Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = interspecific facilitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4961 KiB  
Article
Maize and Pea Root Interactions Promote Symbiotic Nitrogen Fixation, Thereby Accelerating Nitrogen Assimilation and Partitioning in Intercropped Pea
by Yali Sun, Zefeng Wu, Falong Hu, Hong Fan, Wei He, Lianhao Zhao, Congcong Guo, Xiaoyuan Bao, Qiang Chai and Cai Zhao
Agronomy 2025, 15(7), 1615; https://doi.org/10.3390/agronomy15071615 - 1 Jul 2025
Viewed by 417
Abstract
Cereal/legume intercropping enhances legume nodulation and improves nitrogen use efficiency (NUE) in cereal crops. This facilitation of symbiotic nitrogen fixation (SNF) in intercropped legumes involves a complex eco-physiological mechanism driven by multiple factors. Among them, interspecific root interactions (IRIs) are a key factor [...] Read more.
Cereal/legume intercropping enhances legume nodulation and improves nitrogen use efficiency (NUE) in cereal crops. This facilitation of symbiotic nitrogen fixation (SNF) in intercropped legumes involves a complex eco-physiological mechanism driven by multiple factors. Among them, interspecific root interactions (IRIs) are a key factor influencing SNF in intercropped legumes. Currently, it remains unclear whether and how IRIs modulate SNF to affect NUE and yield formation in legume species. In this study, maize/pea intercropping with different types of root separation [no barrier (NB) and plastic barrier (PB)] and pea monocropping (IP) were simulated in a nitrogen (N)-free nutrient matrix in pots, and the SNF, N metabolism, and N partitioning were investigated. We demonstrated that IRIs optimize SNF performance. N assimilation is positively regulated following increases in enzyme activity and gene expression in intercropped roots and nodules. Furthermore, IRIs facilitate amino acid (AA) export from nodules to roots and shoots, which is followed by an increase in AA levels in leaves (source) and leaf exudates (sink). Overall, intensive SNF drives N metabolism and alters source-to-sink N partitioning, thereby increasing NUE (by 23%) and yield (by 15%) in intercropped pea. This study reveals the positive roles of IRIs to the NUE and yield and provides useful reference material for increasing N contents derived from SNF to maximize NUE and crop yields in intercropped legumes. Full article
Show Figures

Figure 1

13 pages, 849 KiB  
Article
Beyond Pairwise Interactions: How Other Species Regulate Competition Between Two Plants?
by Wang-Xin Cheng, Wei Xue, Jie-Jie Jiao, Hao-Ming Yuan, Lin-Xuan He, Xiao-Mei Zhang, Tao Xu and Fei-Hai Yu
Plants 2025, 14(13), 2018; https://doi.org/10.3390/plants14132018 - 1 Jul 2025
Viewed by 255
Abstract
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) [...] Read more.
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) on these interactions. To assess the impacts, we grew one seedling of each of the five herbaceous plant species that are common in China (Cynodon dactylon, Plantago asiatica, Taraxacum mongolicum, Nepeta cataria, and Leonurus japonicus) alone (no competition) or with one seedling of one, two, three, or four of the other species. The presence of a neighbor plant generally reduced the growth of the target species, suggesting that the interspecific relationships were mostly competitive. The presence of other neighbor species (the third, fourth, and fifth species) could alter the interspecific interactions between two target species, but such effects varied depending on both the identity of the target species and the identity of the other species. Additionally, the effects of the third species depended little on the presence of the fourth and fifth species. We conclude that interspecific interactions between two plant species are commonly regulated by the presence of other species, facilitating species coexistence. However, our findings do not support the idea that the impacts of the fourth and fifth species on interactions among three plant species are common. This study highlights the complex interactions among multiple plant species within a community and also the importance of including these high-order interactions when modelling community dynamics and species coexistence. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

