprotein (MDR1/ABCB1) Restricts Brain Accumulation of the Novel EGFR Inhibitor EAI045 and Oral Elacridar Coadministration Enhances Its Brain Accumulation and Oral Exposure
by Jing Wang, M. Merve Susam, Changpei Gan, Rolf W. Sparidans, Maria C. Lebre, Jos H. Beijnen and Alfred H. Schinkel
Pharmaceuticals 2022, 15(9), 1124; https://doi.org/10.3390/ph15091124 - 8 Sep 2022
Viewed by 2550
Abstract
EAI045 is a fourth-generation allosteric tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR). It targets T790M and C797S EGFR mutants in the treatment of non-small cell lung cancer (NSCLC). EAI045 and cetuximab combined induce tumor regression in mouse models of [...] Read more.
EAI045 is a fourth-generation allosteric tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR). It targets T790M and C797S EGFR mutants in the treatment of non-small cell lung cancer (NSCLC). EAI045 and cetuximab combined induce tumor regression in mouse models of EGFR-mutant lung cancer. We investigated the pharmacokinetic roles of the multidrug efflux and uptake transporters ABCB1 (P-gp), ABCG2 (BCRP), and OATP1A/1B, and of the drug-metabolizing enzyme CYP3A in plasma and tissue distribution of EAI045 and its metabolites, using genetically modified mouse models. In vitro, EAI045 was a good transport substrate of human ABCB1. In vivo, oral EAI045 (20 mg/kg) was rapidly absorbed. Relative to wild-type mice, EAI045 brain-to-plasma ratios were increased 3.9-fold in Abcb1a/1b-/- and 4.8-fold in Abcb1a/1b;Abcg2-/- mice. However, in single Abcg2-/- mice they were unchanged. EAI045 oral availability was not markedly altered. Oral coadministration of elacridar, an ABCB1/ABCG2 inhibitor, increased the plasma AUC0–30min and brain-to-plasma ratios of EAI045 by 4.0-fold and 5.4-fold, respectively, in wild-type mice. EAI045 glucuronide showed an increased plasma AUC0–30min and a markedly decreased accumulation and tissue-to-plasma ratio in the small intestinal content when Abcb1a/1b and Abcg2 were absent. A large fraction of oral EAI045 was converted to its hydrolyzed metabolite PIA, but Abcb1a/1b, Abcg2, and Oatp1a/1b had little impact on PIA pharmacokinetics. Mouse Cyp3a knockout or transgenic human CYP3A4 overexpression did not significantly affect oral EAI045 pharmacokinetics. Our results show that blood–brain barrier ABCB1 can markedly limit EAI045 brain accumulation. Moreover, elacridar coadministration can effectively reverse this process. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

10 pages, 2262 KiB  
Article
Investigation of the Uptake and Transport of Two Novel Camptothecin Derivatives in Caco-2 Cell Monolayers
by Yi Wang, Xiangli Zhang, Wenya Zhuang, Yanlei Yu, Xuanrong Sun, Hong Wang, Fengzhi Li and Qingyong Li
Molecules 2022, 27(12), 3669; https://doi.org/10.3390/molecules27123669 - 7 Jun 2022
Cited by 8 | Viewed by 2714
Abstract
Irinotecan and Topotecan are two Camptothecin derivatives (CPTs) whose resistance is associated with the high expression of breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp). To reverse this resistance, two novel CPTs, FL77-28 (7-(3-Fluoro-4-methylphenyl)-10,11-methylenedioxy-20(S)-CPT) and FL77-29 (7-(4-Fluoro-3-methylphenyl)-10,11-methylenedioxy-20(S)-CPT), were synthesized by our group. In [...] Read more.
Irinotecan and Topotecan are two Camptothecin derivatives (CPTs) whose resistance is associated with the high expression of breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp). To reverse this resistance, two novel CPTs, FL77-28 (7-(3-Fluoro-4-methylphenyl)-10,11-methylenedioxy-20(S)-CPT) and FL77-29 (7-(4-Fluoro-3-methylphenyl)-10,11-methylenedioxy-20(S)-CPT), were synthesized by our group. In this study, the anti-tumor activities of FL77-28, FL77-29, and their parent, FL118 (10,11-methylenedioxy-20(S)-CPT), were evaluated and the results showed that FL77-28 and FL77-29 had stronger anti-tumor activities than FL118. The transport and uptake of FL118, FL77-28, and FL77-29 were investigated in Caco-2 cells for the preliminary prediction of intestinal absorption. The apparent permeability coefficient from apical to basolateral (Papp AP-BL) values of FL77-28 and FL77-29 were (2.32 ± 0.04) × 10−6 cm/s and (2.48 ± 0.18) × 10−6 cm/s, respectively, suggesting that the compounds had moderate absorption. Since the transport property of FL77-28 was passive diffusion and the efflux ratio (ER) was less than 2, two chemical inhibitors were added to further confirm the involvement of efflux proteins. The results showed that FL77-28 was not a substrate of P-gp or BCRP, but FL77-29 was mediated by P-gp. In conclusion, FL77-28 might be a promising candidate to overcome drug resistance induced by multiple efflux proteins. Full article
Show Figures

