Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (29,774)

Search Parameters:
Keywords = integral assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4870 KiB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 (registering DOI) - 5 Aug 2025
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

25 pages, 4069 KiB  
Article
Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning
by Penghao Ji, Wanlong Pang, Rong Su, Runhong Gao, Pengwu Zhao, Lidong Pang and Huaxia Yao
Forests 2025, 16(8), 1280; https://doi.org/10.3390/f16081280 - 5 Aug 2025
Abstract
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have [...] Read more.
Forest volume is an important information for assessing the economic value and carbon sequestration capacity of forest resources and serves as a key indicator for energy flow and biodiversity. Although remote sensing technology is applied to estimate volume, optical remote sensing data have limitations in capturing forest vertical height information and may suffer from reflectance saturation. While LiDAR data can provide more detailed vertical structural information, they come with high processing costs and limited observation range. Therefore, improving the accuracy of volume estimation through multi-source data fusion has become a crucial challenge and research focus in the field of forest remote sensing. In this study, we integrated Sentinel-2 multispectral data, Resource-3 stereoscopic imagery, UAV-based LiDAR data, and field survey data to quantitatively estimate the forest volume in Saihanwula Nature Reserve, located in Inner Mongolia, China, on the southern part of Daxing’anling Mountains. The study evaluated the performance of multi-source remote sensing features by using recursive feature elimination (RFE) to select the most relevant factors and applied four machine learning models—multiple linear regression (MLR), k-nearest neighbors (kNN), random forest (RF), and gradient boosting regression tree (GBRT)—to develop volume estimation models. The evaluation metrics include the coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (rRMSE). The results show that (1) forest Canopy Height Model (CHM) data were strongly correlated with forest volume, helping to alleviate the reflectance saturation issues inherent in spectral texture data. The fusion of CHM and spectral data resulted in an improved volume estimation model with R2 = 0.75 and RMSE = 8.16 m3/hm2, highlighting the importance of integrating multi-source canopy height information for more accurate volume estimation. (2) Volume estimation accuracy varied across different tree species. For Betula platyphylla, we obtained R2 = 0.71 and RMSE = 6.96 m3/hm2; for Quercus mongolica, R2 = 0.74 and RMSE = 6.90 m3/hm2; and for Populus davidiana, R2 = 0.51 and RMSE = 9.29 m3/hm2. The total forest volume in the Saihanwula Reserve ranges from 50 to 110 m3/hm2. (3) Among the four machine learning models, GBRT consistently outperformed others in all evaluation metrics, achieving the highest R2 of 0.86, lowest RMSE of 9.69 m3/hm2, and lowest rRMSE of 24.57%, suggesting its potential for forest biomass estimation. In conclusion, accurate estimation of forest volume is critical for evaluating forest management practices and timber resources. While this integrated approach shows promise, its operational application requires further external validation and uncertainty analysis to support policy-relevant decisions. The integration of multi-source remote sensing data provides valuable support for forest resource accounting, economic value assessment, and monitoring dynamic changes in forest ecosystems. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

18 pages, 1632 KiB  
Article
Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes
by Mariola Gepfert, Artur Gołaś, Robert Roczniok, Jan Walencik, Kamil Węgrzynowicz and Adam Zając
J. Funct. Morphol. Kinesiol. 2025, 10(3), 304; https://doi.org/10.3390/jfmk10030304 - 5 Aug 2025
Abstract
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to [...] Read more.
Background: This study aimed to examine the effects of an 8-week plyometric training program on lower-limb explosive strength, jump performance, musculotendinous stiffness, reactive strength index (RSI), and multidirectional speed in elite Polish badminton players. Methods: Twenty-four athletes were randomly assigned to either an experimental group (n = 15), which supplemented their regular badminton training with plyometric exercises, or a control group (n = 15), which continued standard technical training. Performance assessments included squat jump (SJ), countermovement jump (CMJ), single-leg jumps, sprint tests (5 m, 10 m), lateral movements, musculotendinous stiffness, and RSI measurements. Results: The experimental group showed statistically significant improvements in jump height, power output, stiffness, and 10 m sprint and lateral slide-step performance (p < 0.05), with large effect sizes. No significant changes were observed in the control group. Single-leg jump improvements suggested potential benefits for addressing lower-limb asymmetries. Conclusions: An 8-week plyometric intervention significantly enhanced lower-limb explosive performance and multidirectional movement capabilities in young badminton players. These findings support the integration of targeted plyometric training into regular training programs to optimize physical performance, improve movement efficiency, and potentially reduce injury risk in high-intensity racket sports. Full article
Show Figures