23 pages, 4572 KiB  
Article
Mechanisms of Zooplankton Community Assembly and Their Associations with Environmental Drivers in Arid-Region Reservoirs of Northwest China
by Xuelian Qiu, Fangze Zi, Long Yun, Qiang Huo, Liting Yang, Yong Song and Shengao Chen
Biology 2025, 14(6), 732; https://doi.org/10.3390/biology14060732 - 19 Jun 2025
Viewed by 434
Abstract
This study investigates the mechanisms of zooplankton community assembly and their relationship to environmental factors in high-latitude arid regions. We conducted seasonal sampling at four reservoirs in the upper Tarim River Basin from 2023 to 2024: Shangyou Reservoir (SY), Shengli Reservoir (SL), Duolang [...] Read more.
This study investigates the mechanisms of zooplankton community assembly and their relationship to environmental factors in high-latitude arid regions. We conducted seasonal sampling at four reservoirs in the upper Tarim River Basin from 2023 to 2024: Shangyou Reservoir (SY), Shengli Reservoir (SL), Duolang Reservoir (DL) and Xinjingzi Reservoir (XJZ). The zooplankton community was categorized into five functional groups based on the predominant species, with small crustacean filter feeders (SCF) in all reservoirs except XJZ, where a seasonal shift between rotifer collectors (RC) in the wet season and SCF in the dry season was observed. Pearson correlation and canonical correspondence analysis (CCA) revealed that interspecific competition, pH, conductivity (COND), and salinity (SALIN) were the main determinants of zooplankton community composition. Significant correlations (p < 0.05) were detected among functional groups RC (rotifers carnivora), RF (rotifers filter feeders), SCF (small copepods and claocera filter feeders), and MCC (middle copepods and claocera carnivora). Environmental factors showed significant spatial heterogeneity, while zooplankton biomass was positively correlated with pH and COND. Cluster similarity analyses indicated complex interactions between 29 zooplankton species, with RF identified as an important positive predictor for larger groups. The network of co-occurrences showed predominantly positive relationships, emphasizing the mutual facilitation between the species. Our results suggest that interspecific interactions have stronger effects on community structuring than environmental factors, with mutual facilitation emerging as an important survival strategy. This study provides important insights into the dynamics of zooplankton communities in dry reservoirs and establishes a framework for understanding ecological patterns and assembly mechanisms under drought conditions. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

12 pages, 2315 KiB  
Article
Seed Traits and Curculio Weevil Infestation: A Study in Quercus mongolica
by Shuang Li, Li-Min Hou, Yan-Lin Guo, Meng-En Xing, Hao-Yue Li, Qing-Fan Meng and Li-Chao Feng
Diversity 2025, 17(6), 421; https://doi.org/10.3390/d17060421 - 15 Jun 2025
Viewed by 385
Abstract
Exploring host preference and resource partitioning among seed predator species is essential for understanding the coexistence mechanisms and guiding effective forest pest management. This study aimed to elucidate how seed traits influence infestation dynamics and species interactions, focusing on acorn weevils infesting Quercus [...] Read more.
Exploring host preference and resource partitioning among seed predator species is essential for understanding the coexistence mechanisms and guiding effective forest pest management. This study aimed to elucidate how seed traits influence infestation dynamics and species interactions, focusing on acorn weevils infesting Quercus mongolica. Species identification and clarification of their evolutionary relationships within the Curculio genus were performed through phylogenetic analyses of the mitochondrial cytochrome c oxidase subunit I gene sequences. The seed infestation patterns were assessed by comparing the infestation rates across various seed size classes. Furthermore, the correlations between the seed morphological traits (length, width, aspect ratio, and weight) and weevil abundance were analyzed. The phylogenetic results revealed well-supported monophyletic clades corresponding to Curculio arakawai and Curculio sikkimensis. This confirmed the clear genetic separation between these two distinct weevil species, thereby substantiating the divergence observed in weevil populations correlated with different seed hosts. The infestation patterns revealed the association of weevil species-specific preferences with seed size: C. arakawai predominantly infested larger acorn seeds, whereas C. sikkimensis predominantly infested smaller acorn seeds. C. sikkimensis favored smaller ones. Both species exhibited positive correlations between abundance and seed length and width in larger seeds; however, the seed weight displayed no significant effect. These results indicate niche differentiation mediated by seed size and morphology, which likely reduced interspecific competition and facilitated coexistence. This study elucidates species-specific host selection patterns in acorn weevils and highlights acorn traits as crucial factors shaping seed predator assemblages. The findings provide valuable insights for developing targeted pest management strategies and supporting sustainable oak forest regeneration. Full article
(This article belongs to the Special Issue Diversity, Distribution and Zoogeography of Coleoptera)
Show Figures