Graphical abstract

13 pages, 2037 KiB  
Article
The Inhibitory Activity of Curcumin on P-Glycoprotein and Its Uptake by and Efflux from LS180 Cells Is Not Affected by Its Galenic Formulation
by Sandra Flory, Romina Männle and Jan Frank
Antioxidants 2021, 10(11), 1826; https://doi.org/10.3390/antiox10111826 - 17 Nov 2021
Cited by 9 | Viewed by 3781
Abstract
The biological activities of curcumin in humans, including its antioxidative and anti-inflammatory functions, are limited by its naturally low bioavailability. Different formulation strategies have been developed, but the uptake of curcumin from these galenic formulations into and efflux from intestinal cells, which may [...] Read more.
The biological activities of curcumin in humans, including its antioxidative and anti-inflammatory functions, are limited by its naturally low bioavailability. Different formulation strategies have been developed, but the uptake of curcumin from these galenic formulations into and efflux from intestinal cells, which may be critical processes limiting bioavailability, have not been directly compared. Furthermore, little is known about their effect on P-glycoprotein activity, an important determinant of the pharmacokinetics of potentially co-administered drugs. P-glycoprotein activity was determined in LS180 cells, incubated with 30 or 60 µmol/L of curcumin in the form of seven different formulations or native curcuma extract for 1 h. All formulations inhibited P-glycoprotein activity at both concentrations. Curcumin uptake, after 1 h incubation of LS180 cells with the formulations (60 µmol/L), showed significant variability but no consistent effects. After 1 h pre-treatment with the formulations and further 8 h with curcumin-free medium, curcumin in cell culture supernatants, reflecting the efflux, differed between individual formulations, again without a clear effect. In conclusion, curcumin inhibits P-glycoprotein activity independently of its formulation. Its uptake by and efflux from intestinal cells was not significantly different between formulations, indicating that these processes are not important regulatory points for its bioavailability. Full article
Show Figures

Graphical abstract

22 pages, 7051 KiB  
Article
P-Glycoprotein (ABCB1/MDR1) and BCRP (ABCG2) Limit Brain Accumulation and Cytochrome P450-3A (CYP3A) Restricts Oral Exposure of the RET Inhibitor Selpercatinib (RETEVMO)
by Yaogeng Wang, Rolf W. Sparidans, Sander Potters, Rahime Şentürk, Maria C. Lebre, Jos H. Beijnen and Alfred H. Schinkel
Pharmaceuticals 2021, 14(11), 1087; https://doi.org/10.3390/ph14111087 - 27 Oct 2021
Cited by 8 | Viewed by 3359
Abstract
Selpercatinib is a targeted, FDA-approved, oral, small-molecule inhibitor for the treatment of rearranged during transfection (RET) proto-oncogene mutation-positive cancer. Using genetically modified mouse models, we investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, the OATP1A/1B uptake transporters, and the drug-metabolizing [...] Read more.
Selpercatinib is a targeted, FDA-approved, oral, small-molecule inhibitor for the treatment of rearranged during transfection (RET) proto-oncogene mutation-positive cancer. Using genetically modified mouse models, we investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, the OATP1A/1B uptake transporters, and the drug-metabolizing CYP3A complex in selpercatinib pharmacokinetics. Selpercatinib was efficiently transported by hABCB1 and mAbcg2, but not hABCG2, and was not a substrate of human OATP1A2, -1B1 or -1B3 in vitro. In vivo, brain and testis penetration were increased by 3.0- and 2.7-fold in Abcb1a/1b-/- mice and by 6.2- and 6.4-fold in Abcb1a/1b;Abcg2-/- mice, respectively. Oatp1a/1b deficiency did not alter selpercatinib pharmacokinetics. The ABCB1/ABCG2 inhibitor elacridar boosted selpercatinib brain penetration in wild-type mice to the levels seen in Abcb1a/1b;Abcg2-/- mice. Cyp3a-/- mice showed a 1.4-fold higher plasma AUC0–4h than wild-type mice, which was then 1.6-fold decreased upon transgenic overexpression of human CYP3A4 in liver and intestine. In summary, ABCG2, and especially ABCB1, limit brain and testis penetration of selpercatinib. Elacridar coadministration could mostly reverse these effects, without causing acute toxicity. CYP3A-mediated metabolism can limit selpercatinib oral exposure and hence its tissue concentrations. These insights may be useful in the further clinical development of selpercatinib. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