Figure 1

32 pages, 1217 KiB  
Article
Bridging Interoperability Gaps Between LCA and BIM: Analysis of Limitations for the Integration of EPD Data in IFC
by Aitor Aragón, Paulius Spudys, Darius Pupeikis, Óscar Nieto and Marcos Garcia Alberti
Buildings 2025, 15(15), 2760; https://doi.org/10.3390/buildings15152760 - 5 Aug 2025
Abstract
The construction industry is a major consumer of raw materials and a significant contributor to environmental emissions. Life cycle assessment (LCA) using digital models is a valuable tool for conducting a science-based analysis to reduce these impacts. However, transferring data from environmental product [...] Read more.
The construction industry is a major consumer of raw materials and a significant contributor to environmental emissions. Life cycle assessment (LCA) using digital models is a valuable tool for conducting a science-based analysis to reduce these impacts. However, transferring data from environmental product declarations (EPDs) to BIM for the purpose of sustainability assessment requires significant resources for its interpretation and integration. This study is founded on a comprehensive review of the scientific literature and standards, an analysis of published digital EPDs, and a thorough evaluation of IFC (industry foundation classes), identifying twenty gaps for the automated incorporation of LCA data from construction products into BIM. The identified limitations were assessed using the digital model of a building pilot, applying simplifications to incorporate actual EPD data. This paper presents the identified barriers to the automated incorporation of digital EPDs into BIM, and proposes eleven concrete actions to improve IFC 4.3. While prior studies have analyzed the environmental data in IFC, this research is significant in two key areas. Firstly, it focuses on the direct machine interpretation of environmental information without human intervention. Secondly, it is intended to be directly applicable to a revision of the IFC standards. Full article
(This article belongs to the Special Issue Research on BIM—Integrated Construction Operation Simulation)
21 pages, 432 KiB  
Review
Interplay Between Depression and Inflammatory Bowel Disease: Shared Pathogenetic Mechanisms and Reciprocal Therapeutic Impacts—A Comprehensive Review
by Amalia Di Petrillo, Agnese Favale, Sara Onali, Amit Kumar, Giuseppe Abbracciavento and Massimo Claudio Fantini
J. Clin. Med. 2025, 14(15), 5522; https://doi.org/10.3390/jcm14155522 - 5 Aug 2025
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. Although the aetiology of IBD remains largely unknown, several studies suggest that an individual’s genetic susceptibility, external environmental factors, intestinal microbial flora, and immune responses are all factors involved in [...] Read more.
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. Although the aetiology of IBD remains largely unknown, several studies suggest that an individual’s genetic susceptibility, external environmental factors, intestinal microbial flora, and immune responses are all factors involved in and functionally linked to the pathogenesis of IBD. Beyond the gastrointestinal manifestations, IBD patients frequently suffer from psychiatric comorbidities, particularly depression and anxiety. It remains unclear whether these disorders arise solely from reduced quality of life or whether they share overlapping biological mechanisms with IBD. This review aims to explore the bidirectional relationship between IBD and depressive disorders (DDs), with a focus on four key shared mechanisms: immune dysregulation, genetic susceptibility, alterations in gut microbiota composition, and dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis. By examining recent literature, we highlight how these interconnected systems may contribute to both intestinal inflammation and mood disturbances. Furthermore, we discuss the reciprocal pharmacologic interactions between IBD and DDs: treatments for IBD, such as TNF-alpha and integrin inhibitors, have demonstrated effects on mood and anxiety symptoms, while certain antidepressants appear to exert independent anti-inflammatory properties, potentially reducing the risk or severity of IBD. Overall, this review underscores the need for a multidisciplinary approach to the care of IBD patients, integrating psychological and gastroenterological assessment. A better understanding of the shared pathophysiology may help refine therapeutic strategies and support the development of personalized, gut–brain-targeted interventions. Full article
Show Figures

