Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = industrial CT scanning technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11857 KiB  
Article
Influence of Infill Pattern on Ballistic Resistance Capabilities of 3D-Printed Polymeric Structures
by Muhamed Bisić, Adi Pandžić, Merim Jusufbegović, Mujo Ćerimović and Predrag Elek
Polymers 2025, 17(13), 1854; https://doi.org/10.3390/polym17131854 - 2 Jul 2025
Viewed by 526
Abstract
Recent technological advances have expanded the use of 3D-printed polymer components across industries, including a growing interest in military applications. The effective defensive use of such materials depends on a thorough understanding of polymer properties, printing techniques, structural design, and influencing parameters. This [...] Read more.
Recent technological advances have expanded the use of 3D-printed polymer components across industries, including a growing interest in military applications. The effective defensive use of such materials depends on a thorough understanding of polymer properties, printing techniques, structural design, and influencing parameters. This paper analyzes the ballistic resistance of 3D-printed polymer structures against 9 × 19 mm projectiles. Cuboid targets with different infill patterns—cubic, grid, honeycomb, and gyroid—were fabricated and tested experimentally using live ammunition. Post-impact, CT scans were used to non-destructively measure projectile penetration depths. The honeycomb infill demonstrated superior bullet-stopping performance. Additionally, mechanical properties were experimentally determined and applied in FEM simulations, confirming the ability of commercial software to predict projectile–target interaction in complex geometries. A simplified analytical model also produced satisfactory agreement with experimental observations. The results contribute to a better understanding of impact behavior in 3D-printed polymer structures, supporting their potential application in defense systems. Full article
(This article belongs to the Special Issue Polymeric Materials in 3D Printing)
Show Figures

Figure 1

19 pages, 21832 KiB  
Article
Automatic Wood Species Classification and Pith Detection in Log CT Images
by Ondrej Vacek, Tomáš Gergeľ, Tomáš Bucha, Radovan Gracovský and Miloš Gejdoš
Forests 2024, 15(12), 2207; https://doi.org/10.3390/f15122207 - 15 Dec 2024
Cited by 2 | Viewed by 1157
Abstract
This article focuses on the need for digitalization in the forestry and timber sector using information from CT scans of logs. The National Forest Centre (Slovak Republic) operates a unique 3D CT scanner for wooden logs at the Stráž Biotechnology Park. This real-time [...] Read more.
This article focuses on the need for digitalization in the forestry and timber sector using information from CT scans of logs. The National Forest Centre (Slovak Republic) operates a unique 3D CT scanner for wooden logs at the Stráž Biotechnology Park. This real-time scanner generates a 3D model of a log, displaying the wood’s internal features/defects. To optimize log-cutting plans effectively, it is necessary to automatically detect and classify these features and defects in real time, leveraging computer vision principles. Artificial intelligence, specifically neural networks, addresses this need by enabling solutions for tasks of this nature. Building a highly efficient neural network for detecting wood features and defects requires creating a database of log scans and training the network on these data. This is a time-intensive process, as it involves manually marking internal features and defects on hundreds of CT scans of various wood types. A functional neural network for detecting internal wood defects represents a significant advancement in sector digitalization, paving the way for further automation and robotization in wood processing. For the forestry sector to remain competitive, efficiently process raw materials, and improve product quality, the effective application of CT scanning technology is essential. This technological innovation aligns the sector more closely with leaders in other fields, such as the automotive, engineering, and metalworking industries. Full article
(This article belongs to the Special Issue Advances in Technology and Solutions for Wood Processing)
Show Figures

Figure 1

16 pages, 9898 KiB  
Article
Lithium Iron Phosphate Battery Failure Under Vibration
by Jianying Li, Zhanhong Chen, Yinghong Xie, Hao Wen, Chaoming Cai and Hai Wang
World Electr. Veh. J. 2024, 15(12), 548; https://doi.org/10.3390/wevj15120548 - 24 Nov 2024
Cited by 3 | Viewed by 1358
Abstract
The failure mechanism of square lithium iron phosphate battery cells under vibration conditions was investigated in this study, elucidating the impact of vibration on their internal structure and safety performance using high-resolution industrial CT scanning technology. Various vibration states, including sinusoidal, random, and [...] Read more.
The failure mechanism of square lithium iron phosphate battery cells under vibration conditions was investigated in this study, elucidating the impact of vibration on their internal structure and safety performance using high-resolution industrial CT scanning technology. Various vibration states, including sinusoidal, random, and classical impact modes, were tested to simulate real-world usage scenarios. The findings demonstrate that different vibration conditions exert varying degrees of influence on the battery cells. Despite experiencing slight deformation and displacement after exposure to vibrations, their overall performance remains stable, with no significant safety hazards detected. Moreover, it was observed that while the side gap increases due to the partial absorption of impact load by both the battery cells and connection components, the bottom gap remains unchanged. This study holds immense significance in enhancing electric vehicle safety and reliability, while providing a scientific foundation for future optimization designs of lithium iron phosphate batteries. Full article
(This article belongs to the Special Issue Research Progress in Power-Oriented Solid-State Lithium-Ion Batteries)
Show Figures