17 pages, 2618 KiB  
Article
Optimization of Tilmicosin-Loaded Nanostructured Lipid Carriers Using Orthogonal Design for Overcoming Oral Administration Obstacle
by Jia Wen, Xiuge Gao, Qian Zhang, Benazir Sahito, Hongbin Si, Gonghe Li, Qi Ding, Wenda Wu, Eugenie Nepovimova, Shanxiang Jiang, Liping Wang, Kamil Kuca and Dawei Guo
Pharmaceutics 2021, 13(3), 303; https://doi.org/10.3390/pharmaceutics13030303 - 25 Feb 2021
Cited by 8 | Viewed by 2788
Abstract
Tilmicosin (TMS) is widely used to treat bacterial infections in veterinary medicine, but the clinical effect is limited by its poor solubility, bitterness, gastric instability, and intestinal efflux transport. Nanostructured lipid carriers (NLCs) are nowadays considered to be a promising vector of therapeutic [...] Read more.
Tilmicosin (TMS) is widely used to treat bacterial infections in veterinary medicine, but the clinical effect is limited by its poor solubility, bitterness, gastric instability, and intestinal efflux transport. Nanostructured lipid carriers (NLCs) are nowadays considered to be a promising vector of therapeutic drugs for oral administration. In this study, an orthogonal experimental design was applied for optimizing TMS-loaded NLCs (TMS-NLCs). The ratios of emulsifier to mixed lipids, stearic acid to oleic acid, drugs to mixed lipids, and cold water to hot emulsion were selected as the independent variables, while the hydrodynamic diameter (HD), drug loading (DL), and entrapment efficiency (EE) were the chosen responses. The optimized TMS-NLCs had a small HD, high DL, and EE of 276.85 ± 2.62 nm, 9.14 ± 0.04%, and 92.92 ± 0.42%, respectively. In addition, a low polydispersity index (0.231 ± 0.001) and high negative zeta potential (−31.10 ± 0.00 mV) indicated the excellent stability, which was further demonstrated by uniformly dispersed spherical nanoparticles under transmission electron microscopy. TMS-NLCs exhibited a slow and sustained release behavior in both simulated gastric juice and intestinal fluid. Furthermore, MDCK-chAbcg2/Abcb1 cell monolayers were successfully established to evaluate their absorption efficiency and potential mechanism. The results of biodirectional transport showed that TMS-NLCs could enhance the cellular uptake and inhibit the efflux function of drug transporters against TMS in MDCK-chAbcg2/Abcb1 cells. Moreover, the data revealed that TMS-NLCs could enter the cells mainly via the caveolae/lipid raft-mediated endocytosis and partially via macropinocytosis. Furthermore, TMS-NLCs showed the same antibacterial activity as free TMS. Taken together, the optimized NLCs were the promising oral delivery carrier for overcoming oral administration obstacle of TMS. Full article
(This article belongs to the Special Issue Liposomal Drug Delivery Systems)
Show Figures

