Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (186)

Search Parameters:
Keywords = infectious bronchitis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7415 KiB  
Article
Development and Protective Efficacy of a Novel Nanoparticle Vaccine for Gammacoronavirus Avain Infectious Bronchitis Virus
by Ting Xiong, Yanfen Lyu, Hongmei Li, Ting Xu, Shuting Wu, Zekun Yang, Mengyao Jing, Fei Xu, Dingxiang Liu and Ruiai Chen
Vaccines 2025, 13(8), 802; https://doi.org/10.3390/vaccines13080802 - 28 Jul 2025
Viewed by 314
Abstract
Background: Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. The GI-19 is a predominant lineage. However, no effective commercially available vaccines against this virus are available. Methods: In [...] Read more.
Background: Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. The GI-19 is a predominant lineage. However, no effective commercially available vaccines against this virus are available. Methods: In this present study, the CHO eukaryotic and the E.coli prokaryotic expression system were used to express S1-SpyTag and AP205-SpyCatcher, respectively. Subsequently, the purified S1-SpyTag and AP205-SpyCatcher were coupled to form the nanoparticles AP205-S1 (nAP205-S1) in PBS buffer at 4 °C for 48 h. S1-SpyTag and nAP205-S1 were formulated into vaccines with white oil adjuvant and employed to immunize 1-day-old SPF chickens for the comparative evaluation of their immune efficacy. Results: The nAP205-S1 vaccine in chickens induced robust IBV-specific humoral and cellular immune responses in vivo. Importantly, the humoral and cellular immune responses elicited by the nAP205-S1 vaccine were more robust than those induced by the IBV S1-SpyTag vaccine at both the same dose and double the dose, with a notably significant difference observed in the cellular immune response. Furthermore, experimental data revealed that chicken flocks vaccinated with nAP205-S1 achieved 100% group protection following a challenge, exhibiting a potent protective immune response and effectively inhibiting viral shedding. Conclusions: These results reveal the potential of developing a novel nanoparticle vaccine with broadly protective immunity against GI-19 IBV. Full article
(This article belongs to the Special Issue Vaccines for Poultry Viruses)
Show Figures

