Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = interlayer-expanded MoS2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4620 KB  
Article
Ethanol Molecule Engineering Toward Stabilized 1T-MoS2 with Extraordinary Sodium Storage Performance
by Xue’er Bi, Xuelian Wang, Xiaobo Shen, Haijun Yu, Xian Zhang and Jin Bai
Molecules 2025, 30(18), 3801; https://doi.org/10.3390/molecules30183801 - 18 Sep 2025
Cited by 1 | Viewed by 553
Abstract
Phase molybdenum disulfide (1T-MoS2) holds significant promise as an anode material for sodium-ion batteries (SIBs) due to its metallic conductivity and expanded interlayer distance. However, the practical application of 1T-MoS2 is hindered by its inherent thermodynamic metastability, which poses substantial [...] Read more.
Phase molybdenum disulfide (1T-MoS2) holds significant promise as an anode material for sodium-ion batteries (SIBs) due to its metallic conductivity and expanded interlayer distance. However, the practical application of 1T-MoS2 is hindered by its inherent thermodynamic metastability, which poses substantial challenges for the synthesis of high-purity, long-term stable 1T phase MoS2. Herein, a synergetic ethanol molecule intercalation and electron injection engineering is adopted to induce the formation and stabilization of 1T-MoS2 (E-1T MoS2). The obtained E-1T MoS2 consists of regularly arranged sphere-like ultrasmall few-layered 1T-MoS2 nanosheets with expanded interlayer spacing. The high intrinsic conductivity and enlarged interlayer spacing are greatly favorable for rapid Na+ or e transport. The elaborated nanosheets structure can effectively relieve volume variation during Na+ intercalating/deintercalating processes, shorten transport path of Na+, and enhance diffusion kinetics. Furthermore, a novel sodium reaction mechanism involving the formation of MoS2 nanoclusters during cycling is revealed to produce the higher surface pseudocapacitive contribution to Na+ storage capacity, accelerating Na+ reaction kinetics, as confirmed by the kinetics analysis and ex-situ structural characterizations. Consequently, the E-1T MoS2 electrode exhibits an excellent sodium storage performance. This work provides an important reference for synthesis and reaction mechanism analysis of metastable metal sulfides for advanced SIBs. Full article
Show Figures

Graphical abstract

13 pages, 4059 KB  
Article
Mo-Dopant-Enhanced Energy Storage Performance of VS2 Microflowers as Electrode Materials for Supercapacitors
by Jingwei Wang, Xuejun Zheng, Long Xie, Zhenhua Xiang and Wenyuan He
Inorganics 2025, 13(6), 199; https://doi.org/10.3390/inorganics13060199 - 13 Jun 2025
Cited by 1 | Viewed by 1241
Abstract
It is found that Mo doping can enhance the supercapacitor performance of VS2 microflowers. The X-ray diffraction combined with energy dispersive X-ray, X-ray photoelectron spectroscopy, and Raman spectra results verify the successful doping of Mo atoms into the VS2 matrix. As [...] Read more.
It is found that Mo doping can enhance the supercapacitor performance of VS2 microflowers. The X-ray diffraction combined with energy dispersive X-ray, X-ray photoelectron spectroscopy, and Raman spectra results verify the successful doping of Mo atoms into the VS2 matrix. As the electrode material of supercapacitors, the Mo-doped VS2 performs better electrochemical performance than pristine VS2, achieving the specific capacitance of 170 F g−1 at 0.5 A g−1 and 389.5 F g−1 at 5 mV s−1. Furthermore, the symmetric supercapacitor based on the Mo-doped VS2 exhibits good stability and ideal rate capability. The enhanced capability is presumably ascribed to the more accessible active sites and faster electrons/ions diffusion kinetics, which are caused by the increased specific surface area, expanded interlayer spacing, and improved conductivity after Mo doping. This strategy can also be extended to strengthen the capacitive properties of other transition metal dichalcogenides for advanced energy storage devices. Full article
Show Figures