Figure 1

38 pages, 471 KiB  
Review
Sleep Disorders and Stroke: Pathophysiological Links, Clinical Implications, and Management Strategies
by Jamir Pitton Rissardo, Ibrahim Khalil, Mohamad Taha, Justin Chen, Reem Sayad and Ana Letícia Fornari Caprara
Med. Sci. 2025, 13(3), 113; https://doi.org/10.3390/medsci13030113 - 5 Aug 2025
Abstract
Sleep disorders and stroke are intricately linked through a complex, bidirectional relationship. Sleep disturbances such as obstructive sleep apnea (OSA), insomnia, and restless legs syndrome (RLS) not only increase the risk of stroke but also frequently emerge as consequences of cerebrovascular events. OSA, [...] Read more.
Sleep disorders and stroke are intricately linked through a complex, bidirectional relationship. Sleep disturbances such as obstructive sleep apnea (OSA), insomnia, and restless legs syndrome (RLS) not only increase the risk of stroke but also frequently emerge as consequences of cerebrovascular events. OSA, in particular, is associated with a two- to three-fold increased risk of incident stroke, primarily through mechanisms involving intermittent hypoxia, systemic inflammation, endothelial dysfunction, and autonomic dysregulation. Conversely, stroke can disrupt sleep architecture and trigger or exacerbate sleep disorders, including insomnia, hypersomnia, circadian rhythm disturbances, and breathing-related sleep disorders. These post-stroke sleep disturbances are common and significantly impair rehabilitation, cognitive recovery, and quality of life, yet they remain underdiagnosed and undertreated. Early identification and management of sleep disorders in stroke patients are essential to optimize recovery and reduce the risk of recurrence. Therapeutic strategies include lifestyle modifications, pharmacological treatments, medical devices such as continuous positive airway pressure (CPAP), and emerging alternatives for CPAP-intolerant individuals. Despite growing awareness, significant knowledge gaps persist, particularly regarding non-OSA sleep disorders and their impact on stroke outcomes. Improved diagnostic tools, broader screening protocols, and greater integration of sleep assessments into stroke care are urgently needed. This narrative review synthesizes current evidence on the interplay between sleep and stroke, emphasizing the importance of personalized, multidisciplinary approaches to diagnosis and treatment. Advancing research in this field holds promise for reducing the global burden of stroke and improving long-term outcomes through targeted sleep interventions. Full article
43 pages, 2199 KiB  
Article
Hydroprocessed Ester and Fatty Acids to Jet: Are We Heading in the Right Direction for Sustainable Aviation Fuel Production?
by Mathieu Pominville-Racette, Ralph Overend, Inès Esma Achouri and Nicolas Abatzoglou
Energies 2025, 18(15), 4156; https://doi.org/10.3390/en18154156 - 5 Aug 2025
Abstract
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) [...] Read more.
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) reduction potential for the HEFA-tJ pathway compared to competing markets using the same resources for road diesel production. Moderate yield variations between air and road pathways lead to several hundred thousand tons less GHG reduction per project, which is generally not evaluated thoroughly in standard environmental assessments. This work demonstrates that, although the HEFA-tJ market seems to have more attractive features than biodiesel/renewable diesel, considerable viability risks might manifest as HEFA-tJ fuel market integration rises. The need for more transparent data and effort in this regard, before envisaging making decisions regarding the volume of HEFA-tJ production, is emphasized. Overall, reducing the carbon intensity of road diesel appears to be less capital-intensive, less risky, and several times more efficient in reducing GHG emissions. Full article
(This article belongs to the Special Issue Sustainable Approaches to Energy and Environment Economics)
28 pages, 1146 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

28 pages, 11519 KiB  
Article
Identifying Sustainable Offshore Wind Farm Sites in Greece Under Climate Change
by Vasiliki I. Chalastani, Elissavet Feloni, Carlos M. Duarte and Vasiliki K. Tsoukala
J. Mar. Sci. Eng. 2025, 13(8), 1508; https://doi.org/10.3390/jmse13081508 - 5 Aug 2025
Abstract
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms [...] Read more.
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms (OWFs) is a challenge for renewable energy policy and marine spatial planning (MSP). To address these issues, this study considers the marine space of Greece to propose a GIS-based multi-criteria decision-making (MCDM) framework employing the Analytic Hierarchy Process (AHP) to identify suitable sites for OWFs. The approach assesses 19 exclusion criteria encompassing legislative, environmental, safety, and technical constraints to determine the eligible areas. Subsequently, 10 evaluation criteria are weighted to determine the selected areas’ level of suitability. The study considers baseline conditions (1981–2010) and future climate scenarios based on RCP 4.5 and RCP 8.5 for two horizons (2011–2040 and 2041–2070), integrating projected wind velocities and sea level rise to evaluate potential shifts in suitable areas. Results indicate the central and southeastern Aegean Sea as the most suitable areas for OWF deployment. Climate projections indicate a modest increase in suitable areas. The findings serve as input for climate-resilient MSP seeking to promote sustainable energy development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