Figure 1

15 pages, 288 KiB  
Article
Effect of Dietary Supplementation of Biochars on Growth Performance, Bone Mineralization, Footpad Health, Lymphoid Organs Weight, Antibody Titers of Newcastle Disease and Infectious Bronchitis Disease in Broiler Chicks
by Raheel Pervaiz, Riaz Mustafa, Umar Farooq, Waseem Abbas, Muhammad Farooq Khalid, Abdur Rehman, Munawar Hussain, Muhammad Muzammil Riaz, Asfa Fatima and Muhammad Aziz ur Rahman
Vet. Sci. 2025, 12(7), 680; https://doi.org/10.3390/vetsci12070680 - 18 Jul 2025
Viewed by 304
Abstract
This study evaluated the effect of biochars on growth performance, nutrient digestibility, carcass yield, bone mineralization, litter quality and footpad lesions in broilers. Eight hundred day-old chicks were randomly divided into four treatments, 10 replicates per treatment (20 birds/replicate) for 35 days. Treatments [...] Read more.
This study evaluated the effect of biochars on growth performance, nutrient digestibility, carcass yield, bone mineralization, litter quality and footpad lesions in broilers. Eight hundred day-old chicks were randomly divided into four treatments, 10 replicates per treatment (20 birds/replicate) for 35 days. Treatments were basal diet (control), a control diet with corncob (CC) biochar (1%), a control diet with wheat straw (WS) biochar (1%) and a control diet with sugarcane bagasse (SCB) biochar (1%). Body weight gain (BWG), feed intake (FI) and feed conversion ratio (FCR) were recorded weekly. Nutrient digestibility, bone mineralization and carcass parameters were determined on the 21st and 35th days, while footpad lesions and litter quality were also assessed. The results revealed significant improvement (p < 0.05) in FI, BWG and FCR with supplementation. Nutrient digestibility was higher (p < 0.05) in the SCB biochar group. Tibia calcium and phosphorus levels were enhanced (p < 0.05) in the WS and SCB biochar groups, respectively. Footpad lesions were significantly lower (p < 0.05) in the CC biochar group, while litter quality was improved (p < 0.05) in the WS biochar group. Lymphoid organ relative weight results revealed that spleen weight was not affected by biochar supplementation in diet (p > 0.05), while dietary supplementation of CS and WS biochar in the diet resulted in the highest relative weights of thymus and bursa (p < 0.05). However, dietary supplementation of WS, SC and SCB biochar supplementation had affected positively the log value of the ND virus and IBV titers in birds. Overall, dietary supplementation of 1% biochars enhances growth performance, bone mineralization, footpad health immunity and litter quality in broilers. Full article
(This article belongs to the Topic Feeding Livestock for Health Improvement)
13 pages, 1335 KiB  
Article
Retrospective Review of Children Hospitalized for Epstein–Barr Virus-Related Infectious Mononucleosis
by Shufeng Tian, Jinjun Zheng, Zhe Zhou, Qingluan Yang, Biao Sun, Yuxi Li, Zengrui Lin, Yuchun Long, Song Guan, Sen Wang, Jiexin Zhuang, Wenhong Zhang, Lingyun Shao and Jikui Deng
Pathogens 2025, 14(7), 702; https://doi.org/10.3390/pathogens14070702 - 16 Jul 2025
Viewed by 408
Abstract
Objectives: Our objective was to investigate the clinical characteristics, complications, and treatment outcomes of Epstein–Barr virus (EBV)-related infectious mononucleosis (IM) in children and to identify risk factors associated with prolonged fever and abnormal liver function. Methods: This retrospective study included 3006 children admitted [...] Read more.
Objectives: Our objective was to investigate the clinical characteristics, complications, and treatment outcomes of Epstein–Barr virus (EBV)-related infectious mononucleosis (IM) in children and to identify risk factors associated with prolonged fever and abnormal liver function. Methods: This retrospective study included 3006 children admitted to Shenzhen Children’s Hospital from May 2009 to April 2024 with suspected EBV-related IM. After excluding cases without etiological evidence and those with underlying diseases, 2660 cases were analyzed. Data on demographics, clinical manifestations, laboratory findings, complications, and treatment outcomes were collected. Logistic regression was used to identify risk factors for prolonged fever and abnormal liver function. Results: Among the 2660 confirmed cases, patients ranged from 8 months to 17 years of age, with a median age of 4 years and a male-to-female ratio of 1.46:1. Co-infections were identified in 369 (13.9%) patients, predominantly with Group A Streptococcus. Complications occurred in 560 (24.46%) of the 2289 patients without co-infections, with bronchitis being the most common (42.68%). Elevated ferritin and atypical lymphocyte percentage were associated with prolonged fever (p < 0.001), while elevated lactate dehydrogenase (LDH) and a lower CD4% predicted abnormal liver function (p < 0.001). Antiviral therapy did not shorten fever duration or hospital stay but prolonged both when combined with corticosteroids or intravenous immunoglobulin (IVIG) (p < 0.001). Conclusions: Specific laboratory markers such as ferritin, atypical lymphocyte percentage, LDH, and CD4% are important predictors of prolonged fever or liver dysfunction in EBV-IM. Our findings suggest that antiviral therapy may not be beneficial in uncomplicated cases and highlight the need for tailored treatment strategies to optimize patient outcomes. Full article
Show Figures

Figure 1

17 pages, 3653 KiB  
Article
Significant Increase of Cinnamic Acid in Metabolites of Chicks Infected with Infectious Bronchitis Virus and Its Remarkable Antiviral Effects In Vitro and In Vivo
by Lan-Ping Wei, Tao-Ni Zhang, Yu Zhang, Li-Na Ren, Yan-Peng Lu, Tian-Chao Wei, Teng Huang, Jian-Ni Huang and Mei-Lan Mo
Microorganisms 2025, 13(7), 1633; https://doi.org/10.3390/microorganisms13071633 - 10 Jul 2025
Viewed by 262
Abstract
Avian infectious bronchitis virus (IBV) infection has caused significant economic losses to the poultry industry. Unfortunately, there is currently no effective cure for this disease. Understanding the pathogenic mechanism is crucial for the treatment of the disease. Studying the pathogenic mechanism of IBV [...] Read more.
Avian infectious bronchitis virus (IBV) infection has caused significant economic losses to the poultry industry. Unfortunately, there is currently no effective cure for this disease. Understanding the pathogenic mechanism is crucial for the treatment of the disease. Studying the pathogenic mechanism of IBV based on metabolomics analysis is helpful for identifying antiviral drugs. However, studies on metabolomics analysis of IBV infection have been relatively limited, particularly without metabolomics analysis in sera after IBV infection. In this study, 17-day-old SPF chicks were infected with the IBV GX-YL5 strain, and serum samples were collected 7 days post-infection (DPI) for metabolomics analysis using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). A total of 143 differential metabolites were identified across 20 metabolic pathways, with the phenylalanine pathway showing the most significant changes. The level of cinnamic acid (CA), an upstream metabolite in the phenylalanine pathway, was notably increased following IBV infection. To investigate the antiviral effects of CA, chicken embryo kidney (CEK) cells and SPF chicks infected with IBV were treated with different concentrations of CA to assess its effect on viral replication. The results demonstrated that CA at 25 μg/mL effectively inhibited IBV replication in vitro; meanwhile, CA at 50 μg/mL and 25 μg/mL effectively inhibited IBV replication in vivo. Molecular docking and molecular dynamics simulation studies showed that CA interacts with the N domains of the IBV nucleocapsid (N) protein. In conclusion, the serum metabolite CA is significantly elevated following IBV infection and demonstrates remarkable antiviral effects both in vitro and in vivo, providing a promising avenue for the development of antiviral therapies to combat IBV infection. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases, 2nd Edition)
Show Figures