Figure 1

11 pages, 1290 KiB  
Article
The Density of Recombination-Associated Genomic Features Does Not Generally Explain the Broad-Scale Crossover Patterns in Chicken and Guinea Fowl
by Luis F. Rossi and María Inés Pigozzi
Animals 2025, 15(12), 1759; https://doi.org/10.3390/ani15121759 - 14 Jun 2025
Viewed by 408
Abstract
Meiotic recombination is essential for chromosomal segregation and facilitates the exchange between homologs, which leads to the transmission of new combinations of linked alleles to the progeny. The eukaryotic meiotic machinery is generally highly conserved, but the frequency of crossover occurrence can vary [...] Read more.
Meiotic recombination is essential for chromosomal segregation and facilitates the exchange between homologs, which leads to the transmission of new combinations of linked alleles to the progeny. The eukaryotic meiotic machinery is generally highly conserved, but the frequency of crossover occurrence can vary dramatically across species and populations, between individuals, and across sexes. The chicken and the guinea fowl exhibit interspecific variation in the distribution of crossovers along their largest chromosomes. In many organisms, an association has been observed between the preferred crossover location and certain sequence parameters, such as high GC content, CpG islands, or gene promoters. Here, we compared the distribution of these genomic parameters with the recombination landscape, represented by MLH1 focus frequencies, in the two birds. We found an association between GC content density and recombination in the chicken, but the remaining parameters showed weak or no association with recombination, especially in the guinea fowl. We conclude that despite the different broad-scale crossover distribution, the investigated genomic parameters remained remarkably similar in these two species. We suggest that the density of these genomic features is more likely related to microscale variations in recombination rates, such as those determined by open chromatin configurations. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1335 KiB  
Article
Planting Patterns Affect the Differences in Growth and Its Responses to Nitrogen Forms and Levels Between Three Invasive and Their Respective Related Native Species
by Wei-Wei Feng, Kai Huang, Si-Miao Sun, Jian-Kun Sun, Ming Guan, Fa-Zhao Qi, Ming-Chao Liu, Bo Qu and Yu-Long Feng
Plants 2025, 14(12), 1768; https://doi.org/10.3390/plants14121768 - 10 Jun 2025
Viewed by 370
Abstract
Global changes, such as atmospheric nitrogen deposition, can facilitate alien plant invasions, which are often attributed to the increase in soil nitrogen availability. However, few studies have considered the effects of global change-driven alterations in soil nitrogen forms, especially under conditions with interspecific [...] Read more.
Global changes, such as atmospheric nitrogen deposition, can facilitate alien plant invasions, which are often attributed to the increase in soil nitrogen availability. However, few studies have considered the effects of global change-driven alterations in soil nitrogen forms, especially under conditions with interspecific competition. In this study, we first determined the differences in growth, biomass allocation, and photosynthesis under different nitrogen forms and addition levels between three noxious invasive species (Xanthium strumarium, Ambrosia trifida, and Bidens frondosa) and their respective related natives grown with and without interspecific competition and then assessed the interspecific difference in nitrogen form preference using the 15N labeling technique. Interspecific competition significantly decreased the positive responses of growth to nitrogen addition for all three natives, while increasing the responses for all three invaders, particularly under nitrate addition. When grown in competition, all invaders showed significant growth advantages over their related natives in most cases, and responded more positively to the addition of nitrate relative to ammonium, while the natives responded more positively to ammonium addition. These findings indicate that the invaders prefer nitrate, while the natives prefer ammonium. Consistently, the growth advantages are more pronounced for the invaders under nitrate relative to ammonium addition, indicating that nitrate-rich habitats may be more vulnerable to the invaders. When grown in monoculture, however, the growth advantage of the invaders became smaller or even disappeared. Nitrogen form preference also disappeared in Siegesbeckia glabrescens (native) and Bidens frondosa (invasive). Interestingly, the native plant Xanthium sibiricum showed significantly higher total biomass than its invasive congener under ammonium addition in both mixed and monoculture conditions. Our 15N labeling experiment showed that all six species preferred nitrate over ammonium, although this was not significant for two natives (S. glabrescens and X. sibiricum), which is not completely consistent with the results from our nitrogen addition experiment. Our results indicate that global change-driven alterations in soil nitrogen forms, particularly the shift from ammonium to nitrate, may facilitate alien plant invasions. Planting patterns significantly affect the responses of invasive and native species to nitrogen forms and addition levels, with mixed-culture experiments providing better insights into the invasiveness of alien species. Full article
(This article belongs to the Special Issue Climate Change and Invasive Plants)
Show Figures

