Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (275)

Search Parameters:
Keywords = integrated silicon waveguide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 694 KB  
Article
Compact, Energy-Efficient, High-Speed Electro-Optic Microring Modulator Based on Graphene-TMD 2D Materials
by Jair A. de Carvalho, Daniel M. Neves, Vinicius V. Peruzzi, Anderson L. Sanches, Antonio Jurado-Navas, Thiago Raddo, Shyqyri Haxha and Jose C. Nascimento
Nanomaterials 2026, 16(3), 167; https://doi.org/10.3390/nano16030167 - 26 Jan 2026
Abstract
The continued performance scaling of AI gigafactories requires the development of energy-efficient devices to meet the rapidly growing global demand for AI services. Emerging materials offer promising opportunities to reduce energy consumption in such systems. In this work, we propose an electro-optic microring [...] Read more.
The continued performance scaling of AI gigafactories requires the development of energy-efficient devices to meet the rapidly growing global demand for AI services. Emerging materials offer promising opportunities to reduce energy consumption in such systems. In this work, we propose an electro-optic microring modulator that exploits a graphene (Gr) and transition-metal dichalcogenide (TMD) interface for phase modulation of data-bit signals. The interface is configured as a capacitor composed of a top Gr layer and a bottom WSe2 layer, separated by a dielectric Al2O3 film. This multilayer stack is integrated onto a silicon (Si) waveguide such that the microring is partially covered, with coverage ratios varying from 10% to 100%. In the design with the lowest power consumption, the device operates at 26.3 GHz and requires an energy of 5.8 fJ/bit under 10% Gr–TMD coverage while occupying an area of only 20 μm2. Moreover, a modulation efficiency of VπL= 0.203 V·cm and an insertion loss of 6.7 dB are reported for the 10% coverage. The Gr-TMD-based microring modulator can be manufactured with standard fabrication techniques. This work introduces a compact microring modulator designed for dense system integration, supporting high-speed, energy-efficient data modulation and positioning it as a promising solution for sustainable AI gigafactories. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
12 pages, 1899 KB  
Article
Packaging of 128-Channel Optical Phased Array for LiDAR
by Abu Sied, Eun-Su Lee, Kwon-Wook Chun, Jinung Jin and Min-Cheol Oh
Photonics 2026, 13(1), 88; https://doi.org/10.3390/photonics13010088 - 20 Jan 2026
Viewed by 176
Abstract
We developed a complete packaging strategy for a 128-channel optical phased array (OPA) for Light Detection and Ranging (LiDAR) applications operating at a 1550 nm wavelength. The process comprised three major steps: waveguide end-facet polishing, fiber-to-optical waveguide pigtailing, and electrical wire bonding. Sequential [...] Read more.
We developed a complete packaging strategy for a 128-channel optical phased array (OPA) for Light Detection and Ranging (LiDAR) applications operating at a 1550 nm wavelength. The process comprised three major steps: waveguide end-facet polishing, fiber-to-optical waveguide pigtailing, and electrical wire bonding. Sequential polishing with silicon carbide paper followed by colloidal silica reduced coupling losses to 0.74 dB per facet. An automated fiber alignment setup was used to perform edge coupling. The electrical connections, formed under optimized wire-bonding conditions (18 mW ultrasonic power), achieved a bond strength of 4.66 gf while maintaining electrode-pad integrity. The final packaged device demonstrated uniform optical throughput, with a throughput power variation maintained below 0.2 dB following the packaging process, and a uniform electrical resistance of 0.48% across all 128 channels, verifying the process stability and packaging integrity. These results confirmed that the proposed packaging scheme offers a dependable route for photonic integration in LiDAR applications. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics and Future Prospects)
Show Figures