Figure 1

16 pages, 904 KiB  
Review
Point-of-Care Diagnostic Testing for Emerging and Existing Poultry Viral Respiratory Pathogens Using Loop-Mediated Isothermal Amplification
by Ben Enyetornye, Aurelle Yondo and Binu T. Velayudhan
Pathogens 2025, 14(7), 657; https://doi.org/10.3390/pathogens14070657 - 2 Jul 2025
Viewed by 325
Abstract
Accurate, rapid and inexpensive diagnosis of poultry respiratory pathogens remains a challenge, especially in many developing countries. Meanwhile, poultry respiratory pathogens are a major threat to poultry production worldwide, accounting for billions of dollars in economic loss to the sector. Early and accurate [...] Read more.
Accurate, rapid and inexpensive diagnosis of poultry respiratory pathogens remains a challenge, especially in many developing countries. Meanwhile, poultry respiratory pathogens are a major threat to poultry production worldwide, accounting for billions of dollars in economic loss to the sector. Early and accurate diagnosis of these diseases is critical for economic poultry production. Molecular diagnostic methods, including PCR-based techniques, have been developed and used to fill this gap, but unfortunately, these techniques require skilled technicians, relatively costly equipment and reagents and can only be performed in a laboratory setting. This warrants the development of other diagnostic tools, which can be used in the field even by unskilled personnel. In this review, we discussed the genesis, challenges, advances and prospects of loop-mediated isothermal amplification (LAMP) for the detection of poultry respiratory pathogens at the flock side, especially in resource-constrained countries. We highlighted the application of LAMP in routine poultry disease surveillance and early outbreak detection, underscoring its value as a transformative diagnostic tool in poultry production. The development and use of a point-of-care (POC) LAMP assay that can be used to screen for these poultry respiratory pathogens simultaneously enhance disease surveillance and diagnosis. Full article
(This article belongs to the Special Issue Diagnostics of Emerging and Re-Emerging Pathogens)
Show Figures

