Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = infant intestinal microbiome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1715 KiB  
Review
Osteopontin: Its Properties, Recent Studies, and Potential Applications
by Büşra Karasalih, Hatice Duman, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2025, 26(12), 5868; https://doi.org/10.3390/ijms26125868 - 19 Jun 2025
Cited by 1 | Viewed by 735
Abstract
OPN is a phosphorylated glycoprotein found in all vertebrate organisms and expressed in many tissues and secretions. It is a pleiotropic protein that plays diverse roles in various pathological and physiological processes. OPN is involved in many tissue transformation events such as intestinal [...] Read more.
OPN is a phosphorylated glycoprotein found in all vertebrate organisms and expressed in many tissues and secretions. It is a pleiotropic protein that plays diverse roles in various pathological and physiological processes. OPN is involved in many tissue transformation events such as intestinal and brain development, the regulation of immune system activity, immune cell activation, and inflammatory responses. This protein increases the functionality of the digestive system by regulating the intestinal microbiome and may help strengthen the intestinal barrier. OPN can also influence cognitive development and behavior. In addition, its recent association with cancer has gained critical importance. The increased expression of OPN has been observed in many cancer types, which may promote tumor cell metastasis. OPN is also effective in bacterial interaction and infections; it can prevent bacterial adhesion, supporting the development of new therapeutic approaches for oral care. Furthermore, the supplementation of OPN in infant formula has positively influenced the immune and intestinal health of infants. Many recent studies have focused on these aspects. This article provides a review and comparison of the existing knowledge on the structure and functions of OPN. It emphasizes how milk-derived OPN impacts human and infant health and disease. Full article
(This article belongs to the Special Issue Latest Review Papers in Macromolecules 2025)
Show Figures

Figure 1

24 pages, 5282 KiB  
Article
Human Milk Microbiome from Polish Women Giving Birth via Vaginal Delivery—Pilot Study
by Agnieszka Chrustek, Agnieszka Dombrowska-Pali, Dorota Olszewska-Słonina, Natalia Wiktorczyk-Kapischke, Maciej W. Socha, Anna Budzyńska and Iwona Sadowska-Krawczenko
Biology 2025, 14(4), 332; https://doi.org/10.3390/biology14040332 - 25 Mar 2025
Cited by 2 | Viewed by 778
Abstract
The human milk (HM) microbiome is variable and depends on maternal, perinatal, and cultural–environmental factors. The diversity of the HM microbiome is crucial in the development of the child. The aim of the study was to assess the prevalence of bacteria (using culture-based [...] Read more.
The human milk (HM) microbiome is variable and depends on maternal, perinatal, and cultural–environmental factors. The diversity of the HM microbiome is crucial in the development of the child. The aim of the study was to assess the prevalence of bacteria (using culture-based methods) of Polish women with normal BMI, giving birth on time through vaginal delivery. Methods: The research material consisted of human milk and swabs from the areola and nipple, before and after breastfeeding, derived from Polish women (n = 86). Classic culture methods were used to obtain multiple bacteria. Species identification of the grown colonies was performed using MALDI TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry). Results: 120 species of bacteria were isolated, mainly from the genus Streptococcus and Staphylococcus. Species specific only to human milk were identified (belonging to the following genera: Microbacterium, Shewanella, Psychrobacter, Aeromonas, Serratia, Buttiauxella, Lactobacillus, Bifidobacterium) as well as species specific only to areola and nipple swabs after breastfeeding (Acinetobacter lactucae, Moraxella catarrhalis, Corynebacterium pseudodiphtheriticum, Corynebacterium propinquim). It was confirmed that most species were present in all tested materials collected from one patient. Conclusions: The analysis carried out showed the presence of bacteria in the human milk of Polish women, including strains of lactic acid bacteria. The human milk microbiota may significantly influence the formation of the infant’s intestinal microbiota, including some key genera, i.e., Lactobacillus, Bifidobacterium, and Limosilactobacillus, which were also isolated from the tested samples. The data presented here provide new data on culturable bacterial species isolated from breast milk from Polish women giving birth via vaginal delivery and potential routes of transmission from the neonate’s oral cavity. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