Figure 1

14 pages, 1144 KiB  
Review
Silicon-Mediated Interactions Between Plant Antagonists
by Marie-Emma Denarié, Uffe N. Nielsen, Susan E. Hartley and Scott N. Johnson
Plants 2025, 14(8), 1204; https://doi.org/10.3390/plants14081204 - 14 Apr 2025
Cited by 2 | Viewed by 807
Abstract
The prolonged arms race between plants and their antagonists has resulted in the evolution of multiple plant defence mechanisms to combat attacks by pests and pathogens. Silicon (Si) accumulation occurs mainly in grasses and provides a physical barrier against antagonists. Biochemical pathways may [...] Read more.
The prolonged arms race between plants and their antagonists has resulted in the evolution of multiple plant defence mechanisms to combat attacks by pests and pathogens. Silicon (Si) accumulation occurs mainly in grasses and provides a physical barrier against antagonists. Biochemical pathways may also be involved in Si-mediated plant resistance, although the precise mode of action in this case is less clear. Most studies have focussed on Si-based effects against single attackers. In this review, we consider how Si-based plant resistance operates when simultaneously and/or sequentially attacked by insect herbivores, fungal phytopathogens, and plant parasitic nematodes and how the plant hormones jasmonic acid (JA) and salicylic acid (SA) are involved. Si defence may mediate both intra- and interspecific competition and facilitation. Si has been found to impact plant-mediated interactions between insect herbivores within the same feeding guild and across different feeding guilds, with varying patterns of JA and SA. These results suggest that hormonal crosstalk may play a role in the Si-mediated effects, although this finding varied between studies. While some reports support the notion that JA is linked to Si responses, others indicate that Si supplementation reduces JA production. In terms of phytopathogens, SA has not been found to be involved in Si-mediated defences. Improving our understanding of Si-mediated plant defence could be beneficial for sustainable agriculture under future climates. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

20 pages, 5619 KiB  
Article
Interspecific Hybridization Barrier Between Paeonia ostii and P. ludlowii
by Yingzi Guo, Yan Zhang, Yanli Wang, Guodong Zhao, Wenqing Jia and Songlin He
Plants 2025, 14(7), 1120; https://doi.org/10.3390/plants14071120 - 3 Apr 2025
Viewed by 514
Abstract
Paeonia ludlowii is a threatened and valuable germplasm in the cultivated tree peony gene pool, with distinctive traits such as tall stature, pure yellow flowers, and scarlet foliage in autumn. However, the crossability barrier limits gene transfer from P. ludlowii to cultivated tree [...] Read more.
Paeonia ludlowii is a threatened and valuable germplasm in the cultivated tree peony gene pool, with distinctive traits such as tall stature, pure yellow flowers, and scarlet foliage in autumn. However, the crossability barrier limits gene transfer from P. ludlowii to cultivated tree peony. Therefore, our study investigated the reasons for the lack of crossability between P. ludlowii and Paeonia ostii ‘Fengdan’. Distant cross pollination (DH) resulted in the formation of many calloses at the ends of the pollen tubes, which grew non-polar, twisted, entangled, and often stopped in the style. Pollen tubes elongated the fastest in self-pollination (CK), and pollen tubes elongated faster and fewer pollen tube abnormalities were observed in stigmas treated with KCl solution before pollination (KH) than in DH. During pollen–pistil interactions, the absence of stigma exudates, high levels of H2O2, O2, MDA, OH, ABA, and MeJA, and lower levels of BR and GA3 may negatively affect pollen germination and pollen tube elongation in the pistil of P. ostii ‘Fengdan’. Pollen tubes in CK and KH penetrated the ovule into the embryo sac at 24 h after pollination, whereas only a few pollen tubes in DH penetrated the ovule at 36 h after pollination. Pre-embryo abnormalities and the inhibition of free nuclear endosperm division resulted in embryo abortion in most of the fruits of DH and many fruits of KH, which occurred between 10 and 20 days after pollination, whereas embryos in CK developed well. Early embryo abortion and endosperm abortion in most of the fruits of DH and KH led to seed abortion. Seed abortion in KH and DH was mainly due to an insufficient supply of auxins and gibberellins and lower content of soluble protein and soluble sugars. The cross failure between P. ludlowii and P. ostii ‘Fengdan’ is mostly caused by a pre-fertilization barrier. KH treatment can effectively promote pollen tube growth and facilitate normal development of hybrid embryos. These findings provide new insights into overcoming the interspecific hybridization barrier between cultivated tree peony varieties and wild species. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

