Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = instantaneous frequency measurement (IFM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5202 KiB  
Article
Power-Independent Microwave Photonic Instantaneous Frequency Measurement System
by Ruiqiong Wang and Yongjun Li
Sensors 2025, 25(14), 4382; https://doi.org/10.3390/s25144382 - 13 Jul 2025
Viewed by 339
Abstract
The ability to perform instantaneous frequency measurement (IFM) of unknown microwave signals holds significant importance across various application domains. This paper presents a power-independent microwave photonic IFM system. The proposed system implements frequency measurement through the construction of an amplitude comparison function (ACF) [...] Read more.
The ability to perform instantaneous frequency measurement (IFM) of unknown microwave signals holds significant importance across various application domains. This paper presents a power-independent microwave photonic IFM system. The proposed system implements frequency measurement through the construction of an amplitude comparison function (ACF) curve, achieved by introducing a frequency-dependent time delay via an optical tunable delay line (OTDL) for the signal under test (SUT). System simulation demonstrates the measurement capability across a wide bandwidth of 0.1–40 GHz with high precision, exhibiting frequency errors ranging from −0.03 to 0.04 GHz. The scheme also maintains consistent performance under varying input power levels. Key implementation aspects, including single-sideband modulation selection and system extension methods, are analyzed in detail to optimize measurement accuracy. Notably, the proposed architecture features a simple and compact design with excellent integration potential. These characteristics, combined with its wide operational bandwidth and high measurement precision, make this approach particularly suitable for demanding applications in electronic reconnaissance and communication. Full article
(This article belongs to the Special Issue Advanced Microwave Sensors and Their Applications in Measurement)
Show Figures

Figure 1

15 pages, 8095 KiB  
Article
Reanalysis on Performance of Microwave Phase Detector for Multisignals
by Jing Deng, Hongxun Wang and Xin Xiang
Sensors 2024, 24(24), 8076; https://doi.org/10.3390/s24248076 - 18 Dec 2024
Viewed by 692
Abstract
Microwave phase detectors (MPDs) are key components of instantaneous frequency measurement (IFM) receivers and phase interferometer direction finding (PIF-DF) receivers. In conventional analyses, there is seldom a major quantitative discussion of MPD characterization when multiple signals arrive at the same time, which is [...] Read more.
Microwave phase detectors (MPDs) are key components of instantaneous frequency measurement (IFM) receivers and phase interferometer direction finding (PIF-DF) receivers. In conventional analyses, there is seldom a major quantitative discussion of MPD characterization when multiple signals arrive at the same time, which is often the case in complex and noisy electromagnetic environments. We have reanalyzed the characteristics of MPDs with respect to filter effects acting on more than two RF signals and differential amplifiers, which are not considered in conventional analyses. First, a step-by-step mathematical model of the signal flow is developed, which creates a cross term between the two signals and naturally introduces intermodulation effects. Second, the new response characteristics of the MPD are evaluated by simulation. Finally, the intermodulation effects of zero-forcing and extreme-forcing were found simultaneously in the crosspoint frequency and near-frequency regions of multiple signals, which led to significant deviations and errors in the output of the MPD. This effect may have significant implications for IFM and PIF-DF receivers. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 5217 KiB  
Article
A Real-Time Signal Measurement System Using FPGA-Based Deep Learning Accelerators and Microwave Photonic
by Longlong Zhang, Tong Zhou, Jie Yang, Yin Li, Zhiwen Zhang, Xiang Hu and Yuanxi Peng
Remote Sens. 2024, 16(23), 4358; https://doi.org/10.3390/rs16234358 - 22 Nov 2024
Viewed by 1512
Abstract
Deep learning techniques have been widely investigated as an effective method for signal measurement in recent years. However, most existing deep learning-based methods still face difficulty in deploying on embedded platforms and perform poorly in real-time applications. To address this, this paper develops [...] Read more.
Deep learning techniques have been widely investigated as an effective method for signal measurement in recent years. However, most existing deep learning-based methods still face difficulty in deploying on embedded platforms and perform poorly in real-time applications. To address this, this paper develops two accelerators, as the core of the signal measurement system, for intelligent signal processing. Firstly, by introducing the idea of automated framework, we propose a simplest deep neural network (DNN)-based hardware structure, which automatically maps algorithms to hardware modules, supports configurable parameters, and has the advantage of low latency, with an average inference time of only 3.5 μs. Subsequently, another accelerator is designed with the efficient hardware structure of the long short-term memory (LSTM) + DNN model, demonstrating outstanding performance with a classification accuracy of 98.82%, mean absolute error (MAE) of 0.27°, and root mean square errors (RMSE) of 0.392° after model compression. Moreover, parallel optimization strategies are exploited to further reduce latency and support simultaneous frequency and direction measurement tasks. Finally, we test the actual collected signal data on the XCVU13P field programmable gate array (FPGA). The results show that the time of inference saves 28–31% for the DNN model and 71–73% for the LSTM + DNN model compared to running on graphic processing unit (GPU). In addition, the parallel strategies further decrease the delay by 23.9% and 37.5% when processing continuous data. The FPGA-based and deep learning-assisted hardware accelerators significantly improve real-time performance and provide a promising solution for signal measurement. Full article
Show Figures

Figure 1

18 pages, 2147 KiB  
Article
An Efficient Digital Channelized Receiver for Low SNR and Wideband Chirp Signals Detection
by Wenhai Cheng, Qunying Zhang, Wei Lu, Haiying Wang and Xiaojun Liu
Appl. Sci. 2023, 13(5), 3080; https://doi.org/10.3390/app13053080 - 27 Feb 2023
Cited by 5 | Viewed by 2840
Abstract
Synthetic aperture radar (SAR) is essential for obtaining intelligence in modern information warfare. Wideband chirp signals with a low signal-to-noise ratio (SNR) are widely used in SAR. Intercepting low-SNR wideband chirp signals is of great significance for anti-SAR reconnaissance. Digital channelization technology is [...] Read more.
Synthetic aperture radar (SAR) is essential for obtaining intelligence in modern information warfare. Wideband chirp signals with a low signal-to-noise ratio (SNR) are widely used in SAR. Intercepting low-SNR wideband chirp signals is of great significance for anti-SAR reconnaissance. Digital channelization technology is an effective means to intercept wideband signals. The existing digital channelization methods have the following problems: the contradiction of reception blind zone and signal spectrum aliasing, high computational complexity, and low estimating accuracy for chirp signals with a low SNR. This paper proposes a non-critical sampling digital channelized receiver architecture to intercept chirp signals. The receiver architecture has no blind zone in channel division and no aliasing of signal spectrum in the channel, which can provide reliable instantaneous frequency measurements. An adaptive threshold generation algorithm is proposed to detect signals without prior information. In addition, an improved instantaneous frequency measurement (IFM) algorithm is proposed, improving low SNR chirp signals’ frequency estimation accuracy. Moreover, a simple channel arbitration logic is proposed to complete the cross-channel combination of wideband signals. Simulations show that the proposed receiver architecture is reliable and robust for low SNR and wideband chirp signal detection. When the input SNR is 0 dB, the absolute frequency root-mean-square error (RMSE) of bandwidth and the center frequency is 0.57 MHz and 1.05 MHz, respectively. This frequency accuracy is great for radio frequency (RF) wideband systems. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

8 pages, 2273 KiB  
Article
Instantaneous Frequency Measurement with Reasonable Resolution and Simple Structure
by Qing-An Ding, Junkai Li, Huixin Liu, Xudong Cheng, Anhui Liang, Liuge Du, Li Zheng, Zhenfei Dai, Qunying Yang and Jun Li
Photonics 2022, 9(10), 685; https://doi.org/10.3390/photonics9100685 - 23 Sep 2022
Cited by 1 | Viewed by 2290
Abstract
Microwave signals carry important intelligence information in electronic warfare. Hence, the measurement of microwave signals plays a very important role. Traditional electronic microwave measurement systems are not appropriate for the instantaneous frequency measurement (IFM) of high-speed signals. A simple and low-cost photonic approach [...] Read more.
Microwave signals carry important intelligence information in electronic warfare. Hence, the measurement of microwave signals plays a very important role. Traditional electronic microwave measurement systems are not appropriate for the instantaneous frequency measurement (IFM) of high-speed signals. A simple and low-cost photonic approach to the IFM based on frequency-to-power mapping is proposed and demonstrated with a reasonable resolution. The measurement is performed on account of a double Mach–Zehnder modulator (MZM), single-mode fiber (SMF), photodetector (PD), and signal processing. The scheme using four wavelengths achieves resolutions of ±0.1 and ±0.09 GHz respectively for the 15.8–18.4 and 18.4−21.2 GHz frequency measurement ranges. Therefore, the scheme is a broad prospects method for high-resolution IFM. Moreover, it is of great importance for applications in electronic warfare and high-resolution sensor systems. Full article
Show Figures

Figure 1

14 pages, 3446 KiB  
Article
Some of Problems of Direction Finding of Ground-Based Radars Using Monopulse Location System Installed on Unmanned Aerial Vehicle
by Adam Rutkowski and Adam Kawalec
Sensors 2020, 20(18), 5186; https://doi.org/10.3390/s20185186 - 11 Sep 2020
Cited by 15 | Viewed by 4677
Abstract
Locating active radars in real environmental conditions is a very important and complex task. The efficiency of the direction finding (DF) of ground-based radars and other microwave emitters using unmanned aerial vehicles (UAV) is dependent on the parameters of applied devices for angle [...] Read more.
Locating active radars in real environmental conditions is a very important and complex task. The efficiency of the direction finding (DF) of ground-based radars and other microwave emitters using unmanned aerial vehicles (UAV) is dependent on the parameters of applied devices for angle location of microwave emitters, and on the construction and modes of operation of the observed transmitting antenna systems. An additional factor having the influence on DF of the radar, when are used systems installed on the UAV, is the rotation of the antenna of a radar. The accuracy of estimation of direction of any microwave transmitter is determined by the terrain properties that surround the transmitter and the objects reflecting microwave signals. The exemplary shapes of the radar antenna patterns and the associated relationships with the probability of remotely detecting the radar and determining its bearings are described. The simulated patterns of the signals received at an emitter-locating device mounted on a UAV and the expected results of a monopulse DF based on these signals are presented. The novelty of this work is the analysis of the DF efficiency of radars in conditions where intense multi-path phenomena appear, and for various amplitudes and phases of the direct signal and multi-path signals that reach the UAV when assuming that so-called simple signals and linear frequency modulation (LFM) signals are transmitted by the radar. The primary focus is on multi-path phenomenon, which can make it difficult, but not entirely impossible, to detect activity and location of radar with a low-flying small UAV and using only monopulse techniques, that is, when only a single pulse emitted by a radar must be sufficient to DF of this radar. Direction of arrival (DOA) algorithms of signals in dense signal environment were not presented in the work, but relevant suggestions were made for the design of such algorithms. Full article
(This article belongs to the Special Issue Microwave Sensors and Radar Techniques)
Show Figures

Figure 1

Back to TopTop