11 pages, 2075 KiB  
Article
Dynamic Alternations in Mother–Infant Dyad’s Gut Microbiota over the Period of Six Months
by Lan Yang, Zhihong Sun and Heping Zhang
Appl. Sci. 2025, 15(6), 3239; https://doi.org/10.3390/app15063239 - 16 Mar 2025
Viewed by 485
Abstract
Since birth, the human microbiome plays a pivotal role in health. It is intriguing to understand the establishing roles of intestinal microbiota in infants. This study aimed to investigate the dynamic changes in maternal and infant gut microbiota, the interaction between intestinal microbiota, [...] Read more.
Since birth, the human microbiome plays a pivotal role in health. It is intriguing to understand the establishing roles of intestinal microbiota in infants. This study aimed to investigate the dynamic changes in maternal and infant gut microbiota, the interaction between intestinal microbiota, and the function of intestinal microbiota. This study recruited one pregnant woman >35 weeks gestational age. Faeces of the mother–infant dyad were regularly collected until the infant was six months old for metagenomic analysis. The results showed that the infant’s gut microbiota was significantly different from the mother’s, encompassing Bacteroides fragilis, Ruminococcus gnavus, Klebsiella pneumoniae, and Klebsiella michiganensis. Infant- or mother-specific differential metabolic pathways were found between the mother and infant’s gut microbiome, implicating differences in the intestinal metagenomic potential/function. In conclusion, the gut microbes and functions were gradually established as the infant grew. Full article
Show Figures

Figure 1

17 pages, 1967 KiB  
Review
The Role of Infant and Early Childhood Gut Virome in Immunity and the Triggering of Autoimmunity—A Narrative Review
by Alexandra Mpakosi, Rozeta Sokou, Martha Theodoraki, Nicoletta Iacovidou, Vasileios Cholevas, Andreas G. Tsantes, Aikaterini I. Liakou, Maria Drogari-Apiranthitou and Christiana Kaliouli-Antonopoulou
Diagnostics 2025, 15(4), 413; https://doi.org/10.3390/diagnostics15040413 - 8 Feb 2025
Cited by 1 | Viewed by 1063
Abstract
Background: The bacterial gut microbiome has been the subject of many studies that have provided valuable scientific conclusions. However, many different populations of microorganisms that interact with each other to maintain homeostasis coexist inside the gut. The gut virome, especially, appears to [...] Read more.
Background: The bacterial gut microbiome has been the subject of many studies that have provided valuable scientific conclusions. However, many different populations of microorganisms that interact with each other to maintain homeostasis coexist inside the gut. The gut virome, especially, appears to play a key role in this interactive microenvironment. Intestinal viral communities, including bacteriophages, appear to influence health and disease, although their role has not yet been fully elucidated. In addition, bacteriophages or viruses that infect bacteria regulate bacterial growth, thus shaping the composition of the gut microbiome and affecting the immune system. Infant Gut Virome: The shaping of the gut microbiome during the first years of life has a significant role in the maturation of the infant’s immune system. In contrast, early dysbiosis has been associated with chronic, including metabolic and autoimmune, disorders later in life. Purpose: Although viruses have been shown to be potential triggers of autoimmune diseases, there is a gap in the literature regarding the infant gut virome in autoimmunity development. Despite the lack of evidence, this review attempts to summarize and clarify what is known so far about this timely and important topic in the hope that its findings will contribute to future research. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