16 pages, 2402 KiB  
Article
Fluctuations in Species Diversity in Evergreen Broad-Leaved Forests and Changes in Their Co-Occurrence Network
by Xiao Zheng, Yaping Hu, Xiaomin Ge, Xu Zhou, Yao Li, Rong Zhao, Yanming Fang and Hui Ding
Forests 2025, 16(4), 594; https://doi.org/10.3390/f16040594 - 28 Mar 2025
Viewed by 399
Abstract
Understanding the population dynamics and interspecific interactions in subtropical forests is crucial for uncovering the underlying mechanisms of species coexistence and community stability. Two censuses were conducted between 2018 and 2023 in a 9.6 ha subtropical evergreen broad-leaved forest dynamics plot situated in [...] Read more.
Understanding the population dynamics and interspecific interactions in subtropical forests is crucial for uncovering the underlying mechanisms of species coexistence and community stability. Two censuses were conducted between 2018 and 2023 in a 9.6 ha subtropical evergreen broad-leaved forest dynamics plot situated in Mount Wuyi, southeastern China. Utilizing co-occurrence networks and long-term data, we examined the relationship between species interactions and their contributions to community assembly. Our findings reveal that high mortality rates among small-diameter individuals have created ecological niches, facilitating the establishment of 12 new species between 2018 and 2023. A generalized linear mixed-effects model showed positive relationships between sapling abundance and conspecific neighbor density. Co-occurrence networks demonstrated a shift toward higher positive interactions but reduced modularity, indicating a more integrated yet less stable community structure. Despite their low abundance, rare species demonstrated significant roles in network connectivity and stability, underscoring their status as keystone species. Additionally, the significant correlations between topographic factors and species richness highlighted the role of environmental filtering in shaping community composition. Our findings contribute to a deeper understanding of subtropical forest community dynamics, emphasizing the importance of long-term monitoring to unravel the complex interactions between populations and their environmental conditions. This study represents the first long-term observational experiment conducted in a subtropical secondary forest, providing valuable insights into the dynamics of forest community assembly in this region. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