Figure 1

8 pages, 193 KiB  
Communication
Histopathological Assessment and In Ovo Vaccination Response to IBD and ND in Broiler Chickens
by Marcin Wegner, Adrian Żurek, Joanna Frischke-Krajewska and Michał Gesek
Animals 2025, 15(12), 1722; https://doi.org/10.3390/ani15121722 - 11 Jun 2025
Viewed by 438
Abstract
Infectious bursal disease (IBD) is a viral disease that most commonly affects young chickens and destroys lymphocytes, leading to immunosuppression. The field study aimed to investigate the effect of three different vaccines administered in ovo against IBD and spray against Newcastle disease (ND) [...] Read more.
Infectious bursal disease (IBD) is a viral disease that most commonly affects young chickens and destroys lymphocytes, leading to immunosuppression. The field study aimed to investigate the effect of three different vaccines administered in ovo against IBD and spray against Newcastle disease (ND) on serological response tested for IBD and ND and histopathological analysis of the bursa of Fabricius (BF) and quantitative B lymphocytes in BF in broiler chickens. The study was conducted on a farm of four hen houses with 30,000 chicks in each building. Three different vaccination programs were used in the poultry hatchery, and one hen house IV was not vaccinated. All three groups were vaccinated at 18 days and 9 h in ovo during egg transfer against IBD at a dose of 0.05 mL/embryo, group I vector vaccine (strain vHVT013-69), group II immunocomplex vaccine (strain Winterfield 2512), group III immunocomplex vaccine (strain M.B, 0.05). Then, after hatching, the chicks were vaccinated in a spray (groups I, II, and III) against NDV (strain VG/GA, 20 mL/100 birds) and infectious bronchitis (IBV) in a spray (strain H-120, serotype Mass, and strain CR88121, serotype 793B) at a dose of 20 mL/100 chicks. On days 1, 21, 31, and 41, blood was collected for serological tests to determine the antibody titer against IBD, which was performed using two tests (IDEXX and ID-Vet) and against ND. During the necropsy of birds on days 21 and 31, the bursae of Fabricius were collected from five chickens for histopathological evaluation of BF and quantitative B lymphocyte counts; a total of 40 bursae were analyzed (10 per group). The vaccination program applied significantly (p < 0.05) affected the immune response expressed as a geometric mean titer (GMT) in the serum of the examined chickens against IBDV on days 21, 31, and 41. Differences were also demonstrated in the mass and level of BF damage and the number of B lymphocytes. No significant differences were demonstrated in the GMT in the serum of the examined chickens against NDV depending on the vaccination program applied. Full article
(This article belongs to the Special Issue Poultry Virology and Vaccines)
17 pages, 2005 KiB  
Article
Surveillance and Coinfection Dynamics of Infectious Bronchitis Virus and Avian Influenza H9N2 in Moroccan Broiler Farms (2021–2023): Phylogenetic Insights and Impact on Poultry Health
by Rim Regragui, Oumayma Arbani, Nadia Touil, Khalid Bouzoubaa, Mohamed Oukessou, Mohammed El Houadfi and Siham Fellahi
Viruses 2025, 17(6), 786; https://doi.org/10.3390/v17060786 - 30 May 2025
Viewed by 904
Abstract
Infectious bronchitis virus (IBV) and low-pathogenic avian influenza virus (LPAIV) H9N2 are commonly identified in poultry, individually or in association with other pathogens. This study monitored 183 broiler farms affected by respiratory diseases across seven regions of Morocco from January 2021 to December [...] Read more.
Infectious bronchitis virus (IBV) and low-pathogenic avian influenza virus (LPAIV) H9N2 are commonly identified in poultry, individually or in association with other pathogens. This study monitored 183 broiler farms affected by respiratory diseases across seven regions of Morocco from January 2021 to December 2023. Among these farms, 87.98% were vaccinated against IBV, while 57.92% were against AI H9N2. Abnormally high mortality rates were observed in 44.26% of the farms, with 24.69% of cases attributed to IBV, 50.62% to LPAI H9N2, and 13.58% due to coinfection with both IBV and H9N2. RT-PCR analysis of tissue samples and cloacal and tracheal swabs collected from 183 broiler farms revealed that 33.33% were positive for IBV and 34.97% for H9N2. Coinfection by IBV and H9N2 was detected in 12.57% of cases, peaking at 17% in 2022. Co-infected flocks exhibited severe clinical signs and lesions, such as reduced food consumption, diarrhea, and renal issues. The predominant lesions were in the respiratory tract, affecting 91.26% of infected broilers. Additionally, among the 183 flocks, 50 farms that tested positive for IBV infection were randomly selected from the seven regions of Morocco for further investigation of other respiratory pathogens, including Mycoplasma gallisepticum (MG), Mycoplasma synoviae (MS), and infectious laryngotracheitis (ILT), using real-time RT-PCR. Detection rates for these pathogens were 26% for MG, 30% for MS, 4% for ILTv (vaccine strain), and 18% for ILTw (wild strain). Detection rates for single, dual, triple, and quadruple infections were 34%, 42%, 18%, and 4%, respectively. The most common dual and triple coinfections were IBV + H9N2 (14%) and IBV + MG + MS (10%). Phylogenetic analysis of the S gene identified two main IBV genotypes, namely, 793B and D181, with the latter being a strain circulating for the first time in Moroccan poultry. This underscores the urgent need to establish surveillance systems to track pathogen circulation and implement strategies to control virus spread, ensuring the protection of animals and public health. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