21 pages, 4543 KiB  
Article
Exploring Protein Functions of Gut Bacteriome and Mycobiome in Thai Infants Associated with Atopic Dermatitis Through Metaproteomic and Host Interaction Analysis
by Thanawit Chantanaskul, Preecha Patumcharoenpol, Sittirak Roytrakul, Amornthep Kingkaw and Wanwipa Vongsangnak
Int. J. Mol. Sci. 2024, 25(24), 13533; https://doi.org/10.3390/ijms252413533 - 18 Dec 2024
Viewed by 1596
Abstract
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as [...] Read more.
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as Lactobacillus acidophilus and Bacteroides salyersiae, were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as Streptococcus constellatus and Penicillium chrysogenum, increased in abundance. Additionally, the functional analysis of expressed proteins was enriched in response to stress and DNA repair in the bacteriome and ribosome biogenesis-related processes in the mycobiome of the AD group, potentially associated to increased reactive oxygen species (ROS), intestinal inflammation, fungal growth and microbial dysbiosis. Further, a protein–protein interactions (PPIs) network analysis incorporating the human proteome revealed 10 signature proteins related to stress and immune system processes associated with AD. Our findings propose the interactions of the key species and signature protein functions between the gut microbes and the human host in response to AD in Thai infants. To our knowledge, this study serves as the first framework for monitoring bacteriome–mycobiome–human gut studies associated with AD and other allergic diseases in infants. Full article
(This article belongs to the Special Issue Gut Microbiota in Human Disease and Health)
Show Figures

Figure 1

22 pages, 742 KiB  
Review
Small Intestinal Bacterial Overgrowth and Childhood Malnutrition: A Comprehensive Review of Available Evidence
by Cristina Roxana Mareș, Maria Oana Săsăran and Cristina Oana Mărginean
Nutrients 2024, 16(24), 4319; https://doi.org/10.3390/nu16244319 - 14 Dec 2024
Cited by 1 | Viewed by 2576
Abstract
The gut microbiome is essential for children’s normal growth and development, with its formation aligning closely with key stages of growth. Factors like birth method, feeding practices, and antibiotic exposure significantly shape the composition and functionality of the infant gut microbiome. Small intestinal [...] Read more.
The gut microbiome is essential for children’s normal growth and development, with its formation aligning closely with key stages of growth. Factors like birth method, feeding practices, and antibiotic exposure significantly shape the composition and functionality of the infant gut microbiome. Small intestinal bacterial overgrowth (SIBO) involves an abnormal increase in bacteria within the small intestine. This overgrowth can interfere with digestion, impair nutrient absorption, and lead to both local and systemic inflammation, potentially contributing to malnutrition. In this review, we provide a comprehensive overview of the current understanding of the relationship between SIBO and malnutrition, with a particular focus on the pediatric population. SIBO seems to play an important role in nutrient malabsorption through the gut microbiome imbalance, local inflammation, and disruption of the mucosal intestinal barrier. Additionally, SIBO is more prevalent in digestive disorders linked to malabsorption and malnutrition. Different therapeutic strategies for addressing malnutrition-related SIBO have been proposed. While antibiotics are the primary treatment for SIBO, their effectiveness in promoting weight gain among malnourished children remains uncertain. Hence, future research directed at the impact of microbiome imbalance on nutrient intake and absorption could bring to light new strategies for the effective prevention and treatment of malnutrition. Full article
Show Figures

Figure 1

17 pages, 4153 KiB  
Article
Network-Based Bioinformatics Highlights Broad Importance of Human Milk Hyaluronan
by Kathryn Y. Burge, Hua Zhong, Adam P. Wilson and Hala Chaaban
Int. J. Mol. Sci. 2024, 25(23), 12679; https://doi.org/10.3390/ijms252312679 - 26 Nov 2024
Viewed by 1134
Abstract
Human milk (HM) is rich in bioactive factors promoting postnatal small intestinal development and maturation of the microbiome. HM is also protective against necrotizing enterocolitis (NEC), a devastating inflammatory condition predominantly affecting preterm infants. The HM glycosaminoglycan, hyaluronan (HA), is present at high [...] Read more.
Human milk (HM) is rich in bioactive factors promoting postnatal small intestinal development and maturation of the microbiome. HM is also protective against necrotizing enterocolitis (NEC), a devastating inflammatory condition predominantly affecting preterm infants. The HM glycosaminoglycan, hyaluronan (HA), is present at high levels in colostrum and early milk. Our group has demonstrated that HA with a molecular weight of 35 kDa (HA35) promotes maturation of the murine neonatal intestine and protects against two distinct models of NEC. However, the molecular mechanisms underpinning HA35-induced changes in the developing ileum are unclear. CD-1 mouse pups were treated with HA35 or vehicle control daily, from P7 to P14, and we used network and functional analyses of bulk RNA-seq ileal transcriptomes to further characterize molecular mechanisms through which HA35 likely influences intestinal maturation. HA35-treated pups separated well by principal component analysis, and cell deconvolution revealed increases in stromal, Paneth, and mature enterocyte and progenitor cells in HA35-treated pups. Gene set enrichment and pathway analyses demonstrated upregulation in key processes related to antioxidant and growth pathways, such as nuclear factor erythroid 2-related factor-mediated oxidative stress response, hypoxia inducible factor-1 alpha, mechanistic target of rapamycin, and downregulation of apoptotic signaling. Collectively, pro-growth and differentiation signals induced by HA35 may present novel mechanisms by which this HM bioactive factor may protect against NEC. Full article
Show Figures