Figure 1

12 pages, 8366 KB  
Article
Active Poly(o-phenylenediamine)-Intercalated Layered δ-MnO2 Cathode for High-Performance Aqueous Zinc-Ion Batteries
by Ziqian Yuan, Bosi Yin, Wenhui Mi, Minghui Liu and Siwen Zhang
Polymers 2025, 17(8), 1003; https://doi.org/10.3390/polym17081003 - 8 Apr 2025
Cited by 3 | Viewed by 1156
Abstract
Aqueous zinc-ion batteries (ZIBs) represent an emerging energy storage solution that offers significant advantages in terms of safety, cost-effectiveness, and longevity in cycling. Among the various materials available, manganese-based oxides stand out as the most promising options for cathodes due to their impressive [...] Read more.
Aqueous zinc-ion batteries (ZIBs) represent an emerging energy storage solution that offers significant advantages in terms of safety, cost-effectiveness, and longevity in cycling. Among the various materials available, manganese-based oxides stand out as the most promising options for cathodes due to their impressive theoretical specific capacity, suitable operating voltage, and abundant natural availability. In published reports, pre-embedding is frequently used to modify the layered cathode; however, non-electrochemically active molecular embedding often results in a decrease in battery capacity. In this paper, a hydrothermal method is employed to intercalate poly(o-phenylenediamine) (PoPD) into δ-MnO2 (MO) to produce PoPD-MO cathode materials. Here, PoPD serves a dual role in the cathode: (1) PoPD is inserted into the interlayer of MO, providing support within the intercalation layer, enhancing material stability, increasing ionic storage sites, and creating space for more Zn2+ to be embedded, and (2) inserting PoPD into the interlayer structure of MO effectively expands the space between layers, thus allowing for greater ion storage, which in turn enhances the rate and efficiency of electrochemical reactions. Consequently, PoPD-MO shows remarkable cycling durability and adaptability in ZIBs, achieving a specific capacity of 359 mAh g−1 at a current density of 0.1 A g−1, and even under the strain of a high current density of 3 A g−1, it maintains a respectable capacity of 107 mAh g−1. Based on this, PoPD-MO may emerge as a new cathode material with promising applications in the future. Full article
(This article belongs to the Special Issue Polymeric Conductive Materials for Energy Storage)
Show Figures

Figure 1

14 pages, 3920 KB  
Article
Nitrogen-Doped Graphene Uniformly Loaded with Large Interlayer Spacing MoS2 Nanoflowers for Enhanced Lithium–Sulfur Battery Performance
by Zhen Wu, Wenfeng He, Renjie Xie, Xuan Xiong, Zihan Wang, Lei Zhou, Fen Qiao, Junfeng Wang, Yan Zhou, Xinlei Wang, Jiajia Yuan, Tian Tang, Chenyao Hu, Wei Tong, Lubin Ni, Xin Wang and Yongsheng Fu
Molecules 2024, 29(20), 4968; https://doi.org/10.3390/molecules29204968 - 21 Oct 2024
Cited by 3 | Viewed by 2378
Abstract
Lithium–sulfur (Li-S) batteries offer a high theoretical energy density but suffer from poor cycling stability and polysulfide shuttling, which limits their practical application. To address these challenges, we developed a PANI-modified MoS2-NG composite, where MoS2 nanoflowers were uniformly grown on [...] Read more.
Lithium–sulfur (Li-S) batteries offer a high theoretical energy density but suffer from poor cycling stability and polysulfide shuttling, which limits their practical application. To address these challenges, we developed a PANI-modified MoS2-NG composite, where MoS2 nanoflowers were uniformly grown on graphene oxide (GO) through PANI modification, resulting in an increased interlayer spacing of MoS2. This expanded spacing exposed more active sites, enhancing polysulfide adsorption and catalytic conversion. The composite was used to prepare MoS2-NG/PP separators for Li-S batteries, which achieved a high specific capacity of 714 mAh g−1 at a 3 C rate and maintained a low capacity decay rate of 0.085% per cycle after 500 cycles at 0.5 C. The larger MoS2 interlayer spacing was key to improving redox reaction kinetics and suppressing the shuttle effect, making the MoS2-NG composite a promising material for enhancing the performance and stability of Li-S batteries. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