Figure 1

19 pages, 5586 KB  
Article
Performance Simulation and Optimal Design for Silicon–Nitride Arrayed Waveguide Grating
by Zihao Yu, Degui Sun, Mingqi Bi, Yue Sun and Shuning Guo
Coatings 2026, 16(1), 63; https://doi.org/10.3390/coatings16010063 - 6 Jan 2026
Viewed by 516
Abstract
Silicon–nitride (SiN) waveguides have emerged as fundamental building blocks in silicon photonic integrated circuits (Si-PICs), offering advantages that compensate for the intrinsic limitations of silicon-on-insulator (SOI) and silica-on-silicon (SOS) platforms. In this work, two sizes of single-mode SiN strip waveguides are investigated: (i) [...] Read more.
Silicon–nitride (SiN) waveguides have emerged as fundamental building blocks in silicon photonic integrated circuits (Si-PICs), offering advantages that compensate for the intrinsic limitations of silicon-on-insulator (SOI) and silica-on-silicon (SOS) platforms. In this work, two sizes of single-mode SiN strip waveguides are investigated: (i) 600 nm wide strip waveguide cores on a 400 nm thick Si3N4 film and (ii) 1.0 µm wide strip waveguide cores on a 1.0 µm thick Si3N4 film. First, we design two AWG architectures and develop a generalized theoretical model for one of the key specifications—polarization mode dispersion (PMD)—by considering a pair of orthogonal polarization states in these two waveguides. Then, as the two-size SiN waveguides are generally fabricated via multiple operating processes of coating, photolithography, and etching, we investigate the dependences of PMD performances on the device errors of the two AWG architectures caused by the coating/manufacturing qualities and accuracies, and the dependences of PMD performance on the refractive index errors of the waveguide core. As a consequence, the softwaretool simulations for the two AWG architectures of 40-channel 0.8 nm channelspacing show that the average PMDs of the above two waveguide sizes are <0.50 ps and <0.35 ps, respectively, and the PMD responses to the ±10% fabrication error are < ±0.20 ps and ±10% fluctuation, respectively, but the ±2.5% variations have no obvious impacts upon the PMD performance. Therefore, it turns out that the PMD performance of a smaller waveguide has a relatively strong error sensitivity to the AWG architecture, while the larger waveguide size has a relatively weak error sensitivity to the AWG architecture. Full article
Show Figures

Figure 1

13 pages, 2143 KB  
Article
O-Band 4 × 1 Combiner Based on Silicon MMI Cascaded Tree Configuration
by Saveli Shaul Smolanski and Dror Malka
Micromachines 2026, 17(1), 31; https://doi.org/10.3390/mi17010031 - 26 Dec 2025
Viewed by 547
Abstract
High-speed silicon (Si) photonic transmitters operating in the O-band require higher on-chip optical power to support advanced modulation formats and ever-increasing line rates. A straightforward approach is to operate laser diodes at higher output power or employ more specialized sources, but this raises [...] Read more.
High-speed silicon (Si) photonic transmitters operating in the O-band require higher on-chip optical power to support advanced modulation formats and ever-increasing line rates. A straightforward approach is to operate laser diodes at higher output power or employ more specialized sources, but this raises cost and exacerbates nonlinear effects such as self-phase modulation, two-photon absorption, and free-carrier generation in high-index-contrast Si waveguides. This paper proposes a low-cost 4 × 1 tree-cascade multimode interference (MMI) power combiner on a Si-on-insulator platform at 1310 nm wavelength that enables coherent power scaling while remaining fully compatible with standard commercial O-band lasers. The device employs adiabatic tapers and low-loss S-bends to ensure uniform field evolution, suppress local field enhancement, and mitigate nonlinear phase accumulation. The optimized layout occupies a compact footprint of 12 µm × 772 µm and achieves a simulated normalized power transmission of 0.975 with an insertion loss of 0.1 dB. Spectral analysis shows a 3 dB bandwidth of 15.8 nm around 1310 nm, across the O-band operating window. Thermal analysis shows that wavelength drift associated with ±50 °C temperature variation remains within the device bandwidth, ensuring stable operation under realistic laser self-heating and environmental changes. Owing to its broadband response, fabrication tolerance, and compatibility with off-the-shelf laser diodes, the proposed combiner is a promising building block for O-band transmitters and photonic neural-network architectures based on cascaded splitter and combiner meshes, while preserving linear transmission and enabling dense, large-scale photonic integration. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, 4th Edition)
Show Figures