21 pages, 3542 KiB  
Article
Inhibiting Infectious Bronchitis Virus PLpro Using Ubiquitin Variants
by Vera J. E. van Vliet, Olivia Roscow, Kihun Kim, Brian L. Mark, Marjolein Kikkert and Christine Tait-Burkard
Int. J. Mol. Sci. 2025, 26(11), 5254; https://doi.org/10.3390/ijms26115254 - 29 May 2025
Viewed by 460
Abstract
Infectious bronchitis virus (IBV) is a coronavirus first isolated in the 1930s infecting chickens. IBV causes great economic losses to the global poultry industry, as it affects egg production and causes mortality by leaving the host susceptible to secondary bacterial infections. Even though [...] Read more.
Infectious bronchitis virus (IBV) is a coronavirus first isolated in the 1930s infecting chickens. IBV causes great economic losses to the global poultry industry, as it affects egg production and causes mortality by leaving the host susceptible to secondary bacterial infections. Even though vaccines are available, they are poorly cross-protective against new variants of the virus, which are always on the cusp of emerging. Effective antiviral therapies, or possibly the production of transgenic animals immune to IBV infection, are therefore sorely needed. As the papain-like protease (PLpro) of IBV has deubiquitinating activity besides its crucial ability to cleave the viral polyprotein, we have applied a novel strategy of selecting ubiquitin variants (UbVs) from a phage-displayed library that have high affinity to this viral protease. These UbVs were found to inhibit the deubiquitinating activity of PLpro and consequently obstruct the virus’s ability to evade the innate immune response in the host cell. By obstructing the proteolytic activity of PLpro, these UbVs were seemingly able to inhibit viral infection as assessed using immunofluorescence microscopy. Whilst virus infection was detected in around 5% of UbV-expressing cells, the virus was present in around 30–40% of GFP (control)-expressing cells. This suggests that the expression of UbVs indeed seems to inhibit IBV infection, making UbVs a potentially potent and innovative antiviral strategy in the quest for control of IBV infections. Full article
Show Figures

Figure 1

17 pages, 2221 KiB  
Article
Nanoparticle-Based mRNA Vaccine Induces Protective Neutralizing Antibodies Against Infectious Bronchitis Virus in In-Vivo Infection
by Aseno Sakhrie, Ankarao Kalluri, Zeinab H. Helal, Challa V. Kumar and Mazhar I. Khan
Vaccines 2025, 13(6), 568; https://doi.org/10.3390/vaccines13060568 - 26 May 2025
Viewed by 1017
Abstract
Background: Live attenuated and inactivated virus vaccines are commonly used against infectious bronchitis virus (IBV) in chickens, but they have limitations such as mutation risks and short efficacy. This study explores cationic bovine serum albumin (BSA) polyamine nanoparticles (NPs) for delivering IBV spike [...] Read more.
Background: Live attenuated and inactivated virus vaccines are commonly used against infectious bronchitis virus (IBV) in chickens, but they have limitations such as mutation risks and short efficacy. This study explores cationic bovine serum albumin (BSA) polyamine nanoparticles (NPs) for delivering IBV spike protein mRNA, aiming to develop a safer and more effective vaccine. Methods: A BSA-based nanoparticle system was designed with positive surface charges and characterized using dynamic light scattering (DLS), Zetasizer, and transmission electron microscopy (TEM). Its cytotoxicity, cellular uptake, and ability to deliver IBV spike protein mRNA were evaluated in macrophage-like chicken cell lines (HD11), followed by immunogenicity studies in SPF chickens to assess immune responses. Results: The study demonstrated successful binding and transfection efficiency of the in vitro transcription (IVT)-mRNA complexed with the NPs, which was enhanced with chloroquine. Immunogenicity studies in SPF chickens showed a significant increase in antibody titers in chickens vaccinated with the mRNA vaccine compared to the PBS control, indicating an effective immune response against the IBV S protein. Furthermore, the neutralization index doubled after a higher-dose mRNA booster with chloroquine, and PBMCs from immunized chickens exhibited a threefold higher stimulation index than the PBS control. Conclusions: BSA-based NPs effectively deliver IBV spike protein mRNA, enhancing immune responses and offering a promising strategy for a safer, more effective IBV vaccine. Full article
Show Figures