14 pages, 5236 KB  
Article
Enlarged Interlayer Spacing of Marigold-Shaped 1T-MoS2 with Sulfur Vacancies via Oxygen-Assisted Phosphorus Embedding for Rechargeable Zinc-Ion Batteries
by Qinhu Xu, Xinyu Li, Luchen Wu, Zhen Zhang, Yong Chen, Ling Liu and Yong Cheng
Nanomaterials 2023, 13(7), 1185; https://doi.org/10.3390/nano13071185 - 27 Mar 2023
Cited by 10 | Viewed by 2714
Abstract
Structural unsteadiness and sluggish diffusion of divalent zinc cations in cathodes during cycling severely limit further applications of MoS2 for rechargeable aqueous zinc-ion batteries (ZIBs). To circumvent these hurdles, herein, phosphorus (P) atom embedded three-dimensional marigold-shaped 1T MoS2 structures combined with [...] Read more.
Structural unsteadiness and sluggish diffusion of divalent zinc cations in cathodes during cycling severely limit further applications of MoS2 for rechargeable aqueous zinc-ion batteries (ZIBs). To circumvent these hurdles, herein, phosphorus (P) atom embedded three-dimensional marigold-shaped 1T MoS2 structures combined with the design of S vacancies (Sv) are synthesized via the oxygen-assisted solvent heat method. The oxygen-assisted method is utilized to aid the P-embedding into the MoS2 crystal, which can expand the interlayer spacing of P-MoS2 and strengthen Zn2+ intercalation/deintercalation. Meanwhile, the three-dimensional marigold-shaped structure with 1T phase retains the internal free space, can adapt to the volume change during charge and discharge, and improve the overall conductivity. Moreover, Sv is not only conducive to the formation of rich active sites to diffuse electrons and Zn2+ but also improves the storage capacity of Zn2+. The electrochemical results show that P-MoS2 can reach a high specific capacity of 249 mAh g−1 at 0.1 A g−1. The capacity remains at 102 mAh g−1 after 3260 cycles at a current of 0.5 A g−1, showing excellent electrochemical performance for Zn2+ ion storage. This research provides a more efficient method of P atom embedded MoS2-based electrodes and will heighten our comprehension of developing cathodes for the ZIBs. Full article
(This article belongs to the Special Issue Advanced 2D Materials for Emerging Applications)
Show Figures

Graphical abstract

11 pages, 1984 KB  
Article
Interlayer-Expanded MoS2 Enabled by Sandwiched Monolayer Carbon for High Performance Potassium Storage
by Yuting Zhang, Lin Zhu, Hongqiang Xu, Qian Wu, Haojie Duan, Boshi Chen and Haiyong He
Molecules 2023, 28(6), 2608; https://doi.org/10.3390/molecules28062608 - 13 Mar 2023
Cited by 11 | Viewed by 3119
Abstract
Potassium-ion batteries (PIBs) have aroused a large amount of interest recently due to the plentiful potassium resource, which may show cost benefits over lithium-ion batteries (LIBs). However, the huge volume expansion induced by the intercalation of large-sized potassium ions and the intrinsic sluggish [...] Read more.
Potassium-ion batteries (PIBs) have aroused a large amount of interest recently due to the plentiful potassium resource, which may show cost benefits over lithium-ion batteries (LIBs). However, the huge volume expansion induced by the intercalation of large-sized potassium ions and the intrinsic sluggish kinetics of the anode hamper the application of PIBs. Herein, by rational design, nano-roses assembled from petals with a MoS2/monolayer carbon (C-MoS2) sandwiched structure were successfully synthesized. The interlayer distance of ultrathin C-MoS2 was expanded from original MoS2 of 6.2 to 9.6 Å due to the formation of the MoS2-carbon inter overlapped superstructure. This unique structure efficiently alleviates the mechanical strain, prevents the aggregation of MoS2, creates more active sites, facilitates electron transport, and enhances the specific capacity and K+ diffusion kinetics. As a result, the prepared C-MoS2-1 anode delivers a high reversible specific capacity (437 mAh g−1 at 0.1 A g−1) and satisfying rate performance (123 mAh g−1 at 6.4 A g−1). Therefore, this work provides new insights into the design of high-performance anode materials of PIBs. Full article
(This article belongs to the Special Issue Frontier in Lithium-Ion Battery)
Show Figures