Figure 1

19 pages, 1234 KiB  
Review
Intrauterine Shaping of Fetal Microbiota
by Norbert Dera, Natalia Żeber-Lubecka, Michał Ciebiera, Katarzyna Kosińska-Kaczyńska, Iwona Szymusik, Diana Massalska, Kacper Dera and Katarzyna Bubień
J. Clin. Med. 2024, 13(17), 5331; https://doi.org/10.3390/jcm13175331 - 9 Sep 2024
Cited by 1 | Viewed by 2207
Abstract
Mechanisms resulting from the physiological immaturity of the digestive system in children delivered before 32 weeks of gestation and, in particular, different interactions between the microbiome and the body have not been fully elucidated yet. Next-generation sequencing methods demonstrated the presence of bacterial [...] Read more.
Mechanisms resulting from the physiological immaturity of the digestive system in children delivered before 32 weeks of gestation and, in particular, different interactions between the microbiome and the body have not been fully elucidated yet. Next-generation sequencing methods demonstrated the presence of bacterial DNA in the placenta and amniotic fluid, which may reflect bacterial populations that initiate intestinal colonization in utero. Numerous studies confirmed the hypothesis stating that intestinal bacteria played an important role in the pathogenesis of necrotizing enterocolitis (NEC) early- and late-onset neonatal sepsis (EONS and LONS). The model and scale of disorders within the intestinal microbiome are the subject of active research in premature infants. Neonatal meconium was primarily used as an indicator defining the environment in utero, as it is formed before birth. Metagenomic results and previous data from microbiological bacterial cultures showed a correlation between the time from birth to sample collection and the detection of bacteria in the neonatal meconium. Therefore, it may be determined that the colonization of the newborn’s intestines is influenced by numerous factors, which may be divided into prenatal, perinatal, and postnatal, with particular emphasis put on the mode of delivery and contact with the parent immediately after birth. Background: The aim of this review was to collect available data on the intrauterine shaping of the fetal microbiota. Methods: On 13 March 2024, the available literature in the PubMed National Library of Medicine search engine was reviewed using the following selected keywords: “placental microbiome”, “intestinal bacteria in newborns and premature infants”, and “intrauterine microbiota”. Results: After reviewing the available articles and abstracts and an in-depth analysis of their content, over 100 articles were selected for detailed elaboration. We focused on the origin of microorganisms shaping the microbiota of newborns. We also described the types of bacteria that made up the intrauterine microbiota and the intestinal microbiota of newborns. Conclusions: The data presented in the review on the microbiome of both term newborns and those with a body weight below 1200 g indicate a possible intrauterine colonization of the fetus depending on the duration of pregnancy. The colonization occurs both via the vaginal and intestinal route (hematogenous route). However, there are differences in the demonstrated representatives of various types of bacteria, phyla Firmicutes and Actinobacteria in particular, taking account of the distribution in their abundance in the individual groups of pregnancy duration. Simultaneously, the distribution of the phyla Actinobacteria and Proteobacteria is consistent. Considering the duration of pregnancy, it may also be concluded that the bacterial flora of vaginal origin dominates in preterm newborns, while the flora of intestinal origin dominates in term newborns. This might explain the role of bacterial and infectious factors in inducing premature birth with the rupture of fetal membranes. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