Graphical abstract

27 pages, 1665 KiB  
Review
An Emphasis on the Role of Long Non-Coding RNAs in Viral Gene Expression, Pathogenesis, and Innate Immunity in Viral Chicken Diseases
by Anindita Sarma, Parul Suri, Megan Justice, Raja Angamuthu and Samuel Pushparaj
Non-Coding RNA 2025, 11(3), 42; https://doi.org/10.3390/ncrna11030042 - 26 May 2025
Viewed by 730
Abstract
The poultry farming industry encounters considerable obstacles stemming from viral diseases, resulting in elevated mortality rates and substantial economic losses. Current research highlights the significant involvement of long non-coding RNAs (lncRNAs) in the interactions between hosts and pathogens by enhancing antiviral responses at [...] Read more.
The poultry farming industry encounters considerable obstacles stemming from viral diseases, resulting in elevated mortality rates and substantial economic losses. Current research highlights the significant involvement of long non-coding RNAs (lncRNAs) in the interactions between hosts and pathogens by enhancing antiviral responses at different levels, such as the activation of pathogen recognition receptors, as well as through epigenetic, transcriptional, and post-transcriptional modifications. Specific long non-coding RNAs (lncRNAs), including ERL lncRNA, linc-GALMD3, and loc107051710, have been recognized as significant contributors to the antiviral immune response to multiple avian viral pathogens. Understanding the mechanisms by which long non-coding RNAs (lncRNAs) act offers valuable insights into prospective diagnostic and therapeutic approaches aimed at improving disease resistance in poultry. Differentially expressed lncRNAs may also be utilized as biomarkers for both prognosis and diagnosis of avian viral diseases. This review delves into the various roles of long non-coding RNAs (lncRNAs) in the context of viral diseases in chickens, such as avian leukosis, Marek’s disease, infectious bursal disease, avian influenza, infectious bronchitis, and Newcastle disease. It highlights the pivotal role of lncRNAs in the complex dynamics between the host and viral pathogens, particularly their interactions with specific viral proteins. Understanding these interactions may provide valuable insights into the spatial and temporal regulation of lncRNAs, aid in the identification of potential drug targets, and reveal the expression patterns of lncRNA and coding gene transcripts in response to different viral infections in avian species. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

14 pages, 1916 KiB  
Review
Emergence and Dissemination of the Avian Infectious Bronchitis Virus Lineages in Poultry Farms in South America
by Vagner Ricardo Lunge, Diéssy Kipper, André Felipe Streck, André Salvador Kazantzi Fonseca and Nilo Ikuta
Vet. Sci. 2025, 12(5), 435; https://doi.org/10.3390/vetsci12050435 - 2 May 2025
Viewed by 880
Abstract
Infectious bronchitis virus (IBV) is a chicken pathogen present in commercial poultry farms worldwide. It is classified within the species Avian coronavirus, genus Gammacoronavirus. As with other members of the family Coronaviridae, it has a single positive-sense RNA genome with [...] Read more.
Infectious bronchitis virus (IBV) is a chicken pathogen present in commercial poultry farms worldwide. It is classified within the species Avian coronavirus, genus Gammacoronavirus. As with other members of the family Coronaviridae, it has a single positive-sense RNA genome with 27.6 Kb and presents viral particles with a typical crown-like aspect due to the spike (S) transmembrane glycoprotein. IBV has a remarkable capacity for genetic recombination and mutation, resulting in many genotypes and antigenic variants over evolutionary time. Currently, it is classified into nine genetic types (GI to GIX) and 41 (1 to 41) lineages disseminated worldwide. In South America, IBV was first identified in early commercial poultry production ventures in Brazil in the 1950s. Since then, this virus has been frequently detected in commercial South American poultry farms, being classified into serotypes in the first decades and genotypes more recently. IBVs of the Massachusetts (Mass) serotype were initially detected and vaccine strains of this serotype were used extensively on commercial poultry farms. Other serotypes/genotypes were identified later, with almost all of them classified in the current genetic type I (GI). In addition, five GI lineages (GI-1, -11, -13, -16, and -23) have been associated with the main infectious bronchitis outbreaks in the continent, with some variations in the occurrence according to the countries and the period of time. Molecular epidemiological surveillance of IBV genetic types and lineages is necessary to anticipate potential outbreaks, revealing patterns of viral evolution and dissemination, as well as to guide the selection of appropriate vaccine strains and immunization programs. Full article
Show Figures