23 pages, 7533 KiB  
Article
Risk Management of Rural Road Networks Exposed to Natural Hazards: Integrating Social Vulnerability and Critical Infrastructure Access in Decision-Making
by Marta Contreras, Alondra Chamorro, Nikole Guerrero, Carolina Martínez, Tomás Echaveguren, Eduardo Allen and Nicolás C. Bronfman
Sustainability 2025, 17(15), 7101; https://doi.org/10.3390/su17157101 - 5 Aug 2025
Abstract
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences [...] Read more.
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences of hazard events alone, specialized literature increasingly suggests the development of a more comprehensive approach for risk assessment, where not only physical aspects associated with infrastructure, such as damage level or disruptions, but also the social and economic attributes of the affected population are considered. Consequently, this paper proposes a Vulnerability Access Index (VAI) to support road network decision-making that integrates the social vulnerability of rural communities exposed to natural events, their accessibility to nearby critical infrastructure, and physical risk. The research methodology considers (i) the Social Vulnerability Index (SVI) calculation based on socioeconomic variables, (ii) Importance Index estimation (Iimp) to evaluate access to critical infrastructure, (iii) VAI calculation combining SVI and Iimp, and (iv) application to a case study in the influence area of the Villarrica volcano in southern Chile. The results show that when incorporating social variables and accessibility, infrastructure criticality varies significantly compared to the infrastructure criticality assessment based solely on physical risk, modifying the decision-making regarding road infrastructure robustness and resilience improvements. Full article
Show Figures

Figure 1

10 pages, 594 KiB  
Article
Perspectives of Physiotherapists on Immune Functioning in Oncological Rehabilitation in the Netherlands: Insights from a Qualitative Study
by Anne M. S. de Hoop, Karin Jäger, Jaap J. Dronkers, Cindy Veenhof, Jelle P. Ruurda, Cyrille A. M. Krul, Raymond H. H. Pieters and Karin Valkenet
Appl. Sci. 2025, 15(15), 8673; https://doi.org/10.3390/app15158673 (registering DOI) - 5 Aug 2025
Abstract
Oncology physiotherapists frequently provide care for patients experiencing severe immunosuppression. Exercise immunology, the science that studies the effects of exercise on the immune system, is a rapidly evolving field with direct relevance to oncology physiotherapists. Understanding oncology physiotherapists’ perspectives on the subject of [...] Read more.
Oncology physiotherapists frequently provide care for patients experiencing severe immunosuppression. Exercise immunology, the science that studies the effects of exercise on the immune system, is a rapidly evolving field with direct relevance to oncology physiotherapists. Understanding oncology physiotherapists’ perspectives on the subject of immune functioning is essential to explore its possible integration into clinical reasoning. This study aimed to assess the perspectives of oncology physiotherapists concerning immune functioning in oncology physiotherapy. For this qualitative research, semi-structured interviews were performed with Dutch oncology physiotherapists. Results were analyzed via inductive thematic analysis, followed by a validation step with participants. Fifteen interviews were performed. Participants’ ages ranged from 30 to 63 years. Emerging themes were (1) the construct ‘immune functioning’ (definition, and associations with this construct in oncology physiotherapy), (2) characteristics related to decreased immune functioning (in oncology physiotherapy), (3) negative and positive influences on immune functioning (in oncology physiotherapy), (4) tailored physiotherapy treatment, (5) treatment outcomes in oncology physiotherapy, (6) the oncology physiotherapist within cancer care, and (7) measurement and interpretation of immune functioning. In conclusion, oncology physiotherapists play an important role in the personalized and comprehensive care of patients with cancer. They are eager to learn more about immune functioning with the goal of better informing patients about the health effects of exercise and to tailor their training better. Future exercise-immunology research should clarify the effects of different exercise modalities on immune functioning, and how physiotherapists could evaluate these effects. Full article
(This article belongs to the Special Issue Novel Approaches of Physical Therapy-Based Rehabilitation)
Show Figures

Figure 1

27 pages, 4690 KiB  
Article
Research and Development of Test Automation Maturity Model Building and Assessment Methods for E2E Testing
by Daiju Kato, Ayane Mogi, Hiroshi Ishikawa and Yasufumi Takama
Software 2025, 4(3), 19; https://doi.org/10.3390/software4030019 - 5 Aug 2025
Abstract
Background: While several test-automation maturity models (e.g., CMMI, TMMi, TAIM) exist, none explicitly integrate ISO 9001-based quality management systems (QMS), leaving a gap for organizations that must align E2E test automation with formal quality assurance. Objective: This study proposes a test-automation maturity model [...] Read more.
Background: While several test-automation maturity models (e.g., CMMI, TMMi, TAIM) exist, none explicitly integrate ISO 9001-based quality management systems (QMS), leaving a gap for organizations that must align E2E test automation with formal quality assurance. Objective: This study proposes a test-automation maturity model (TAMM) that bridges E2E automation capability with ISO 9001/ISO 9004 self-assessment principles, and evaluates its reliability and practical impact in industry. Methods: TAMM comprises eight maturity dimensions, 39 requirements, and 429 checklist items. Three independent assessors applied the checklist to three software teams; inter-rater reliability was ensured via consensus review (Cohen’s κ = 0.75). Short-term remediation actions based on the checklist were implemented over six months and re-assessed. Synergy with the organization’s ISO 9001 QMS was analyzed using ISO 9004 self-check scores. Results: Within 6 months of remediation, mean TAMM score rose from 2.75 → 2.85. Inter-rater reliability is filled with Cohen’s κ = 0.75. Conclusions: The proposed TAMM delivers measurable, short-term maturity gains and complements ISO 9001-based QMS without introducing conflicting processes. Practitioners can use the checklist to identify actionable gaps, prioritize remediation, and quantify progress, while researchers may extend TAMM to other domains or automate scoring via repository mining. Full article
(This article belongs to the Special Issue Software Reliability, Security and Quality Assurance)
Show Figures

Figure 1

35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

10 pages, 228 KiB  
Review
A Review of the Latest Updates in Cytogenetic and Molecular Classification and Emerging Approaches in Identifying Abnormalities in Acute Lymphoblastic Leukemia
by Chaimae El Mahdaoui, Hind Dehbi and Siham Cherkaoui
Lymphatics 2025, 3(3), 23; https://doi.org/10.3390/lymphatics3030023 - 5 Aug 2025
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous hematologic malignancy defined by the uncontrolled proliferation of lymphoid precursors. Accurate diagnosis and effective therapeutic strategies hinge on a comprehensive understanding of the genetic and molecular landscape of ALL. This review synthesizes the latest updates in [...] Read more.
Acute lymphoblastic leukemia (ALL) is a heterogeneous hematologic malignancy defined by the uncontrolled proliferation of lymphoid precursors. Accurate diagnosis and effective therapeutic strategies hinge on a comprehensive understanding of the genetic and molecular landscape of ALL. This review synthesizes the latest updates in cytogenetic and molecular classifications, emphasizing the 2022 World Health Organization (WHO) and International Consensus Classification (ICC) revisions. Key chromosomal alterations such as BCR::ABL1 and ETV6::RUNX1 and emerging subtypes including Ph-like ALL, DUX4, and MEF2D rearrangements are examined for their prognostic significance. Furthermore, we assess novel diagnostic tools, notably next-generation sequencing (NGS) and optical genome mapping (OGM). While NGS excels at identifying point mutations and small indels, OGM offers high-resolution structural variant detection with 100% sensitivity in multiple validation studies. These advancements enhance our grasp of leukemogenesis and pave the way for precision medicine in both B- and T-cell ALL. Ultimately, integrating these innovations into routine diagnostics is crucial for personalized patient management and improving clinical outcomes. Full article
(This article belongs to the Collection Acute Lymphoblastic Leukemia (ALL))
23 pages, 2081 KiB  
Article
Rapid Soil Tests for Assessing Soil Health
by Jan Adriaan Reijneveld and Oene Oenema
Appl. Sci. 2025, 15(15), 8669; https://doi.org/10.3390/app15158669 (registering DOI) - 5 Aug 2025
Abstract
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and [...] Read more.
Soil testing has long been used to optimize fertilization and crop production. More recently, soil health testing has emerged to reflect the growing interest in soil multifunctionality and ecosystem services. Soil health encompasses physical, chemical, and biological properties that support ecosystem functions and sustainable agriculture. Despite its relevance to several United Nations Sustainable Development Goals (SDGs 1, 2, 3, 6, 12, 13, and 15), comprehensive soil health testing is not widely practiced due to complexity and cost. The aim of the study presented here was to contribute to the further development, implementation, and testing of an integrated procedure for soil health assessment in practice. We developed and tested a rapid, standardized soil health assessment tool that combines near-infrared spectroscopy (NIRS) and multi-nutrient 0.01 M CaCl2 extraction with Inductive Coupled Plasma Mass Spectroscopy analysis. The tool evaluates a wide range of soil characteristics with high accuracy (R2 ≥ 0.88 for most parameters) and has been evaluated across more than 15 countries, including those in Europe, China, New Zealand, and Vietnam. The results are compiled into a soil health indicator report with tailored management advice and a five-level ABCDE score. In a Dutch test set, 6% of soils scored A (optimal), while 2% scored E (degraded). This scalable tool supports land users, agrifood industries, and policymakers in advancing sustainable soil management and evidence-based environmental policy. Full article
(This article belongs to the Special Issue Soil Analysis in Different Ecosystems)
Show Figures

Figure 1

Back to TopTop