21 pages, 1206 KiB  
Review
Neonatal Gut Mycobiome: Immunity, Diversity of Fungal Strains, and Individual and Non-Individual Factors
by Alexandra Mpakosi, Rozeta Sokou, Martha Theodoraki and Christiana Kaliouli-Antonopoulou
Life 2024, 14(7), 902; https://doi.org/10.3390/life14070902 - 19 Jul 2024
Cited by 1 | Viewed by 2143
Abstract
The human gastrointestinal ecosystem, or microbiome (comprising the total bacterial genome in an environment), plays a crucial role in influencing host physiology, immune function, metabolism, and the gut–brain axis. While bacteria, fungi, viruses, and archaea are all present in the gastrointestinal ecosystem, research [...] Read more.
The human gastrointestinal ecosystem, or microbiome (comprising the total bacterial genome in an environment), plays a crucial role in influencing host physiology, immune function, metabolism, and the gut–brain axis. While bacteria, fungi, viruses, and archaea are all present in the gastrointestinal ecosystem, research on the human microbiome has predominantly focused on the bacterial component. The colonization of the human intestine by microbes during the first two years of life significantly impacts subsequent composition and diversity, influencing immune system development and long-term health. Early-life exposure to pathogens is crucial for establishing immunological memory and acquired immunity. Factors such as maternal health habits, delivery mode, and breastfeeding duration contribute to gut dysbiosis. Despite fungi’s critical role in health, particularly for vulnerable newborns, research on the gut mycobiome in infants and children remains limited. Understanding early-life factors shaping the gut mycobiome and its interactions with other microbial communities is a significant research challenge. This review explores potential factors influencing the gut mycobiome, microbial kingdom interactions, and their connections to health outcomes from childhood to adulthood. We identify gaps in current knowledge and propose future research directions in this complex field. Full article
(This article belongs to the Collection Feature Papers in Microbiology)
Show Figures

Figure 1

45 pages, 674 KiB  
Review
Antibiotics, Analgesic Sedatives, and Antiseizure Medications Frequently Used in Critically Ill Neonates: A Narrative Review
by Angeliki Kontou, Eleni Agakidou, Ilias Chatziioannidis, William Chotas, Evanthia Thomaidou and Kosmas Sarafidis
Children 2024, 11(7), 871; https://doi.org/10.3390/children11070871 - 18 Jul 2024
Cited by 3 | Viewed by 3254
Abstract
Antibiotic, analgesic sedative, and antiseizure medications are among the most commonly used medications in preterm/sick neonates, who are at high risk of nosocomial infections, central nervous system complications, and are exposed to numerous painful/stressful procedures. These severe and potentially life-threatening complications may have [...] Read more.
Antibiotic, analgesic sedative, and antiseizure medications are among the most commonly used medications in preterm/sick neonates, who are at high risk of nosocomial infections, central nervous system complications, and are exposed to numerous painful/stressful procedures. These severe and potentially life-threatening complications may have serious short- and long-term consequences and should be prevented and/or promptly treated. The reported variability in the medications used in neonates indicates the lack of adequate neonatal studies regarding their effectiveness and safety. Important obstacles contributing to inadequate studies in preterm/sick infants include difficulties in obtaining parental consent, physicians’ unwillingness to recruit preterm infants, the off-label use of many medications in neonates, and other scientific and ethical concerns. This review is an update on the use of antimicrobials (antifungals), analgesics (sedatives), and antiseizure medications in neonates, focusing on current evidence or knowledge gaps regarding their pharmacokinetics, indications, safety, dosage, and evidence-based guidelines for their optimal use in neonates. We also address the effects of early antibiotic use on the intestinal microbiome and its association with long-term immune-related diseases, obesity, and neurodevelopment (ND). Recommendations for empirical treatment and the emergence of pathogen resistance to antimicrobials and antifungals are also presented. Finally, future perspectives on the prevention, modification, or reversal of antibiotic resistance are discussed. Full article
Show Figures

Graphical abstract

17 pages, 3692 KiB  
Article
The Association of Neonatal Gut Microbiota Community State Types with Birth Weight
by Wanling Chen, Kaiping Guo, Xunbin Huang, Xueli Zhang, Xiaoxia Li, Zimiao Chen, Yanli Wang, Zhangxing Wang, Rongtian Liu, Huixian Qiu, Mingbang Wang and Shujuan Zeng
Children 2024, 11(7), 770; https://doi.org/10.3390/children11070770 - 25 Jun 2024
Cited by 1 | Viewed by 2051
Abstract
Background: while most gut microbiota research has focused on term infants, the health outcomes of preterm infants are equally important. Very-low-birth-weight (VLBW) or extremely-low-birth-weight (ELBW) preterm infants have a unique gut microbiota structure, and probiotics have been reported to somewhat accelerate the maturation [...] Read more.
Background: while most gut microbiota research has focused on term infants, the health outcomes of preterm infants are equally important. Very-low-birth-weight (VLBW) or extremely-low-birth-weight (ELBW) preterm infants have a unique gut microbiota structure, and probiotics have been reported to somewhat accelerate the maturation of the gut microbiota and reduce intestinal inflammation in very-low preterm infants, thereby improving their long-term outcomes. The aim of this study was to investigate the structure of gut microbiota in ELBW neonates to facilitate the early identification of different types of low-birth-weight (LBW) preterm infants. Methods: a total of 98 fecal samples from 39 low-birth-weight preterm infants were included in this study. Three groups were categorized according to different birth weights: ELBW (n = 39), VLBW (n = 39), and LBW (n = 20). The gut microbiota structure of neonates was obtained by 16S rRNA gene sequencing, and microbiome analysis was conducted. The community state type (CST) of the microbiota was predicted, and correlation analysis was conducted with clinical indicators. Differences in the gut microbiota composition among ELBW, VLBW, and LBW were compared. The value of gut microbiota composition in the diagnosis of extremely low birth weight was assessed via a random forest-machine learning approach. Results: we briefly analyzed the structure of the gut microbiota of preterm infants with low birth weight and found that the ELBW, VLBW, and LBW groups exhibited gut microbiota with heterogeneous compositions. Low-birth-weight preterm infants showed five CSTs dominated by Enterococcus, Staphylococcus, Klebsiella, Streptococcus, Pseudescherichia, and Acinetobacter. The birth weight and clinical indicators related to prematurity were associated with the CST. We found the composition of the gut microbiota was specific to the different types of low-birth-weight premature infants, namely, ELBW, VLBW, and LBW. The ELBW group exhibited significantly more of the potentially harmful intestinal bacteria Acinetobacter relative to the VLBW and LBW groups, as well as a significantly lower abundance of the intestinal probiotic Bifidobacterium. Based on the gut microbiota’s composition and its correlation with low weight, we constructed random forest model classifiers to distinguish ELBW and VLBW/LBW infants. The area under the curve of the classifiers constructed with Enterococcus, Klebsiella, and Acinetobacter was found to reach 0.836 by machine learning evaluation, suggesting that gut microbiota composition may be a potential biomarker for ELBW preterm infants. Conclusions: the gut bacteria of preterm infants showed a CST with Enterococcus, Klebsiella, and Acinetobacter as the dominant genera. ELBW preterm infants exhibit an increase in the abundance of potentially harmful bacteria in the gut and a decrease in beneficial bacteria. These potentially harmful bacteria may be potential biomarkers for ELBW preterm infants. Full article
(This article belongs to the Special Issue Human Genetics and Bioinformatics in Pediatric Diseases)
Show Figures

Figure 1

19 pages, 3407 KiB  
Systematic Review
Difference in the Intestinal Microbiota between Breastfeed Infants and Infants Fed with Artificial Milk: A Systematic Review
by Francesco Inchingolo, Angelo Michele Inchingolo, Giulia Latini, Laura Ferrante, Elisabetta de Ruvo, Merigrazia Campanelli, Marialuisa Longo, Andrea Palermo, Alessio Danilo Inchingolo and Gianna Dipalma
Pathogens 2024, 13(7), 533; https://doi.org/10.3390/pathogens13070533 - 24 Jun 2024
Cited by 16 | Viewed by 5615
Abstract
The gut microbiota (GM) plays a crucial role in human health, particularly during the first years of life. Differences in GM between breastfed and formula (F)-fed infants may influence long-term health outcomes. This systematic review aims to compare the gut microbiota of breastfed [...] Read more.
The gut microbiota (GM) plays a crucial role in human health, particularly during the first years of life. Differences in GM between breastfed and formula (F)-fed infants may influence long-term health outcomes. This systematic review aims to compare the gut microbiota of breastfed infants with that of F-fed infants and to evaluate the clinical implications of these differences. We searched databases on Scopus, Web of Science, and Pubmed with the following keywords: “gut microbiota”, “gut microbiome”, and “neonatal milk”. The inclusion criteria were articles relating to the analysis of the intestinal microbiome of newborns in relation to the type of nutrition, clinical studies or case series, excluding reviews, meta-analyses, animal models, and in vitro studies. The screening phase ended with the selection of 13 publications for this work. Breastfed infants showed higher levels of beneficial bacteria such as Bifidobacterium and Lactobacillus, while F-fed infants had a higher prevalence of potentially pathogenic bacteria, including Clostridium difficile and Enterobacteriaceae. Infant feeding type influences the composition of oral GM significantly. Breastfeeding promotes a healthier and more diverse microbial ecosystem, which may offer protective health benefits. Future research should explore strategies to improve the GM of F-fed infants and understand the long-term health implications. Full article
(This article belongs to the Special Issue Oral Microbiome and Human Systemic Health)
Show Figures

Figure 1

21 pages, 1320 KiB  
Review
Are Infants and Children at Risk of Adverse Health Effects from Dietary Deoxynivalenol Exposure? An Integrative Review
by Susan Gonya, Pamela Kallmerten and Pamela Dinapoli
Int. J. Environ. Res. Public Health 2024, 21(6), 808; https://doi.org/10.3390/ijerph21060808 - 20 Jun 2024
Cited by 6 | Viewed by 3116
Abstract
Deoxynivalenol (DON) is a foodborne mycotoxin produced by Fusarium molds that commonly infect cereal grains. It is a potent protein synthesis inhibitor that can significantly impact humans’ gastrointestinal, immune, and nervous systems and can alter the microbiome landscape. Low-dose, chronic exposure to DON [...] Read more.
Deoxynivalenol (DON) is a foodborne mycotoxin produced by Fusarium molds that commonly infect cereal grains. It is a potent protein synthesis inhibitor that can significantly impact humans’ gastrointestinal, immune, and nervous systems and can alter the microbiome landscape. Low-dose, chronic exposure to DON has been found to stimulate the immune system, inhibit protein synthesis, and cause appetite suppression, potentially leading to growth failure in children. At higher doses, DON has been shown to cause immune suppression, nausea, vomiting, abdominal pain, headache, diarrhea, gastroenteritis, the malabsorption of nutrients, intestinal hemorrhaging, dizziness, and fever. A provisional maximum tolerable daily intake (PMTDI) limit of 1 µg/kg/body weight has been established to protect humans, underscoring the potential health risks associated with DON intake. While the adverse effects of dietary DON exposure have been established, healthcare communities have not adequately investigated or addressed this threat to child health, possibly due to the assumption that current regulatory exposure limits protect the public appropriately. This integrative review investigated whether current dietary DON exposure rates in infants and children regularly exceed PMTDI limits, placing them at risk of negative health effects. On a global scale, the routine contamination of cereal grains, bakery products, pasta, and human milk with DON could lead to intake levels above PMTDI limits. Furthermore, evidence suggests that other food commodities, such as soy, coffee, tea, dried spices, nuts, certain seed oils, animal milk, and various water reservoirs, can be intermittently contaminated, further amplifying the scope of the issue. Better mitigation strategies and global measures are needed to safeguard vulnerable youth from this harmful toxicant. Full article
Show Figures

Figure 1

36 pages, 1709 KiB  
Review
Human Milk Microbiome—A Review of Scientific Reports
by Agnieszka Dombrowska-Pali, Natalia Wiktorczyk-Kapischke, Agnieszka Chrustek, Dorota Olszewska-Słonina, Eugenia Gospodarek-Komkowska and Maciej W. Socha
Nutrients 2024, 16(10), 1420; https://doi.org/10.3390/nu16101420 - 8 May 2024
Cited by 22 | Viewed by 7547
Abstract
One of the most important bioactive components of breast milk are free breast milk oligosaccharides, which are a source of energy for commensal intestinal microorganisms, stimulating the growth of Bifidobacterium, Lactobacillus, and Bacteroides in a child’s digestive tract. There is some [...] Read more.
One of the most important bioactive components of breast milk are free breast milk oligosaccharides, which are a source of energy for commensal intestinal microorganisms, stimulating the growth of Bifidobacterium, Lactobacillus, and Bacteroides in a child’s digestive tract. There is some evidence that maternal, perinatal, and environmental-cultural factors influence the modulation of the breast milk microbiome. This review summarizes research that has examined the composition of the breast milk microbiome and the factors that may influence it. The manuscript highlights the potential importance of the breast milk microbiome for the future development and health of children. The origin of bacteria in breast milk is thought to include the mother’s digestive tract (entero-mammary tract), bacterial exposure to the breast during breastfeeding, and the retrograde flow of breast milk from the infant’s mouth to the woman’s milk ducts. Unfortunately, despite increasingly more precise methods for assessing microorganisms in human milk, the topic of the human milk microbiome is still quite limited and requires scientific research that takes into account various conditions. Full article
(This article belongs to the Special Issue Breastmilk for Healthy Development)
Show Figures

Figure 1

12 pages, 1710 KiB  
Article
Sialyllactose Enhances the Short-Chain Fatty Acid Production and Barrier Function of Gut Epithelial Cells via Nonbifidogenic Modification of the Fecal Microbiome in Human Adults
by Yohei Sato, Masaya Kanayama, Shiori Nakajima, Yukihiro Hishida and Yuta Watanabe
Microorganisms 2024, 12(2), 252; https://doi.org/10.3390/microorganisms12020252 - 25 Jan 2024
Cited by 6 | Viewed by 2723
Abstract
Although various benefits of human milk oligosaccharides (HMOs) have been reported, such as promoting Bifidobacterium growth in the infant gut, their effects on adults have not been fully studied. This study investigated the effects of two types of sialyllactose, 3′-sialyllactose (3′-SL) and 6′-sialyllactose [...] Read more.
Although various benefits of human milk oligosaccharides (HMOs) have been reported, such as promoting Bifidobacterium growth in the infant gut, their effects on adults have not been fully studied. This study investigated the effects of two types of sialyllactose, 3′-sialyllactose (3′-SL) and 6′-sialyllactose (6′-SL), on the adult intestinal microbiome using the simulator of human intestinal microbial ecosystem (SHIME®), which can simulate human gastrointestinal conditions. HPLC metabolite analysis showed that sialyllactose (SL) supplementation increased the short-chain fatty acid content of SHIME culture broth. Moreover, 16S rRNA gene sequencing analysis revealed that SL promoted the growth of Phascolarctobacterium and Lachnospiraceae, short-chain fatty acid-producing bacteria, but not the growth of Bifidobacterium. Altogether, both types of SL stimulated an increase in short-chain fatty acids, including propionate and butyrate. Additionally, SHIME culture supernatant supplemented with SL improved the intestinal barrier function in Caco-2 cell monolayers. These results suggest that SL could act as a unique prebiotic among other HMOs with a nonbifidogenic effect, resulting in intestinal barrier protection. Full article
Show Figures

Figure 1

Back to TopTop