Graphical abstract

13 pages, 5677 KB  
Article
The Stabilizing of 1T-MoS2 for All-Solid-State Lithium-Ion Batteries
by Peidian Chong, Ziwang Zhou, Kaihong Wang, Wenhao Zhai, Yafeng Li, Jianbiao Wang and Mingdeng Wei
Batteries 2023, 9(1), 26; https://doi.org/10.3390/batteries9010026 - 29 Dec 2022
Cited by 26 | Viewed by 6117
Abstract
All-solid-state batteries (SSBs) are prospective candidates for a range of energy accumulation systems, delivering higher energy densities compared to batteries which use liquid electrolytes. Amongst the numerous solid-state electrolytes (SEs), sulfide-based electrolytes in particular have received more attention given that they have a [...] Read more.
All-solid-state batteries (SSBs) are prospective candidates for a range of energy accumulation systems, delivering higher energy densities compared to batteries which use liquid electrolytes. Amongst the numerous solid-state electrolytes (SEs), sulfide-based electrolytes in particular have received more attention given that they have a high ionic conductivity. However, the incompatibility between the electrode and SEs is still an ongoing challenge that leads to poor electrochemical performance. In this work, we focus on 1T-MoS2. It is well known that 1T metallic MoS2 is unstable even at room temperature. However, we showed that 1T-MoS2 can be stabilized at 600 °C for at least 2 h, and the 1T-MoS2-600 interlayer spacing expanded to 0.95 nm. The high crystallinity of the 1T phase is highly compatible with solid electrolytes and coupled with the increased interlayer spacing, so in the all-solid-state lithium-ion battery (ALLLIB), we achieved outstanding cycling performance. At the current density of 0.2 C (1 C = 670 mA g−1), this material delivered a capacity of 406 mA h g−1 after 50 cycles. Full article
Show Figures

Figure 1

12 pages, 5498 KB  
Article
Defect-Rich Heterogeneous MoS2/rGO/NiS Nanocomposite for Efficient pH-Universal Hydrogen Evolution
by Guangsheng Liu, Kunyapat Thummavichai, Xuefeng Lv, Wenting Chen, Tingjun Lin, Shipeng Tan, Minli Zeng, Yu Chen, Nannan Wang and Yanqiu Zhu
Nanomaterials 2021, 11(3), 662; https://doi.org/10.3390/nano11030662 - 8 Mar 2021
Cited by 35 | Viewed by 4796
Abstract
Molybdenum disulfide (MoS2) has been universally demonstrated to be an effective electrocatalytic catalyst for hydrogen evolution reaction (HER). However, the low conductivity, few active sites and poor stability of MoS2-based electrocatalysts hinder its hydrogen evolution performance in a wide [...] Read more.
Molybdenum disulfide (MoS2) has been universally demonstrated to be an effective electrocatalytic catalyst for hydrogen evolution reaction (HER). However, the low conductivity, few active sites and poor stability of MoS2-based electrocatalysts hinder its hydrogen evolution performance in a wide pH range. The introduction of other metal phases and carbon materials can create rich interfaces and defects to enhance the activity and stability of the catalyst. Herein, a new defect-rich heterogeneous ternary nanocomposite consisted of MoS2, NiS and reduced graphene oxide (rGO) are synthesized using ultrathin αNi(OH)2 nanowires as the nickel source. The MoS2/rGO/NiS-5 of optimal formulation in 0.5 M H2SO4, 1.0 M KOH and 1.0 M PBS only requires 152, 169 and 209 mV of overpotential to achieve a current density of 10 mA cm−2 (denoted as η10), respectively. The excellent HER performance of the MoS2/rGO/NiS-5 electrocatalyst can be ascribed to the synergistic effect of abundant heterogeneous interfaces in MoS2/rGO/NiS, expanded interlayer spacings, and the addition of high conductivity graphene oxide. The method reported here can provide a new idea for catalyst with Ni-Mo heterojunction, pH-universal and inexpensive hydrogen evolution reaction electrocatalyst. Full article
Show Figures