Figure 1

16 pages, 5393 KB  
Article
High-Efficiency Fiber Edge Coupling for Silicon Nitride Integrated Photonics
by Sergey S. Avdeev, Aleksandr S. Baburin, Evgeniy V. Sergeev, Alexei B. Kramarenko, Arseniy V. Belyaev, Danil V. Kushnev, Kirill A. Buzaverov, Ilya A. Stepanov, Vladimir V. Echeistov, Ales S. Loginov, Sergey V. Bukatin, Ali Sh. Amiraslanov, Evgeniy S. Lotkov, Dmitriy A. Baklykov and Ilya A. Rodionov
Micromachines 2025, 16(12), 1401; https://doi.org/10.3390/mi16121401 - 12 Dec 2025
Viewed by 870
Abstract
Photonic integrated circuits play a crucial role in almost every aspect of modern life, such as data storage, telecommunications, medical diagnostics, green energy, autonomous driving, agriculture, and high-performance computing. To fully harness their benefits, an efficient coupling mechanism is required to successfully launch [...] Read more.
Photonic integrated circuits play a crucial role in almost every aspect of modern life, such as data storage, telecommunications, medical diagnostics, green energy, autonomous driving, agriculture, and high-performance computing. To fully harness their benefits, an efficient coupling mechanism is required to successfully launch light into on-chip waveguides from fibers. This study introduces low-loss coupling strategies and their implementation for silicon nitride integrated photonics. Here we present an overview of coupling technologies, optimized designs, and a fabrication technique for inverse tapers, which enable effective coupling for both transverse-magnetic and transverse-electric modes. We measured the coupling losses of 0.15 dB for UHNA-7 fiber at 1550 nm per facet for single-mode 220 × 1200 nm waveguides. We also designed, fabricated, and experimentally characterized a multi-tip taper, yielding 1.5 dB per facet at 1550 nm with broadband stability over 1500–1600 nm. We believe that our approach is universal and can be used both for individual fiber and fiber arrays coupling and for subsequent assembly of fiber with a chip, ensuring minimal losses. Full article
(This article belongs to the Section A1: Optical MEMS and Photonic Microsystems)
Show Figures

Figure 1

13 pages, 22217 KB  
Article
Crosstalk Effects in a Dual ToF-Based Tactile–Proximity Sensing Platform Integrated in a Flat PMMA Light Guide
by Andrejs Ogurcovs, Ilze Aulika, Sergio Cartiel, Jorge Garcia-Pueyo and Adolfo Muñoz
Sensors 2025, 25(23), 7319; https://doi.org/10.3390/s25237319 - 2 Dec 2025
Viewed by 468
Abstract
We investigate crosstalk effects in a dual-modality tactile–proximity sensing system based on Time-of-Flight (ToF) technology integrated within a flat poly(methyl methacrylate) (PMMA) light guide. Building on the OptoSkin framework, we employ two commercially available TMF8828 multi-zone ToF sensors, one configured for tactile detection [...] Read more.
We investigate crosstalk effects in a dual-modality tactile–proximity sensing system based on Time-of-Flight (ToF) technology integrated within a flat poly(methyl methacrylate) (PMMA) light guide. Building on the OptoSkin framework, we employ two commercially available TMF8828 multi-zone ToF sensors, one configured for tactile detection via frustrated total internal reflection (FTIR) and the other for external proximity measurements through the same transparent substrate. Controlled experiments were conducted using a 2 cm2 silicone pad for tactile interaction and an A4-sized diffuse white target for proximity detection. Additional measurements with a movable PMMA sheet were performed to quantify signal attenuation, peak broadening, and confidence degradation under transparent-substrate conditions. The results demonstrate that the TMF8828 can simultaneously resolve both contact-induced scattering and distant reflections, but that localized interference zones occur when sensor fields of view overlap within the substrate. Histogram analysis reveals the underlying multi-path contributions, providing diagnostic insight not available from black-box ToF devices. These findings highlight both the opportunities and limitations of integrating multiple ToF sensors into transparent waveguides and inform design strategies for scalable robotic skins, wearable interfaces, and multi-modal human–machine interaction systems. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 2390 KB  
Article
Integrated Quasi-Optical Terahertz Liquid Sensor Leveraging Mode-Parity-Dependent Interaction with a Capillary-Confined Analyte
by Andreas K. Klein, Julian Webber, Guillermo Carpintero, Masayuki Fujita and Daniel Headland
Sensors 2025, 25(22), 7026; https://doi.org/10.3390/s25227026 - 17 Nov 2025
Viewed by 483
Abstract
The integration of terahertz (THz) sensing technology into compact, on-chip platforms is essential to the advancement of high-precision chemical and biomedical analysis, promising to bring analytics closer to the point of care and to enable in situ analysis of industrial processes. This study [...] Read more.
The integration of terahertz (THz) sensing technology into compact, on-chip platforms is essential to the advancement of high-precision chemical and biomedical analysis, promising to bring analytics closer to the point of care and to enable in situ analysis of industrial processes. This study presents an integrated quasi-optical THz liquid sensor that features a longitudinal cavity in a silicon slab waveguide, in which a capillary-confined analyte interacts with guided slab modes on resonance. The sensor design leverages mode-parity-dependent field distributions: even-parity resonances exhibit strong analyte-field interaction, whilst odd-parity modes remain largely unaffected by the presence of the analyte, enabling intrinsic self-calibration. The device is fabricated using deep reactive ion etching of high-resistivity silicon and monolithically integrates all required components. Experimental measurements with water and isopropanol demonstrate alternating resonance peaks with distinct sensitivity to refractive index and absorption, validated by linear shifts in frequency and transmission loss. The self-calibrating feature allows for real-time compensation of system fluctuations towards automated continuous monitoring applications. These findings establish the sensor’s capability for simultaneous, precise material characterization and calibration, highlighting its potential for in-line process monitoring and other high-bandwidth sensing applications. Full article
(This article belongs to the Special Issue Terahertz Sensors)
Show Figures