Graphical abstract

19 pages, 2418 KiB  
Article
Enhancing the Oral Bioavailability of Candesartan Cilexetil Loaded Nanostructured Lipid Carriers: In Vitro Characterization and Absorption in Rats after Oral Administration
by Walid Anwar, Hamdy M. Dawaba, Mohsen I. Afouna, Ahmed M. Samy, Mohammed H. Rashed and Abdelaziz E. Abdelaziz
Pharmaceutics 2020, 12(11), 1047; https://doi.org/10.3390/pharmaceutics12111047 - 31 Oct 2020
Cited by 36 | Viewed by 4540
Abstract
Candesartan Cilexetil (CC) is a prodrug widely used in the treatment of hypertension and heart failure, but it has some limitations, such as very poor aqueous solubility, high affinity to P-glycoprotein efflux mechanism, and hepatic first-pass metabolism. Therefore, it has very low oral [...] Read more.
Candesartan Cilexetil (CC) is a prodrug widely used in the treatment of hypertension and heart failure, but it has some limitations, such as very poor aqueous solubility, high affinity to P-glycoprotein efflux mechanism, and hepatic first-pass metabolism. Therefore, it has very low oral bioavailability. In this study, glyceryl monostearate (GMS) and Capryol™ 90 were selected as solid and liquid lipids, respectively, to develop CC-NLC (nanostructured lipid carrier). CC was successfully encapsulated into NLP (CC-NLC) to enhance its oral bioavailability. CC-NLC was formulated using a hot homogenization-ultrasonication technique, and the physicochemical properties were characterized. The developed CC-NLC formulation was showed in nanometric size (121.6 ± 6.2 nm) with high encapsulation efficiency (96.23 ± 3.14%). Furthermore, it appeared almost spherical in morphology under a transmission electron microscope. The surgical experiment of the designed CC-NLC for absorption from the gastrointestinal tract revealed that CC-NLC absorption in the stomach was only 15.26% of that in the intestine. Otherwise, cellular uptake study exhibit that CC-NLCs should be internalized through the enterocytes after that transported through the systemic circulation. The pharmacokinetic results indicated that the oral bioavailability of CC was remarkably improved above 2-fold after encapsulation into nanostructured lipid carriers. These results ensured that nanostructured lipid carriers have a highly beneficial effect on improving the oral bioavailability of poorly water-soluble drugs, such as CC. Full article
(This article belongs to the Special Issue Lipid-based Nanoparticle Systems for Drug Delivery)
Show Figures