Figure 1

12 pages, 3406 KB  
Article
Growth of Multiorientated Polycrystalline MoS2 Using Plasma-Enhanced Chemical Vapor Deposition for Efficient Hydrogen Evolution Reactions
by Na Liu, Jeonghun Kim, Jeonghyeon Oh, Quang Trung Nguyen, Bibhuti Bhusan Sahu, Jeong Geon Han and Sunkook Kim
Nanomaterials 2020, 10(8), 1465; https://doi.org/10.3390/nano10081465 - 27 Jul 2020
Cited by 15 | Viewed by 5344
Abstract
Molybdenum disulfide (MoS2) has attracted considerable attention as a promising electrocatalyst for the hydrogen evolution reaction (HER). However, the catalytic HER performance of MoS2 is significantly limited by the few active sites and low electrical conductivity. In this study, the [...] Read more.
Molybdenum disulfide (MoS2) has attracted considerable attention as a promising electrocatalyst for the hydrogen evolution reaction (HER). However, the catalytic HER performance of MoS2 is significantly limited by the few active sites and low electrical conductivity. In this study, the growth of multiorientated polycrystalline MoS2 using plasma-enhanced chemical vapor deposition (PECVD) for the HER is achieved. The MoS2 is synthesized by sulfurizing a sputtered pillar-shaped Mo film. The relatively low growth temperature during the PECVD process results in multiorientated MoS2 with an expanded interlayer spacing of ~0.75 nm, which provides abundant active sites, a reduced Gibbs free energy of H adsorption, and enhanced intralayer conductivity. In HER applications, the PECVD-grown MoS2 exhibits an overpotential value of 0.45 V, a Tafel slope of 76 mV dec−1, and excellent stability in strong acidic media for 10 h. The high HER performance achieved in this study indicates that two-dimensional MoS2 has potential as an electrocatalyst for next-generation energy technologies. Full article
(This article belongs to the Special Issue Characterization, Synthesis and Applications of 2D Nanomaterials)
Show Figures

Figure 1

16 pages, 1527 KB  
Article
Effect of Polymer Addition on the Structure and Hydrogen Evolution Reaction Property of Nanoflower-Like Molybdenum Disulfide
by Xianwen Zeng, Lijing Niu, Laizhou Song, Xiuli Wang, Xuanming Shi and Jiayun Yan
Metals 2015, 5(4), 1829-1844; https://doi.org/10.3390/met5041829 - 9 Oct 2015
Cited by 48 | Viewed by 10569
Abstract
Nano-structured molybdenum disulfide (MoS2) catalysts have been extensively developed for the hydrogen evolution reaction (HER). Herein, a novel hydrothermal intercalation approach is employed to fabricate nanoflower-like 2H–MoS2 with the incorporation of three polymers, polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and polyethylenimine [...] Read more.
Nano-structured molybdenum disulfide (MoS2) catalysts have been extensively developed for the hydrogen evolution reaction (HER). Herein, a novel hydrothermal intercalation approach is employed to fabricate nanoflower-like 2H–MoS2 with the incorporation of three polymers, polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and polyethylenimine (PEI). The as-prepared MoS2 specimens were characterized by techniques of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), together with Raman and Fourier transform infrared spectroscopy (FTIR). The HER properties of these lamellar nanoflower-like composites were evaluated using electrochemical tests of linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The existent polymer enlarges the interlayer spacing of the lamellar MoS2, and reduces its stacked thickness. The lamellar MoS2 samples exhibit a promoting activity in HER at low additions of these three polymers (0.04 g/g MoS2 for PVA and PEI, and 0.08 g/g MoS2 for PVP). This can be attributed to the fact that the expanded interlayer of MoS2 can offer abundant exposed active sites for HER. Conversely, high additions of the polymers exert an obvious interference in the HER activity of the lamellar MoS2. Compared with the samples of MoS2/PVP–0.08 and MoS2/PEI–0.04, the MoS2/PVA–0.04 composite exhibits excellent activity in HER, in terms of higher current density and lower onset potential. Full article
(This article belongs to the Special Issue Hydrometallurgy)
Show Figures

Graphical abstract

Back to TopTop