Figure 1

26 pages, 6322 KB  
Article
Silicon-on-Silica Microring Resonators for High-Quality, High-Contrast, High-Speed All-Optical Logic Gates
by Amer Kotb, Antonios Hatziefremidis and Kyriakos E. Zoiros
Nanomaterials 2025, 15(22), 1736; https://doi.org/10.3390/nano15221736 - 17 Nov 2025
Cited by 1 | Viewed by 989
Abstract
With the increasing demand for ultrafast optical signal processing, silicon-on-silica (SoS) waveguides with ring resonators have emerged as a promising platform for integrated all-optical logic gates (AOLGs). In this work, we design and simulate a SoS-based waveguide structure, operating at the telecommunication wavelength [...] Read more.
With the increasing demand for ultrafast optical signal processing, silicon-on-silica (SoS) waveguides with ring resonators have emerged as a promising platform for integrated all-optical logic gates (AOLGs). In this work, we design and simulate a SoS-based waveguide structure, operating at the telecommunication wavelength of 1550 nm, consisting of a circular ring resonator coupled to straight bus waveguides using Lumerical FDTD solutions. The design achieves a high Q-factor of 11,071, indicating low optical loss and strong light confinement. The evanescent coupling between the ring and waveguides, along with optimized waveguide dimensions, enables efficient interference, realizing a complete suite of AOLGs (XOR, AND, OR, NOT, NOR, NAND, and XNOR). Numerical simulations demonstrate robust performance across all gates, with high contrast ratios between 11.40 dB and 13.72 dB and an ultra-compact footprint of 1.42 × 1.08 µm2. The results confirm the device’s capability to manipulate optical signals at data rates up to 55 Gb/s, highlighting its potential for scalable, high-speed, and energy-efficient optical computing. These findings provide a solid foundation for the future experimental implementation and integration of SoS-based photonic logic circuits in next-generation optical communication systems. Full article
Show Figures