Figure 1

13 pages, 319 KiB  
Communication
Genomic Alterations of the Infectious Bronchitis Virus (IBV) Strain of the GI-23 Lineage Induced by Passages in Chickens and Quails
by Katarzyna Domanska-Blicharz, Joanna Sajewicz-Krukowska, Anna Lisowska, Justyna Opolska, Karolina Tarasiuk and Kamila Dziadek
Int. J. Mol. Sci. 2025, 26(9), 4200; https://doi.org/10.3390/ijms26094200 - 28 Apr 2025
Viewed by 534
Abstract
Infectious bronchitis virus (IBV) of the GI-23 lineage, which first emerged in the Middle East in the late 1990s, has since spread worldwide. The factors driving its expansion, whether human involvement, wild bird migration, or the virus’s biological traits, are still unclear. This [...] Read more.
Infectious bronchitis virus (IBV) of the GI-23 lineage, which first emerged in the Middle East in the late 1990s, has since spread worldwide. The factors driving its expansion, whether human involvement, wild bird migration, or the virus’s biological traits, are still unclear. This study aimed to trace the genome evolution of GI-23 IBV in chickens and its adaptability to quails, which are susceptible to both gamma- and deltacoronaviruses. Thirty specific-pathogen-free (SPF) birds, aged between two and three weeks, were used. Initially, three birds were inoculated with the G052/2016 IBV via the oculo-nasal route. On the third day post-infection (dpi), oropharyngeal swabs were collected from the whole group, pooled, and subsequently used to infect three next birds. This process was repeated nine more times during consecutive IBV passages (P-I–P-X), and eventually, virus sequencing was performed using Next-Generation Sequencing (NGS). The obtained results showed that quails were not susceptible to the IBV GI-23 lineage, as the virus RNA was detected in low amounts only during the first passage (QP-I) with no further detections in later rounds of IBV passaging. In chickens, only mild diarrhea symptoms appeared in a few individuals. The NGS analysis identified sixty-two single nucleotide variants (SNVs), thirty of which caused amino acid changes, twenty-eight were synonymous, and one SNV introduced a stop codon. Three SNVs were found in untranslated regions. However, none of these SNVs lasted beyond seven passages, with forty-four being unique SNVs. The Shannon entropy values measured during passages varied for pol1a, pol1b, S, 5a, 5b, and N genes, with overall genome complexity peaking at CP-VI and CP-X. The highest complexity was observed in the pol1a (CP-X) and S genes (CP-IV, CP-VI, CP-VIII, and CP-X). Along with the S gene that was under positive selection, eight codons in pol1a were also positively selected. These findings suggest that even in an adapted host, IBV variability does not stabilize without immune pressure, indicating continuous molecular changes within its genome. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 4585 KiB  
Article
Five Amino Acid Substitutions in the S1 Unit of Infectious Bronchitis Virus Are Critical Determinants Enhancing Its Adaptation to Vero Cells
by Zhichao Cai, Mingjing Zhang and Shouguo Fang
Vet. Sci. 2025, 12(5), 394; https://doi.org/10.3390/vetsci12050394 - 22 Apr 2025
Viewed by 513
Abstract
The S1 subunit of the spike protein of avian infectious bronchitis virus (IBV) plays a crucial role in determining its host range and cell and tissue tropism. Following the continuous passage of IBV-EP3 through Vero cells over up to 65 generations, a total [...] Read more.
The S1 subunit of the spike protein of avian infectious bronchitis virus (IBV) plays a crucial role in determining its host range and cell and tissue tropism. Following the continuous passage of IBV-EP3 through Vero cells over up to 65 generations, a total of 19 amino acid mutations accumulated in the S1 region of IBV-P65. To investigate the impact of these mutations on the adaptability of IBV to Vero cells, six recombinant viruses carrying either a subset or all of the identified mutations were constructed and obtained via a reverse genetics system. Analyses on the growth characteristics of these recombinant viruses and Western blot detection of the expression levels of their spike proteins indicated that the IBV mutant obtained by replacing the amino acid sequence from positions 179 to 323 in the S1 region of IBV-P65 with the corresponding segment from IBV-EP3 S1 significantly impaired viral growth and exhibited a lower replication efficiency in Vero cells, suggesting that five amino acid substitutions (T181I, I246T, F267C, T273I, Q296K) within this region could enhance the adaptation of IBV to Vero cells. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