27 pages, 3177 KiB  
Article
The Role of Mycorrhizal Fungi in the Inter and Intraspecific Competition of Nicotiana glauca and Vachellia gerrardii
by Abdelmalik M. Adam, Thobayet S. Alshahrani, Abdulaziz A. Alqarawi, Basharat A. Dar, Jahangir A. Malik and Ahmed M. Abd-ElGawad
Plants 2025, 14(6), 858; https://doi.org/10.3390/plants14060858 - 10 Mar 2025
Viewed by 760
Abstract
A competition experiment between Vachellia gerrardii and invasive Nicotiana glauca Graham was conducted to assess the impact of Arbuscular Mycorrhizal Fungi (AMF) symbiosis on the inter and intraspecific competition between the two species. Seedlings were established under mono and mixed plantations with different [...] Read more.
A competition experiment between Vachellia gerrardii and invasive Nicotiana glauca Graham was conducted to assess the impact of Arbuscular Mycorrhizal Fungi (AMF) symbiosis on the inter and intraspecific competition between the two species. Seedlings were established under mono and mixed plantations with different species proportions (3:1, 2:2, 1:3) and plant densities (1, 2, 3, and 4 plants/pot) for mixed and mono planting respectively, with and without AMF. The vegetative growth parameters (height, leaf area and number, total dry weight/plant, relative yield, relative yield total), roots characteristics (length, surface area, volume, tips number), competitive interaction (aggressivity), and physiological traits (chlorophyll a, chlorophyll b, photosynthesis, stomatal conductance) were measured to evaluate plant responses to AMF symbiosis and competition. The results revealed that AMF symbiosis significantly enhanced the vegetative parameters (leaf area, height, and total dry weight) in both species under mono and mixed plantations compared to plants without AMF. Under AMF treatment, in the interspecific competition, most vegetative and root parameters of N. glauca were higher than V. gerrardii. At inoculant and species proportions, the relative yield of N. glauca exceeded that for V. gerrardii; however, N. glauca was more aggressive towards V. gerrardii. N. glauca root indices were higher than V. gerrardii under inter and intraspecific competition. Simultaneously, for both species, in monoculture plantations, most parameters decreased as plant density increased, wherein the decrease was higher for plants grown without AMF. Photosynthesis increased in AMF treatment, particularly for N. glauca. In conclusion, AMF promoted the growth of invasive N. glauca more than native V. gerrardii, particularly in terms of the root system. Our results provide a critical perspective that the AMF has the potential to contribute and facilitate the invasion of N. glauca, as well as support it with a competitive advantage over V. gerrardii, thus highlighting its potential role in shaping plant–plant interaction in invaded habitats. Full article
(This article belongs to the Special Issue Ecology and Management of Invasive Plants—2nd Edition)
Show Figures

Figure 1

12 pages, 1633 KiB  
Article
Interspecific Courtship Between Two Endemic Fireflies
by Aldair Vergara, Yara Maquitico and Carlos Cordero
Diversity 2025, 17(3), 188; https://doi.org/10.3390/d17030188 - 6 Mar 2025
Viewed by 773
Abstract
Reproductive interactions between species could have negative effects on the fitness of the species involved, which can have important ecological and evolutionary consequences, such as population declines (including local extinction) or character divergence. Here, we report the courtship and attempted mating between two [...] Read more.
Reproductive interactions between species could have negative effects on the fitness of the species involved, which can have important ecological and evolutionary consequences, such as population declines (including local extinction) or character divergence. Here, we report the courtship and attempted mating between two congeneric species of fireflies endemic to Mexico. The interactions involved males of the synchronous firefly Photinus palaciosi and females of the much larger, non-synchronous P. extensus. In the study site, the population density of P. palaciosi is much higher than that of P. extensus. Observations of marked P. extensus females throughout most of the mating season showed that 37.8% of their interactions with males were with P. palaciosi males. Although interspecific interactions were usually of shorter length, they frequently consumed a significant portion of the nightly mate-locating/courting period. These interspecific interactions are probably facilitated by the similarities in the mate location and courtship behavior of both species, which also share female brachyptery (elytra and wing reduction that makes females unable to fly). The simplest hypothesis to explain our behavioral observations is that P. palaciosi males mistakenly courted P. extensus females. The available evidence suggests that the operational sex ratio (OSR) of P. palaciosi is male-biased, as it seems to be the case in all synchronous fireflies studied to date. We hypothesize that the intense male competition for mates resulting from a male-biased OSR explains, at least in part, the “indiscriminate” sexual responses of P. palaciosi males. Another still not studied factor that could contribute to the frequent interspecific sexual interactions observed is the degree of similitude of the mating signals. The relatively high frequency of interspecific interactions and the significant amount of time invested in many of them (relative to the duration of the nightly mating period) indicate that the study of the potential fitness costs (and benefits?) of these interactions is a promising line of research. Full article
Show Figures

Graphical abstract

21 pages, 2564 KiB  
Article
Integration of Genetic and Imaging Data to Detect QTL for Root Traits in Interspecific Soybean Populations
by Mohammad Shafiqul Islam, Jeong-Dong Lee, Qijian Song, Hyun Jo and Yoonha Kim
Int. J. Mol. Sci. 2025, 26(3), 1152; https://doi.org/10.3390/ijms26031152 - 28 Jan 2025
Cited by 1 | Viewed by 1063
Abstract
Wild soybean, which has many desirable traits, such as adaptability to climate change-related stresses, is a valuable resource for expanding the narrow genetic diversity of cultivated soybeans. Plants require roots to adapt to different environments and optimize water and nutrient uptake to support [...] Read more.
Wild soybean, which has many desirable traits, such as adaptability to climate change-related stresses, is a valuable resource for expanding the narrow genetic diversity of cultivated soybeans. Plants require roots to adapt to different environments and optimize water and nutrient uptake to support growth and facilitate the storage of metabolites; however, it is challenging and costly to evaluate root traits under field conditions. Previous studies of quantitative trait loci (QTL) have been mainly based on cultivated soybean populations. In this study, an interspecific mapping population from a cross between wild soybean ‘PI483463’ and cultivar ‘Hutcheson’ was used to investigate QTLs associated with root traits using image data. Our results showed that 39 putative QTLs were distributed across 10 chromosomes (chr.). Seventeen of these were clustered in regions on chr. 8, 14, 15, 16, and 17, accounting for 19.92% of the phenotypic variation. We identified five significant QTL clusters influencing root-related traits, such as total root length, surface area, lateral total length, and number of tips, across five chr., with favorable alleles from both wild and cultivated soybeans. Furthermore, we identified eight candidate genes controlling these traits based on functional annotation. These genes were highly expressed in root tissues and directly or indirectly affected soybean root growth, development, and stress responses. Our results provide valuable insights for breeders aiming to optimize soybean root traits and leveraging genetic diversity from wild soybean species to develop varieties with improved root morphological traits, ultimately enhancing overall plant growth, productivity, and resilience. Full article
Show Figures

Figure 1

24 pages, 4347 KiB  
Article
Formation of Adaptive Trophic Niches of Euryphagous Fish Species in Response to Off-Seasonal Water Level Regulation in Hongze Lake
by Si Luo, Zexin Wang, Shengyu Zhang, Huan Mu, Yubin Jiao, Xiao Qu, Qishuo Wang, Ruiqi Yang, Yanxia Zuo and Shiyu Jin
Animals 2025, 15(1), 59; https://doi.org/10.3390/ani15010059 - 30 Dec 2024
Cited by 1 | Viewed by 832
Abstract
Off-seasonal water level regulations disrupt the biological traits and phenological rhythms of native fish species, yet their impacts on interspecific trophic interactions remain understudied. This study employed stable isotope analysis to assess the trophic dynamics of three fish species (Parabramis pekinensis, [...] Read more.
Off-seasonal water level regulations disrupt the biological traits and phenological rhythms of native fish species, yet their impacts on interspecific trophic interactions remain understudied. This study employed stable isotope analysis to assess the trophic dynamics of three fish species (Parabramis pekinensis, Carassius auratus, and Toxabramis swinhonis) across different water periods in Hongze Lake. The findings revealed that all three species occupied similar mid-level trophic positions, with no significant difference among water periods (p > 0.05). During high-water periods, P. pekinensis and T. swinhonis exploited broader niches, while C. auratus relied on a narrower diet. In contrast, during low-water periods, C. auratus expanded its niche, while P. pekinensis and T. swinhonis reduced their isotopic niche widths. Niche overlap analysis showed minimal trophic overlap among the three species during high-water periods, with increased overlap during low-water periods, except for the highest overlap between C. auratus and T. swinhonis during mid-water periods. This variation in niche overlap aligns with shifts in dietary reliance, as POM was the predominant dietary component for all three species, but its contribution varied significantly across different water periods. These findings indicated that adaptive trophic niche facilitated the coexistence of these fish species, while off-seasonal water level regulation may intensify interspecific competition. These insights are essential for refining water management policies and developing sustainable fishery management strategies of Hongze Lake and other water-level-regulated systems. Full article
(This article belongs to the Collection Behavioral Ecology of Aquatic Animals)
Show Figures