Figure 1

7 pages, 3245 KB  
Article
Tapered Cladding Design for Monolithic Waveguide–Photodetector Coupling in Si-Based Integrated Photonics
by Alfredo A. Gonzalez-Fernandez, Jorge A. Vazquez-Hernandez, Felix Aguilar-Valdez and Neil Moffat
Nanomaterials 2025, 15(22), 1731; https://doi.org/10.3390/nano15221731 - 17 Nov 2025
Viewed by 603
Abstract
Silicon photonics offers a powerful route to leverage existing microelectronics infrastructure to enhance performance and enable new applications in data processing and sensing. Among the available material platforms, silicon nitride (Si3N4) provides significant advantages due to its wide optical [...] Read more.
Silicon photonics offers a powerful route to leverage existing microelectronics infrastructure to enhance performance and enable new applications in data processing and sensing. Among the available material platforms, silicon nitride (Si3N4) provides significant advantages due to its wide optical transmission window. A key challenge, however, remains the monolithic integration of passive nitride-based photonic components with active electronic devices directly on silicon wafers. In this work, we propose and demonstrate a tapered bottom-cladding design that enables efficient coupling of visible light from Si3N4/SiO2 core–cladding waveguides into planar p–n junction photodiodes fabricated on the silicon surface. Si3N4/SiO2 waveguides were fabricated using fully CMOS-compatible processes and materials. Controlled reactive ion etching (RIE) of SiO2 allowed the formation of vertically tapered claddings, and finite-difference time-domain (FDTD) simulations were carried out to analyze coupling efficiency across wavelengths from 509 nm to 740 nm. Simulations showed transmission efficiencies above 90% for taper angles below 30°, with near-total coupling at 10°. Experimental fabrication achieved angles as low as 8°. Responsivity simulations yielded values up to 311 mA W−1 for photodiodes without internal gain. These results demonstrate the feasibility of fabricating monolithic Si-based waveguide–photodetector systems using simple, CMOS-compatible methods, opening a scalable path for integrated photonic–electronic devices operating in the visible range. Full article
Show Figures

Figure 1

16 pages, 3862 KB  
Article
Flexible Sensor Foil Based on Polymer Optical Waveguide for Haptic Assessment
by Zhenyu Zhang, Abu Bakar Dawood, Georgios Violakis, Ahmad Abdalwareth, Günter Flachenecker, Panagiotis Polygerinos, Kaspar Althoefer, Martin Angelmahr and Wolfgang Schade
Sensors 2025, 25(22), 6915; https://doi.org/10.3390/s25226915 - 12 Nov 2025
Viewed by 830
Abstract
Minimally Invasive Surgery is often limited by the lack of tactile feedback. Indeed, surgeons have traditionally relied heavily on tactile feedback to estimate tissue stiffness - a critical factor in both diagnostics and treatment. With this in mind we present in this paper [...] Read more.
Minimally Invasive Surgery is often limited by the lack of tactile feedback. Indeed, surgeons have traditionally relied heavily on tactile feedback to estimate tissue stiffness - a critical factor in both diagnostics and treatment. With this in mind we present in this paper a flexible sensor foil, based on polymer optical waveguide. This sensor has been applied for real-time contact force measurement, material stiffness differentiation and surface texture reconstruction. Interrogated by a commercially available optoelectronic device, the sensor foil offers precise and reproducible feedback of contact forces up to 5 N, with a minimal detectable limit of 0.1 N. It also demonstrates distinct optical attenuation responses when indenting silicone samples of varying stiffnesses under controlled displacement. When integrated onto a 3D-printed module resembling an endoscopic camera and manipulated by a robotic arm, the sensor successfully generated spatial stiffness mapsof a phantom. Moreover, by sliding over structures with varying surface textures, the sensor foil was able to reconstruct surface profiles based on the light attenuation responses. The results demonstrate that the presented sensor foil possesses great potential for surgical applications by providing additional haptic information to surgeons. Full article
(This article belongs to the Special Issue Waveguide-Based Sensors and Applications)
Show Figures

Figure 1

20 pages, 1967 KB  
Article
Optical Waveguide-Pair Design for CMOS-Compatible Hybrid III-V-on-Silicon Quantum Dot Lasers
by Peter Raymond Smith, Konstantinos Papatryfonos and David R. Selviah
Nanomaterials 2025, 15(21), 1645; https://doi.org/10.3390/nano15211645 - 28 Oct 2025
Viewed by 1015
Abstract
The development of compact, energy-efficient integrated lasers operating at 1.3 µm re-mains a critical focus in silicon photonics, essential for advancing data communications and optical interconnect technologies. This paper presents a numerical study of distributed Bragg reflector (DBR) hybrid III-V-on-silicon lasers, analyzing design [...] Read more.
The development of compact, energy-efficient integrated lasers operating at 1.3 µm re-mains a critical focus in silicon photonics, essential for advancing data communications and optical interconnect technologies. This paper presents a numerical study of distributed Bragg reflector (DBR) hybrid III-V-on-silicon lasers, analyzing design trade-offs and optimization strategies based on supermode theory. The III-V section of the design incorporates InAs/(Al)GaAs quantum dots (QDs), which offer improved temperature insensitivity at the cost of more complex III-V/Si optical coupling, due to the high refractive index of (Al)GaAs. Consequently, many current laser designs rely on silicon waveguides with a thickness exceeding 220 nm, which helps coupling but limits their compatibility with standard CMOS technologies. To address this challenge, we perform detailed simulations focusing on 220-nm-thick silicon waveguides. We first examine how the mode profiles jointly depend on the silicon waveguide dimensions and the geometry and composition of the III-V stack. Based on this analysis, we propose a novel epitaxial design that enables effective III-V/Si coupling, with the optical mode strongly confined within the III-V waveguide in the gain section and efficiently transferred to the silicon waveguide in the passive sections. Moreover, the final design is shown to be robust to fabrication-induced deviations from nominal parameters. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

10 pages, 1724 KB  
Article
Fabrication Process Research for Silicon-Waveguide-Integrated Cavity Optomechanical Devices Using Magnesium Fluoride Protection
by Chengwei Xian, Pengju Kuang, Ning Fu, Zhe Li, Changsong Wang, Yi Zhang, Rudi Zhou, Guangjun Wen, Boyu Fan and Yongjun Huang
Micromachines 2025, 16(11), 1217; https://doi.org/10.3390/mi16111217 - 26 Oct 2025
Viewed by 2726
Abstract
As an emerging platform for high-precision sensing, integrated silicon-waveguide-based cavity optomechanical devices face a critical fabrication challenge in the co-fabrication of silicon-on-insulator (SOI) micromechanical structures and optical waveguides: the silicon oxide (SiO2) layer beneath the waveguides is susceptible to etching during [...] Read more.
As an emerging platform for high-precision sensing, integrated silicon-waveguide-based cavity optomechanical devices face a critical fabrication challenge in the co-fabrication of silicon-on-insulator (SOI) micromechanical structures and optical waveguides: the silicon oxide (SiO2) layer beneath the waveguides is susceptible to etching during hydrofluoric acid (HF) release of the microstructures, leading to waveguide collapse and significantly reducing production yields. This study proposes a novel selective protection process based on a magnesium fluoride (MgF2) thin film to address the critical challenge of long-range waveguide collapse during hydrofluoric acid (HF) etching. By depositing a MgF2 protective layer over the waveguide regions via optical coating technology, localized protection of specific SiO2 areas during HF etching is achieved. The experimental results demonstrate the successful release of silicon waveguides with lengths of up to 5000 μm and a significant improvement in production yield. This work provides a compatible and efficient strategy for the fabrication of robust photonic–microelectromechanical integrated devices. Full article
Show Figures

Figure 1

15 pages, 2936 KB  
Article
Experimental Characterization of a Silicon Nitride Asymmetric Loop-Terminated Mach-Zehnder Interferometer with a Refractive Index-Engineered Sensing Arm
by Muhammad A. Butt, Mateusz Słowikowski, Dagmara Drecka, Michał Jarosik and Ryszard Piramidowicz
Nanomaterials 2025, 15(19), 1532; https://doi.org/10.3390/nano15191532 - 8 Oct 2025
Cited by 4 | Viewed by 948
Abstract
We report the design, fabrication, and experimental characterization of an asymmetric loop-terminated Mach–Zehnder interferometer (a-LT-MZI) realized on a silicon nitride (SiN) platform for refractive index (RI) sensing. The LT-MZI architecture incorporates a Sagnac loop that enables bidirectional light propagation, effectively doubling the interaction [...] Read more.
We report the design, fabrication, and experimental characterization of an asymmetric loop-terminated Mach–Zehnder interferometer (a-LT-MZI) realized on a silicon nitride (SiN) platform for refractive index (RI) sensing. The LT-MZI architecture incorporates a Sagnac loop that enables bidirectional light propagation, effectively doubling the interaction length without enlarging the device footprint, enhancing sensitivity and improving stability against environmental noise. Subwavelength grating (SWG) waveguides were integrated into the sensing arm to further strengthen light-matter interaction. The fabricated devices exhibited stable and well-defined interference fringes, with uniform wavelength shifts that scaled linearly with changes in the surrounding refractive index. Standard a-LT-MZI structures (ΔL = 300 μm) achieved experimental sensitivities of 288.75–301.25 nm/RIU, while SWG-enhanced devices reached 496–518 nm/RIU, confirming the effectiveness of refractive index engineering. Comparative analysis against previously reported MZI-based sensors highlights the competitive performance of the proposed design. By combining the scalability and CMOS compatibility of silicon nitride with the sensitivity and robustness of the a-LT-MZI architecture, this device provides a compact and versatile platform for next-generation lab-on-chip photonic sensors. It holds strong potential for applications in biochemical diagnostics, medical testing, and environmental monitoring. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 1577 KB  
Review
Advances in Electro-Optical Devices Enabled by Waveguide-Based Thin-Film Lithium Niobate
by Jingsong Wang, Xun Lu, Di Qiao and Xingjuan Zhao
Crystals 2025, 15(10), 846; https://doi.org/10.3390/cryst15100846 - 28 Sep 2025
Viewed by 2834
Abstract
Lithium niobate (LN) materials have become a key platform for constructing core optoelectronic devices such as electro-optic (EO) modulators, optical frequency combs, and integrated optical waveguides, owing to their broad transparent window, mature waveguide processes, and excellent electro-optic effect. They demonstrate revolutionary application [...] Read more.
Lithium niobate (LN) materials have become a key platform for constructing core optoelectronic devices such as electro-optic (EO) modulators, optical frequency combs, and integrated optical waveguides, owing to their broad transparent window, mature waveguide processes, and excellent electro-optic effect. They demonstrate revolutionary application value in light source generation, signal transmission, and intensity modulation of optical communication systems, and are hailed as the “silicon of the photonics field,” attracting significant attention from both academia and industry. Especially with the commercialization of high-quality thin-film lithium niobate (TFLN) materials, the performance of thin-film optoelectronic devices based on waveguide structures has achieved leapfrog improvements, with their loss characteristics and modulation bandwidth far exceeding those of traditional bulk material devices. This paper systematically combs the photonic properties of LN materials, introduces in detail the electro-optic effect and electro-optic modulation principle of LN electro-optic modulators, reviews some recent research achievements of scholars, focuses on expounding the preparation processes of waveguide-based TFLN, the types of waveguide-based optoelectronic devices, and the research progress of these devices, and discusses and compares the advantages and development potential of different routes. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 4449 KB  
Article
Design of High-Efficiency Silicon Nitride Grating Coupler with Self-Compensation for Temperature Drift
by Qianwen Lin, Yunxin Wang, Yu Zhang, Chang Liu and Wenqi Wei
Photonics 2025, 12(10), 959; https://doi.org/10.3390/photonics12100959 - 28 Sep 2025
Cited by 1 | Viewed by 1280
Abstract
In order to solve the problem of the efficiency reduction and complex manufacturing of traditional grating couplers under environmental temperature fluctuations, a Si3N4 high-efficiency grating coupler integrating a distributed Bragg reflector (DBR) and thermo-optical tuning layer is proposed. In this [...] Read more.
In order to solve the problem of the efficiency reduction and complex manufacturing of traditional grating couplers under environmental temperature fluctuations, a Si3N4 high-efficiency grating coupler integrating a distributed Bragg reflector (DBR) and thermo-optical tuning layer is proposed. In this paper, the double-layer DBR is used to make the down-scattered light interfere with other light and reflect it back into the waveguide. The finite difference time domain (FDTD) method is used to simulate and optimize the key parameters such as grating period, duty cycle, incident angle and cladding thickness, achieving a coupling efficiency of −1.59 dB and a 3 dB bandwidth of 106 nm. In order to further enhance the temperature stability, the amorphous silicon (a-Si) thermo-optical material layer and titanium metal serpentine heater are embedded in the DBR. The reduction in coupling efficiency caused by fluctuations in environmental temperature is compensated via local temperature control. The simulation results show that within the wide temperature range from −55 °C to 150 °C, the compensated coupling efficiency fluctuation is less than 0.02 dB, and the center wavelength undergoes a blue shift. This design is compatible with complementary metal-oxide-semiconductor (CMOS) processes, which not only simplifies the fabrication process but also significantly improves device stability over a wide temperature range. This provides a feasible and efficient coupling solution for photonic integrated chips in non-temperature-controlled environments, such as optical communications, data centers, and automotive systems. Full article
Show Figures

Figure 1

Back to TopTop