21 pages, 2969 KiB  
Article
Genetic and Phenotypic Investigations of Viral Subpopulations Detected in Different Tissues of Laying Hens Following Infectious Bronchitis Virus Infection
by Ahmed Ali, Ryan Rahimi, Motamed Elsayed Mahmoud, Adel A. Shalaby, Rodrigo A. Gallardo and Mohamed Faizal Abdul-Careem
Viruses 2025, 17(4), 527; https://doi.org/10.3390/v17040527 - 4 Apr 2025
Viewed by 754
Abstract
Infectious bronchitis virus (IBV) commonly produces a range of genetic sequences during replication, particularly in the spike 1 (S1)-coding portion of the S gene, leading to distinct subpopulations within the broader viral population. It has been shown that certain microenvironments exert selective pressure [...] Read more.
Infectious bronchitis virus (IBV) commonly produces a range of genetic sequences during replication, particularly in the spike 1 (S1)-coding portion of the S gene, leading to distinct subpopulations within the broader viral population. It has been shown that certain microenvironments exert selective pressure on the S1-coding sequences and their encoded proteins, influencing the selection of viral subpopulations in these environments. In this study, high-throughput next-generation sequencing (NGS) was used to analyze the S1-coding sequences from tissues of the respiratory, digestive, renal, and reproductive systems of specific pathogen-free (SPF) laying hens. These tissues were collected nine days after infection with the California 1737/04 (CA1737/04) IBV strain, which is known to cause varying degrees of pathology in these tissues. Using a specific bioinformatics pipeline, 27 single nucleotide variants (SNVs) were detected in the S1-coding sequences derived from different tissues. These SNVs shaped multiple subpopulations (SP1–SP15), with SP1 being the core subpopulation present in all tissues, while others were tissue-specific. The IBV RNA loads in the tissues were negatively correlated with the number of SNVs or the Shannon entropy values, and phylogenetic analysis revealed a genetic divergence in the S1-coding sequences from certain tissues with lower viral RNA loads, particularly those from the trachea and ovary. Furthermore, the SNVs were associated with nonsynonymous mutations, primarily located in hypervariable region 2 (HVR 2) within the N-terminal domain of S1 (S1-NTD), except for those in SP7, which was exclusive to the trachea and contained changes in HVR 3 in the C-terminal domain of S1 (S1-CTD). Overall, this study adds to the existing knowledge about IBV evolution by highlighting the role of tissue-specific environments in shaping viral genetic diversity. Full article
(This article belongs to the Special Issue Enteric and Respiratory Viruses in Animals and Birds: Volume 5)
Show Figures

Figure 1

34 pages, 11111 KiB  
Article
Cyclooxygenase-2/Prostaglandin E2 Pathway Facilitates Infectious Bronchitis Virus-Induced Necroptosis in Chicken Macrophages, a Caspase-Independent Cell Death
by Motamed Elsayed Mahmoud, Dylan Tingley, Akeel Faizal, Awais Ghaffar, Muhammed Azhar, Doaa Salman, Ishara M. Isham and Mohamed Faizal Abdul-Careem
Viruses 2025, 17(4), 503; https://doi.org/10.3390/v17040503 - 31 Mar 2025
Viewed by 632
Abstract
Infectious bronchitis virus (IBV) poses a major challenge to poultry health and productivity. This study examined how inflammatory cell death pathways influence the replication and pathogenesis of two IBV strains—respiratory Connecticut (Conn) A5968 and nephropathogenic Delmarva (DMV)/1639—in chicken macrophages. Low serum conditions enhanced [...] Read more.
Infectious bronchitis virus (IBV) poses a major challenge to poultry health and productivity. This study examined how inflammatory cell death pathways influence the replication and pathogenesis of two IBV strains—respiratory Connecticut (Conn) A5968 and nephropathogenic Delmarva (DMV)/1639—in chicken macrophages. Low serum conditions enhanced viral replication, reduced cell viability, and promoted apoptosis and necroptosis, with DMV/1639 showing more pronounced effects. Modulation of the cyclooxygenase-2/prostaglandin E2 (COX-2/PGE2) pathway displayed strain-specific effects, mitigating necroptosis in DMV/1639-infected cells but exacerbating apoptosis and necroptosis in Conn A5968-infected cells. Broad caspase inhibition (z-VAD-FMK) reduced necroptosis, while selective caspase-1/4 inhibition heightened apoptotic responses. Caspase-8 inhibition selectively reduced necroptosis in DMV/1639 infections but increased apoptosis and necroptosis in Conn A5968 infections. NLRP3 inflammasome and RIPK1 inhibition decreased cell viability and increased apoptosis in both strains but had distinct effects on necroptosis. These findings reveal the strain-specific regulation of viral replication, apoptosis, and necroptosis, underscoring the intricate interplay between IBV and host inflammatory pathways. Understanding these mechanisms provides novel insights into IBV pathogenesis and highlights potential therapeutic strategies to mitigate its impact on poultry health. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop