Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = industrial exoskeletons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4283 KiB  
Review
Review on Upper-Limb Exoskeletons
by André Pires, Filipe Neves dos Santos and Vítor Tinoco
Machines 2025, 13(8), 642; https://doi.org/10.3390/machines13080642 - 23 Jul 2025
Viewed by 297
Abstract
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the [...] Read more.
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the use of tools or heavy equipment. Such activities increase the probability of developing muscle fatigue or injuries due to overuse or improper posture. Over time, this can result in the development of chronic conditions, which may impair the individual’s ability to perform tasks effectively and potentially lead to long-term physical impairment. Exoskeletons play a transformative role by reducing the perceived load on the muscles and providing mechanical support, mitigating the risk of injuries and alleviating the physical burden associated with strenuous activities. In addition to injury prevention, these devices also promise to facilitate the rehabilitation of individuals who have sustained musculoskeletal injuries. This document examines the various types of exoskeletons, investigating their design, functionality, and applications. The objective of this study is to present a comprehensive understanding of the current state of these devices, highlighting advancements in the field and evaluating their real-world impact. Furthermore, it analyzes the crucial insights obtained by other researchers, and by summarizing these findings, this work aims to contribute to the ongoing efforts to enhance exoskeleton performance and expand their accessibility across different sectors, including agriculture, healthcare, industrial work, and beyond. Full article
(This article belongs to the Special Issue Design and Control of Assistive Robots)
Show Figures

Figure 1

35 pages, 1464 KiB  
Systematic Review
Assessing Transparency of Robots, Exoskeletons, and Assistive Devices: A Systematic Review
by Nicol Moscatelli, Cristina Brambilla, Valentina Lanzani, Lorenzo Molinari Tosatti and Alessandro Scano
Sensors 2025, 25(14), 4444; https://doi.org/10.3390/s25144444 - 17 Jul 2025
Viewed by 321
Abstract
Transparency is a key requirement for some classes of robots, exoskeletons, and assistive devices (READs), where safe and efficient human–robot interaction is crucial. Typical fields that require transparency are rehabilitation and industrial contexts. However, the definitions of transparency adopted in the literature are [...] Read more.
Transparency is a key requirement for some classes of robots, exoskeletons, and assistive devices (READs), where safe and efficient human–robot interaction is crucial. Typical fields that require transparency are rehabilitation and industrial contexts. However, the definitions of transparency adopted in the literature are heterogeneous. It follows that there is a need to clarify, summarize, and assess how transparency is commonly defined and measured. Thus, the goal of this review is to systematically examine how transparency is conceptualized and evaluated across studies. To this end, we performed a structured search across three major scientific databases. After a thorough screening process, 20 out of 400 identified articles were further examined and included in this review. Despite being recognized as a desirable and essential characteristic of READs in many domains of application, our findings reveal that transparency is still inconsistently defined and evaluated, which limits comparability across studies and hinders the development of standardized evaluation frameworks. Indeed, our screening found significant heterogeneity in both terminology and evaluation methods. The majority of the studies used either a mechanical or a kinematic definition, mostly focusing on the intrinsic behavior of the device and frequently giving little attention to the device impact of the user and on the user’s perception. Furthermore, user-centered or physiological assessments could be examined further, since evaluation metrics are usually based on kinematic and robot mechanical metrics. Only a few studies have examined the underlying motor control strategies, using more in-depth methods such as muscle synergy analysis. These findings highlight the need for a shared taxonomy and a standardized framework for transparency evaluation. Such efforts would enable more reliable comparisons between studies and support the development of more effective and user-centered READs. Full article
(This article belongs to the Special Issue Wearable Sensors, Robotic Systems and Assistive Devices)
Show Figures

Figure 1

18 pages, 3325 KiB  
Article
AI-Driven Arm Movement Estimation for Sustainable Wearable Systems in Industry 4.0
by Emanuel Muntean, Monica Leba and Andreea Cristina Ionica
Sustainability 2025, 17(14), 6372; https://doi.org/10.3390/su17146372 - 11 Jul 2025
Viewed by 266
Abstract
In an era defined by rapid technological advancements, the intersection of artificial intelligence and industrial innovation has garnered significant attention from both academic and industry stakeholders. The emergence of Industry 4.0, characterized by the integration of cyber–physical systems, the Internet of Things, and [...] Read more.
In an era defined by rapid technological advancements, the intersection of artificial intelligence and industrial innovation has garnered significant attention from both academic and industry stakeholders. The emergence of Industry 4.0, characterized by the integration of cyber–physical systems, the Internet of Things, and smart manufacturing, demands the evolution of operational methodologies to ensure processes’ sustainability. One area of focus is the development of wearable systems that utilize artificial intelligence for the estimation of arm movements, which can enhance the ergonomics and efficiency of labor-intensive tasks. This study proposes a Random Forest-based regression model to estimate upper arm kinematics using only shoulder orientation data, reducing the need for multiple sensors and thereby lowering hardware complexity and energy demands. The model was trained on biomechanical data collected via a minimal three-IMU wearable configuration and demonstrated high predictive performance across all motion axes, achieving R2 > 0.99 and low RMSE scores on training (1.14, 0.71, and 0.73), test (3.37, 1.97, and 2.04), and unseen datasets (2.77, 0.78, and 0.63). Statistical analysis confirmed strong biomechanical coupling between shoulder and upper arm motion, justifying the feasibility of a simplified sensor approach. The findings highlight the relevance of our method for sustainable wearable technology design and its potential applications in rehabilitation robotics, industrial exoskeletons, and human–robot collaboration systems. Full article
(This article belongs to the Special Issue Sustainable Engineering Trends and Challenges Toward Industry 4.0)
Show Figures

Figure 1

37 pages, 1823 KiB  
Review
Mind, Machine, and Meaning: Cognitive Ergonomics and Adaptive Interfaces in the Age of Industry 5.0
by Andreea-Ruxandra Ioniță, Daniel-Constantin Anghel and Toufik Boudouh
Appl. Sci. 2025, 15(14), 7703; https://doi.org/10.3390/app15147703 - 9 Jul 2025
Viewed by 825
Abstract
In the context of rapidly evolving industrial ecosystems, the human–machine interaction (HMI) has shifted from basic interface control toward complex, adaptive, and human-centered systems. This review explores the multidisciplinary foundations and technological advancements driving this transformation within Industry 4.0 and the emerging paradigm [...] Read more.
In the context of rapidly evolving industrial ecosystems, the human–machine interaction (HMI) has shifted from basic interface control toward complex, adaptive, and human-centered systems. This review explores the multidisciplinary foundations and technological advancements driving this transformation within Industry 4.0 and the emerging paradigm of Industry 5.0. Through a comprehensive synthesis of the recent literature, we examine the cognitive, physiological, psychological, and organizational factors that shape operator performance, safety, and satisfaction. A particular emphasis is placed on ergonomic interface design, real-time physiological sensing (e.g., EEG, EMG, and eye-tracking), and the integration of collaborative robots, exoskeletons, and extended reality (XR) systems. We further analyze methodological frameworks such as RULA, OWAS, and Human Reliability Analysis (HRA), highlighting their digital extensions and applicability in industrial contexts. This review also discusses challenges related to cognitive overload, trust in automation, and the ethical implications of adaptive systems. Our findings suggest that an effective HMI must go beyond usability and embrace a human-centric philosophy that aligns technological innovation with sustainability, personalization, and resilience. This study provides a roadmap for researchers, designers, and practitioners seeking to enhance interaction quality in smart manufacturing through cognitive ergonomics and intelligent system integration. Full article
Show Figures

Figure 1

40 pages, 2250 KiB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 645
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

30 pages, 7353 KiB  
Review
A Review of Assistive Devices in Synovial Joints: Records, Trends, and Classifications
by Filiberto Cruz-Flores, Ana L. Sánchez-Brito, Rafael Campos Amezcua, Agustín Barrera Sánchez, Héctor R. Azcaray Rivera, Arturo J. Martínez Mata and Andrés Blanco Ortega
Technologies 2025, 13(7), 292; https://doi.org/10.3390/technologies13070292 - 8 Jul 2025
Viewed by 331
Abstract
This article presents a comprehensive review of assistive devices for synovial joints, addressing their definitions, classifications, and technological advancements. The historical evolution of artificial exoskeletons, orthoses, prostheses, and splints is analyzed, emphasizing their impact on rehabilitation and the enhancement of human mobility. Through [...] Read more.
This article presents a comprehensive review of assistive devices for synovial joints, addressing their definitions, classifications, and technological advancements. The historical evolution of artificial exoskeletons, orthoses, prostheses, and splints is analyzed, emphasizing their impact on rehabilitation and the enhancement of human mobility. Through a systematic compilation of scientific literature, patents, and medical regulations, the study clarifies terminology and classifications that have often been imprecisely used in scientific discourse. The review examines the biomechanical principles of the musculoskeletal system and the kinematics of synovial joints, providing a reference framework for the optimization and design of these devices. Furthermore, it explores the various types of artificial exoskeletons, and their classification based on structure, mobility, power source, and control system, as well as their applications in medical, industrial, and military domains. Finally, this study highlights the necessity of a systematic approach in the design and categorization of these technologies to facilitate their development, comparison, and effective implementation, ultimately improving users’ quality of life. Full article
Show Figures

Figure 1

27 pages, 12102 KiB  
Article
Genome Annotation of Molting-Related Protein-Coding Genes in Propsilocerus akamusi Reveals Transcriptomic Responses to Heavy Metal Contamination
by Wenbin Liu, Anmo Zhou, Ziming Shao, Jiaxin Nie, Chuncai Yan, Shaobo Gao and Yiwen Wang
Insects 2025, 16(6), 636; https://doi.org/10.3390/insects16060636 - 17 Jun 2025
Viewed by 718
Abstract
The exoskeleton of insects, known as the cuticle, necessitates regular renewal during molting and metamorphosis, with chitin being its primary structural component. Consequently, the molting and metamorphosis processes in insects are characterized by periodic degradation and synthesis of chitin, which are tightly regulated [...] Read more.
The exoskeleton of insects, known as the cuticle, necessitates regular renewal during molting and metamorphosis, with chitin being its primary structural component. Consequently, the molting and metamorphosis processes in insects are characterized by periodic degradation and synthesis of chitin, which are tightly regulated by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Propsilocerus akamusi, a species that plays a crucial role in freshwater ecosystems, demonstrates remarkable resilience to environmental pollutants, including metallic elements found in industrial waste. In this investigation, we systematically analyzed and summarized the metabolic pathways associated with JH, 20E, chitin, and heavy metal transport in P. akamusi. Based on previous genome assembly, we conducted a systematic annotation and functional analysis of genes involved in these metabolic pathways in P. akamusi. This was achieved by querying conserved domains using Pfam and SMART, as well as identifying gene-specific classical consensus regions through amino acid sequence alignment using DNAMAN. Through our validation, a total of 109 genes were definitively categorized into four distinct metabolic pathways: 27 genes were involved in the JH metabolic pathway, 24 in the 20E metabolic pathway, 27 in the chitin metabolic pathway, and 31 in metal transport pathways. A total of 30 genes failed our validation and were temporarily excluded. Furthermore, through RNA sequencing (RNA-seq)-based transcriptome analysis, we observed that under copper (Cu) stress, the expression levels of the majority of genes participating in these metabolic pathways in P. akamusi were altered. This finding suggests that copper exposure influences the molting process in P. akamusi. Full article
(This article belongs to the Special Issue Aquatic Insects Biodiversity and eDNA Monitoring)
Show Figures

Figure 1

30 pages, 1614 KiB  
Review
Mapping the Role of Robot-Assisted Gait Training in Post-Stroke Recovery Among Elderly Patients: A Scoping Review
by Cinzia Marinaro, Lucia Muglia, Simona Squartecchia, Annalisa Cozza, Andrea Corsonello, Luigi Pranno, Maurizio Ferrarin and Tiziana Lencioni
J. Clin. Med. 2025, 14(11), 3922; https://doi.org/10.3390/jcm14113922 - 3 Jun 2025
Viewed by 1132
Abstract
Background/Objective: Stroke is one of the leading causes of death and disability worldwide, with older survivors (aged > 65 years) bearing significant health and economic impacts, particularly in industrialized countries. While gait rehabilitation is a cornerstone in post-stroke recovery and robotic technologies offer [...] Read more.
Background/Objective: Stroke is one of the leading causes of death and disability worldwide, with older survivors (aged > 65 years) bearing significant health and economic impacts, particularly in industrialized countries. While gait rehabilitation is a cornerstone in post-stroke recovery and robotic technologies offer promising tools to enhance its effectiveness, the existing literature has largely overlooked elderly populations. Most studies on robot-assisted gait training (RAGT)—which uses exoskeleton or end-effector devices to support and guide movement—either exclude older adults or do not analyze their outcomes separately. This review aims to critically evaluate the current evidence on RAGT in elderly post-stroke patients, addressing a significant gap in the literature and providing novel insights into the effectiveness and adaptability of RAGT for this specific population. Methods: The search included databases such as PubMed, Scopus, Embase, Web of Science, and ClinicalTrials. The inclusion criteria covered studies published up to March 2025, focusing on post-stroke individuals aged >65 years, who underwent RAGT. Results: 25 studies were included in the review, 21 involving exoskeleton and 4 end-effector devices. The primary focus was on motor outcomes, such as gait independence, gait parameters, and balance control. Only a few studies examined non-motor aspects, including cognitive and emotional functions, fatigue, pain, and neuroplasticity. Moreover, data on the long-term effects on the elderly population remain scarce. Conclusions: RAGT is an effective strategy for promoting motor recovery and improving functional outcomes, from independence in daily activities to quality of life, in the post-stroke elderly population. Early and high-intensity interventions are particularly useful with positive effects on neuronal plasticity, cognitive function, and well-being. Full article
(This article belongs to the Special Issue Rehabilitation and Management of Stroke)
Show Figures

Figure 1

24 pages, 2300 KiB  
Review
Adverse Effects Due to the Use of Upper Limbs Exoskeletons in the Work Environment: A Scoping Review
by Omar Flor-Unda, Rafael Arcos-Reina, Susana Nunez-Nagy and Bernardo Alarcos
Biomimetics 2025, 10(5), 340; https://doi.org/10.3390/biomimetics10050340 - 21 May 2025
Viewed by 866
Abstract
Both for design issues and for the study, analysis, and understanding of the interaction of workers with exoskeletons, the study of adverse effects provides criteria to improve the design of more efficient exoskeletons with better ergonomics and long-term usability. In this work, a [...] Read more.
Both for design issues and for the study, analysis, and understanding of the interaction of workers with exoskeletons, the study of adverse effects provides criteria to improve the design of more efficient exoskeletons with better ergonomics and long-term usability. In this work, a scoping review was carried out on adverse effects due to the prolonged use of upper-limb exoskeletons, which have been evidenced in the scientific literature. The causes of the effects are described in terms of their impacts on the physiological, psychological, and technological aspects that affect the user. A scoping review of articles of the last ten years on negative effects of upper-extremity exoskeletons for industrial tasks was carried out following the guidelines of the PRISMA® methodology with three phases: formulation of questions, definition of scopes and exhaustive search in SCOPUS, Web of Science, Science Direct, Taylor & Francis, and PubMed. The selection was made by two review authors with a Cohen’s Kappa coefficient of 0.9530, indicating high agreement. The effectiveness of upper-limb exoskeletons depends on the environment and the task, so an adaptable ergonomic design, field validations, and standards are required to ensure their functionality and acceptance. Use of exoskeletons mainly activates the posterior deltoid and latissimus dorsi and reduces the activity of muscles such as the trapezius, pectoralis major, anterior and middle deltoids, biceps brachii, brachioradialis, and flexor carpi radialis. Full article
Show Figures

Figure 1

31 pages, 3652 KiB  
Review
A Review of Wearable Back-Support Exoskeletons for Preventing Work-Related Musculoskeletal Disorders
by Yanping Qu, Xupeng Wang, Xinyao Tang, Xiaoyi Liu, Yuyang Hao, Xinyi Zhang, Hongyan Liu and Xinran Cheng
Biomimetics 2025, 10(5), 337; https://doi.org/10.3390/biomimetics10050337 - 20 May 2025
Viewed by 1238
Abstract
Long-term manual material handling (MMH) work leads to the trend of the younger onset of work-related musculoskeletal disorders (WMSDs), with low back pain (LBP) being the most common, which causes great trouble for both society and patients. To effectively prevent LBP and provide [...] Read more.
Long-term manual material handling (MMH) work leads to the trend of the younger onset of work-related musculoskeletal disorders (WMSDs), with low back pain (LBP) being the most common, which causes great trouble for both society and patients. To effectively prevent LBP and provide support for workers engaged in MMH work, wearable lumbar assistive exoskeletons have played a key role in industrial scenarios. This paper divides wearable lumbar assistive exoskeletons into powered, unpowered, and quasi-passive types, systematically reviews the research status of each type of exoskeleton, and compares and discusses the key factors such as driving mode, mechanical structure, control strategy, performance evaluation, and human–machine interaction. It is found that many studies focus on the assistive performance, human–machine coupling coordination, and adaptability of wearable lumbar assistive exoskeletons. At the same time, the analysis results show that there are many types of performance evaluation indicators, but a unified and standardized evaluation method and system are still lacking. This paper analyzes current research findings, identifies existing issues, and provides recommendations for future research. This study provides a theoretical basis and design ideas for the development of wearable lumbar assistive exoskeleton systems. Full article
(This article belongs to the Special Issue Bionic Wearable Robotics and Intelligent Assistive Technologies)
Show Figures

Figure 1

27 pages, 22376 KiB  
Article
Performance Evaluation of Monocular Markerless Pose Estimation Systems for Industrial Exoskeletons
by Soocheol Yoon, Ya-Shian Li-Baboud, Ann Virts, Roger Bostelman, Mili Shah and Nishat Ahmed
Sensors 2025, 25(9), 2877; https://doi.org/10.3390/s25092877 - 2 May 2025
Cited by 1 | Viewed by 600
Abstract
Industrial exoskeletons (a.k.a. wearable robots) have been developed to reduce musculoskeletal fatigue and work injuries. Human joint kinematics and human–robot alignment are important measurements in understanding the effects of industrial exoskeletons. Recently, markerless pose estimation systems based on monocular color (red, green, blue—RGB) [...] Read more.
Industrial exoskeletons (a.k.a. wearable robots) have been developed to reduce musculoskeletal fatigue and work injuries. Human joint kinematics and human–robot alignment are important measurements in understanding the effects of industrial exoskeletons. Recently, markerless pose estimation systems based on monocular color (red, green, blue—RGB) and depth cameras are being used to estimate human joint positions. This study analyzes the performance of monocular markerless pose estimation systems on human skeletal joint estimation while wearing exoskeletons. Two pose estimation systems producing RGB and depth images from ten viewpoints are evaluated for one subject in 14 industrial poses. The experiment was repeated for three different types of exoskeletons on the same subject. An optical tracking system (OTS) was used as a reference system. The image acceptance rate was 56% for the RGB, 22% for the depth, and 78% for the OTS pose estimation system. The key sources of pose estimation error were the occlusions from the exoskeletons, industrial poses, and viewpoints. The reference system showed decreased performance when the optical markers were occluded by the exoskeleton or when the markers’ position shifted with the exoskeleton. This study performs a systematic comparison of two types of monocular markerless pose estimation systems and an optical tracking system, as well as a proposed metric, based on a tracking quality ratio, to assess whether a skeletal joint estimation would be acceptable for human kinematics analysis in exoskeleton studies. Full article
(This article belongs to the Special Issue Wearable Robotics and Assistive Devices)
Show Figures

Figure 1

38 pages, 3559 KiB  
Review
Nanochitin and Nanochitosan in Pharmaceutical Applications: Innovations, Applications, and Future Perspective
by José Roberto Vega-Baudrit, Mary Lopretti, Gabriela Montes de Oca, Melissa Camacho, Diego Batista, Yendry Corrales, Andrea Araya, Badr Bahloul, Yohann Corvis and Luis Castillo-Henríquez
Pharmaceutics 2025, 17(5), 576; https://doi.org/10.3390/pharmaceutics17050576 - 27 Apr 2025
Cited by 1 | Viewed by 1323
Abstract
Nanochitin is a nanoscale form of chitin—a polysaccharide found in the exoskeletons of crustaceans, insects, and some fungal cell walls—that is newly garnering significant attention in the pharmaceutical space. Its good properties, such as biocompatibility, biodegradability, and an easily adjustable surface, render it [...] Read more.
Nanochitin is a nanoscale form of chitin—a polysaccharide found in the exoskeletons of crustaceans, insects, and some fungal cell walls—that is newly garnering significant attention in the pharmaceutical space. Its good properties, such as biocompatibility, biodegradability, and an easily adjustable surface, render it attractive for various medical and pharmaceutical applications. Nanochitin, from drug delivery systems and wound-care formulations to vaccine adjuvants and antimicrobial strategies, has demonstrated its strong potential in meeting diverse therapeutic needs. This review covers the background of nanochitin, including methods for its extraction and refining and its principal physicochemical and biological properties. It further discusses various hydrolysis and enzymatic approaches for the structural and functional characterization of nanochitin and highlights some pharmaceutical applications where this biopolymer has been studied. The review also addresses toxicity issues, regulatory matters, and challenges in large-scale industrial production. Finally, it underscores novel avenues of investigation and future opportunities, emphasizing the urgent requirement for standardized production methods, rigorous safety assessment, and interdisciplinary partnerships to maximize nanochitin’s potential in pharmaceutical research, demonstrating the importance of chitin in drug delivery. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

39 pages, 2277 KiB  
Review
Green Processes for Chitin and Chitosan Production from Insects: Current State, Challenges, and Opportunities
by Lisa Mersmann, Victor Gomes Lauriano Souza and Ana Luísa Fernando
Polymers 2025, 17(9), 1185; https://doi.org/10.3390/polym17091185 - 26 Apr 2025
Viewed by 2606
Abstract
Chitin and chitosan are valuable biopolymers with various applications, ranging from food to pharmaceuticals. Traditionally sourced from crustaceans, the rising demand for chitin/chitosan, paired with the development of the insect sector, has led to the exploration of insect biomass and its byproducts as [...] Read more.
Chitin and chitosan are valuable biopolymers with various applications, ranging from food to pharmaceuticals. Traditionally sourced from crustaceans, the rising demand for chitin/chitosan, paired with the development of the insect sector, has led to the exploration of insect biomass and its byproducts as a potential source. Conventional processes rely on hazardous chemicals, raising environmental concerns. This critical review evaluates emerging “greener” approaches, including biological methods, green solvents, and advanced processing techniques, for chitin/chitosan production from insect-derived materials such as exuviae and cocoons. Two systematic evaluations are included: (1) a cross-comparison of chitin and chitosan yields across insect life stages and byproducts (e.g., up to 35.7% chitin from black soldier fly (BSF) larval exoskeletons can be obtained) and (2) a stepwise sustainability assessment of over 30 extraction workflows reported across 16 studies. While many are labeled as green, only a few, such as bromelain, lactic acid fermentations, or NADES-based processes, demonstrated fully green extraction up to the chitin stage. No study achieved a fully green conversion to chitosan, and green workflows typically required materials with low fat content and minimal pretreatment. These findings will be useful to identify opportunities and underscore the need to refine greener methods, improve yields, reduce impurities, and enable industrial-scale production, while sustainability data need to be generated. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

30 pages, 7058 KiB  
Review
Research Status and Development Trend of Lower-Limb Squat-Assistant Wearable Devices
by Lin Li, Zehan Chen, Rong Hong, Yanping Qu, Xinqin Gao and Xupeng Wang
Biomimetics 2025, 10(5), 258; https://doi.org/10.3390/biomimetics10050258 - 22 Apr 2025
Cited by 1 | Viewed by 930
Abstract
The accelerating population aging and increasing demand for higher work efficiency have made the research and the application of lower-limb assistive exoskeletons a primary focus in recent years. This paper reviews the research progress of lower-limb squat assistive wearable devices, with a focus [...] Read more.
The accelerating population aging and increasing demand for higher work efficiency have made the research and the application of lower-limb assistive exoskeletons a primary focus in recent years. This paper reviews the research progress of lower-limb squat assistive wearable devices, with a focus on classification methods, research outcomes, and products from both domestic and international markets. It also analyzes the key technologies involved in their development, such as mechanical mechanisms, control strategies, motion sensing, and effectiveness validation. From an industrial design perspective, the paper also explores the future prospects of lower-limb squat assistive wearable devices in four key areas: multi-signal sensing, intelligent control, human–machine collaboration, and experimental validation. Finally, the paper discusses future development trends in this field. Full article
(This article belongs to the Special Issue Bionic Wearable Robotics and Intelligent Assistive Technologies)
Show Figures

Figure 1

9 pages, 2950 KiB  
Proceeding Paper
Cost-Effective Triboelectric-Assisted Sensory Actuator Designed for Intelligent Robot and Exoskeleton
by Haowen Liu, Yusong Chu, Yudong Zhao, Guanyu Zhu, Xuan Li, Minglu Zhu and Tao Chen
Eng. Proc. 2024, 78(1), 11; https://doi.org/10.3390/engproc2024078011 - 18 Apr 2025
Viewed by 2467
Abstract
Joint actuators are the key components in the innovation and iterative optimization of the robots, with a significant impact on both the performances of robots and manufacturing costs. Conventional industrial collaborative robots often use high-precision position and torque sensors, which are not cost-effective [...] Read more.
Joint actuators are the key components in the innovation and iterative optimization of the robots, with a significant impact on both the performances of robots and manufacturing costs. Conventional industrial collaborative robots often use high-precision position and torque sensors, which are not cost-effective or energy-efficient in specific applications like assistive exoskeletons, legged robots, or wheeled robots. Alternatively, we propose a triboelectric-assisted sensory actuator that balances lightweight design, performance, and affordability for large-scale applications. The actuator is composed of a high-power density motor, a low reduction gearbox, and integrated with a rotational triboelectric sensor, which leads to high dynamic performances and low power consumption. The feasibility of the prototype is initially verified by characterizing the angular positioning accuracy and the back drivability. Experiments indicate that the rotational triboelectric sensor is able to accurately detect the angular displacement of the actuator with the self-generated signals. Overall, a highly integrated actuator module with the actuation and sensing circuit is fabricated as a compact design ready for assembling a complete intelligent robot. This actuator holds great potential as a cost-effective, energy-efficient, and versatile solution for modern robotics, crucial for advancing this field and improving human convenience. Full article
Show Figures

Figure 1

Back to TopTop