Figure 1

13 pages, 3022 KiB  
Article
Prime Basking Sites and Communal Basking in the Lizard, Lacerta bilineata; High Risk for Juveniles?
by Roger Meek and Luca Luiselli
Diversity 2024, 16(12), 728; https://doi.org/10.3390/d16120728 - 27 Nov 2024
Cited by 1 | Viewed by 1129
Abstract
Sunlight and the heat it provides are important ecological resources for reptiles especially for those species living in temperate zones that bask extensively to maximize heat uptake. Sun basking has both benefits and costs for reptiles, giving heat that provides the energy to [...] Read more.
Sunlight and the heat it provides are important ecological resources for reptiles especially for those species living in temperate zones that bask extensively to maximize heat uptake. Sun basking has both benefits and costs for reptiles, giving heat that provides the energy to drive physiology but basking in open patches increases risk of predation due to higher visibility. Prime basking sites are believed to increase benefits for reptiles that include, in addition to open sunlit areas, facilitate detection of predators and prey and escape to nearby refuges. However, if such sites are limited, both inter and intra-specific interference may occur and this kind of competition may impact on a reptile’s ability to access prime basking sites, and as a consequence, its capacity to thermoregulate to optimum body temperatures. This may be especially important for juveniles, for whom rapid growth is a key factor in survivorship. We studied communal basking and interaction events at prime basking sites in the European green lizard, Lacerta bilineata, in a hedgerow in western France. We compared basking behaviour of adults and juveniles with sympatric adult wall lizards Podarcis muralis using non-invasive photographic-mark-recapture. Adult L. bilineata were more evenly distributed across basking sights compared to juveniles but significant differences were only detected between males and juveniles. Juvenile L. bilineata abandoned basking sites at the approach of both adult males and females and were aggressively removed by adult male L. bilineata. We found inter-specific communal basking between both adult and juvenile L. bilineata with adult wall lizards P. muralis. Communal basking was observed between male and female L. bilineata but not between adult males or between adult female L. bilineata. Communal basking was in proportionally greater frequency in juveniles compared to adult L. bilineata. Full article
(This article belongs to the Special Issue Biogeography, Ecology and Conservation of Reptiles)
Show Figures

Figure 1

13 pages, 1972 KiB  
Article
Influence of Previous Infestation of Wheat Leaves and Ears by Sitobion avenae on Interaction with Rhopalosiphum padi
by Andreas Bühler and Rabea Schweiger
Insects 2024, 15(11), 871; https://doi.org/10.3390/insects15110871 - 6 Nov 2024
Viewed by 1004
Abstract
Different herbivorous species that share a host plant may interact via competition or facilitation, depending on whether the interaction partners are hindered by or benefit from the interaction. Sap-sucking insects, such as aphids, can influence each other indirectly by altering the composition of [...] Read more.
Different herbivorous species that share a host plant may interact via competition or facilitation, depending on whether the interaction partners are hindered by or benefit from the interaction. Sap-sucking insects, such as aphids, can influence each other indirectly by altering the composition of the shared phloem sap. Aphid-induced changes in the plant may affect aphid performance and lead to a shift in the balance between different co-occurring aphid species. In this study, we compared the performance of the English grain aphid (Sitobion avenae) and the bird cherry-oat aphid (Rhopalosiphum padi) simultaneously infesting leaves or ears of wheat (Triticum aestivum) plants, which had been either previously infested by S. avenae or kept uninfested. Colonies of S. avenae were larger on ears than on leaves, while the opposite pattern was found for R. padi. Pre-infestation of ears, but not of leaves, by S. avenae led to a higher total aphid number and colony size of S. avenae at some time points. The balance between the two species was only slightly affected by previous infestation at some time points. The findings of this study contribute to the understanding of plant–aphid as well as aphid–aphid interactions in agricultural fields. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Back to TopTop