Graphical abstract

27 pages, 2436 KiB  
Article
Prediction of Cyclosporin-Mediated Drug Interaction Using Physiologically Based Pharmacokinetic Model Characterizing Interplay of Drug Transporters and Enzymes
by Yiting Yang, Ping Li, Zexin Zhang, Zhongjian Wang, Li Liu and Xiaodong Liu
Int. J. Mol. Sci. 2020, 21(19), 7023; https://doi.org/10.3390/ijms21197023 - 24 Sep 2020
Cited by 34 | Viewed by 4768
Abstract
Uptake transporter organic anion transporting polypeptides (OATPs), efflux transporters (P-gp, BCRP and MRP2) and cytochrome P450 enzymes (CYP450s) are widely expressed in the liver, intestine or kidney. They coordinately work to control drug disposition, termed as “interplay of transporters and enzymes”. Cyclosporine A [...] Read more.
Uptake transporter organic anion transporting polypeptides (OATPs), efflux transporters (P-gp, BCRP and MRP2) and cytochrome P450 enzymes (CYP450s) are widely expressed in the liver, intestine or kidney. They coordinately work to control drug disposition, termed as “interplay of transporters and enzymes”. Cyclosporine A (CsA) is an inhibitor of OATPs, P-gp, MRP2, BCRP and CYP3As. Drug–drug interaction (DDI) of CsA with victim drugs occurs via disordering interplay of transporters and enzymes. We aimed to establish a whole-body physiologically-based pharmacokinetic (PBPK) model which predicts disposition of CsA and nine victim drugs including atorvastatin, cerivastatin, pravastatin, rosuvastatin, fluvastatin, simvastatin, lovastatin, repaglinide and bosentan, as well as drug–drug interactions (DDIs) of CsA with nine victim drugs to investigate the integrated effect of enzymes and transporters in liver, intestinal and kidney on drug disposition. Predictions were compared with observations. Most of the predictions were within 0.5–2.0 folds of observations. Atorvastatin was represented to investigate individual contributions of transporters and CYP3As to atorvastatin disposition and their integrated effect. The contributions to atorvastatin disposition were hepatic OATPs >> hepatic CYP3A > intestinal CYP3As ≈ efflux transporters (P-gp/BCRP/MRP2). The results got the conclusion that the developed PBPK model characterizing the interplay of enzymes and transporters was successfully applied to predict the pharmacokinetics of 10 OATP substrates and DDIs of CsA with 9 victim drugs. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 4799 KiB  
Article
Using Ex Vivo Porcine Jejunum to Identify Membrane Transporter Substrates: A Screening Tool for Early—Stage Drug Development
by Yvonne E. Arnold and Yogeshvar N. Kalia
Biomedicines 2020, 8(9), 340; https://doi.org/10.3390/biomedicines8090340 - 10 Sep 2020
Cited by 10 | Viewed by 3523
Abstract
Robust, predictive ex vivo/in vitro models to study intestinal drug absorption by passive and active transport mechanisms are scarce. Membrane transporters can significantly impact drug uptake and transporter-mediated drug–drug interactions can play a pivotal role in determining the drug safety profile. Here, the [...] Read more.
Robust, predictive ex vivo/in vitro models to study intestinal drug absorption by passive and active transport mechanisms are scarce. Membrane transporters can significantly impact drug uptake and transporter-mediated drug–drug interactions can play a pivotal role in determining the drug safety profile. Here, the presence and activity of seven clinically relevant apical/basolateral drug transporters found in human jejunum were tested using ex vivo porcine intestine in a Ussing chamber system. Experiments using known substrates of peptide transporter 1 (PEPT1), organic anion transporting polypeptide (OATP2B1), organic cation transporter 1 (OCT1), P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multi drug resistance-associated protein 2 and 3 (MRP2 and MRP3), in the absence and presence of potent inhibitors, showed that there was a statistically significant change in apparent intestinal permeability Papp,pig (cm/s) in the presence of the corresponding inhibitor. For MRP2, a transporter reportedly present at relatively low concentration, although Papp,pig did not significantly change in the presence of the inhibitor, substrate deposition (QDEP) in the intestinal tissue was significantly increased. The activity of the seven transport proteins was successfully demonstrated and the results provided insight into their apical/basolateral localization. In conclusion, the results suggest that studies using the porcine intestine/Ussing chamber system, which could easily be integrated into the drug development process, might enable the early-stage identification of new molecular entities that are substrates of membrane transporters. Full article
(This article belongs to the Section Drug Discovery and Development)
Show Figures

Graphical abstract

22 pages, 850 KiB  
Review
Will Lipidation of ApoA1 through Interaction with ABCA1 at the Intestinal Level Affect the Protective Functions of HDL?
by Eric J. Niesor
Biology 2015, 4(1), 17-38; https://doi.org/10.3390/biology4010017 - 6 Jan 2015
Cited by 19 | Viewed by 16714
Abstract
The relationship between levels of high-density lipoprotein cholesterol (HDL-C) and cardiovascular (CV) risk is well recognized; however, in recent years, large-scale phase III studies with HDL-C-raising or -mimicking agents have failed to demonstrate a clinical benefit on CV outcomes associated with raising HDL-C, [...] Read more.
The relationship between levels of high-density lipoprotein cholesterol (HDL-C) and cardiovascular (CV) risk is well recognized; however, in recent years, large-scale phase III studies with HDL-C-raising or -mimicking agents have failed to demonstrate a clinical benefit on CV outcomes associated with raising HDL-C, casting doubt on the “HDL hypothesis.” This article reviews potential reasons for the observed negative findings with these pharmaceutical compounds, focusing on the paucity of translational models and relevant biomarkers related to HDL metabolism that may have confounded understanding of in vivo mechanisms. A unique function of HDL is its ability to interact with the ATP-binding cassette transporter (ABC) A1 via apolipoprotein (Apo) A1. Only recently, studies have shown that this process may be involved in the intestinal uptake of dietary sterols and antioxidants (vitamin E, lutein and zeaxanthin) at the basolateral surface of enterocytes. This parameter should be assessed for HDL-raising drugs in addition to the more documented reverse cholesterol transport (RCT) from peripheral tissues to the liver. Indeed, a single mechanism involving the same interaction between ApoA1 and ABCA1 may encompass two HDL functions previously considered as separate: antioxidant through the intestinal uptake of antioxidants and RCT through cholesterol efflux from loaded cells such as macrophages. Full article
(This article belongs to the Special Issue Lipid Metabolism)
Show Figures

Figure 1

Back to TopTop