Figure 1

23 pages, 10726 KiB  
Article
Influence of Temperature and Bedding Planes on the Mode I Fracture Toughness and Fracture Energy of Oil Shale Under Real-Time High-Temperature Conditions
by Shaoqiang Yang, Qinglun Zhang and Dong Yang
Energies 2024, 17(21), 5344; https://doi.org/10.3390/en17215344 - 27 Oct 2024
Viewed by 1421
Abstract
The anisotropic fracture characteristics of oil shale are crucial in determining reservoir modification parameters and pyrolysis efficiency during in situ oil shale pyrolysis. Therefore, understanding the mechanisms through which temperature and bedding planes influence the fracture behavior of oil shale is vital for [...] Read more.
The anisotropic fracture characteristics of oil shale are crucial in determining reservoir modification parameters and pyrolysis efficiency during in situ oil shale pyrolysis. Therefore, understanding the mechanisms through which temperature and bedding planes influence the fracture behavior of oil shale is vital for advancing the industrialization of in situ pyrolysis technology. In this study, scanning electron microscopy (SEM), CT scanning, and a real-time high-temperature rock fracture toughness testing system were utilized to investigate the spatiotemporal evolution of pores and fractures in oil shale across a temperature range of 20–600 °C, as well as the corresponding evolution of fracture behavior. The results revealed the following: (1) At ambient temperature, oil shale primarily contains inorganic pores and fractures, with sizes ranging from 50 to 140 nm. In the low-temperature range (20–200 °C), heating primarily causes the inward closure of inorganic pores and the expansion of inorganic fractures along bedding planes. In the medium-temperature range (200–400 °C), organic pores and fractures begin to form at around 300 °C, and after 400 °C, the number of organic fractures increases significantly, predominantly along bedding planes. In the high-temperature range (400–600 °C), the number, size, and connectivity of matrix pores and fractures increase markedly with rising temperature, and clay minerals exhibit adhesion, forming vesicle-like structures. (2) At room temperature, fracture toughness is highest in the Arrester direction (KIC-Arr), followed by the Divider direction (KIC-Div), and lowest in the Short-Transverse direction (KIC-Shor). As the temperature increases from 20 °C to 600 °C, both KIC-Arr and KIC-Div initially decrease before increasing, reaching their minimum values at 400 °C and 500 °C, respectively, while KIC-Shor decreases continuously as the temperature increases. (3) The energy required for prefabricated cracks to propagate to failure in all three directions reaches a minimum at 100 °C. Beyond 100 °C, the absorbed energy for crack propagation along the Divider and Short-Transverse directions continues to increase, whereas for cracks propagating in the Arrester direction, the absorbed energy exhibits a ‘W-shaped’ pattern, with troughs at 100 °C and 400 °C. These findings provide essential data for reservoir modification during in situ oil shale pyrolysis. Full article
(This article belongs to the Special Issue Recent Advances in Oil Shale Conversion Technologies)
Show Figures

Figure 1

18 pages, 1561 KiB  
Article
Unsupervised Denoising in Spectral CT: Multi-Dimensional U-Net for Energy Channel Regularisation
by Raziye Kubra Kumrular and Thomas Blumensath
Sensors 2024, 24(20), 6654; https://doi.org/10.3390/s24206654 - 16 Oct 2024
Cited by 3 | Viewed by 1846
Abstract
Spectral Computed Tomography (CT) is a versatile imaging technique widely utilized in industry, medicine, and scientific research. This technique allows us to observe the energy-dependent X-ray attenuation throughout an object by using Photon Counting Detector (PCD) technology. However, a major drawback of spectral [...] Read more.
Spectral Computed Tomography (CT) is a versatile imaging technique widely utilized in industry, medicine, and scientific research. This technique allows us to observe the energy-dependent X-ray attenuation throughout an object by using Photon Counting Detector (PCD) technology. However, a major drawback of spectral CT is the increase in noise due to a lower achievable photon count when using more energy channels. This challenge often complicates quantitative material identification, which is a major application of the technology. In this study, we investigate the Noise2Inverse image denoising approach for noise removal in spectral computed tomography. Our unsupervised deep learning-based model uses a multi-dimensional U-Net paired with a block-based training approach modified for additional energy-channel regularization. We conducted experiments using two simulated spectral CT phantoms, each with a unique shape and material composition, and a real scan of a biological sample containing a characteristic K-edge. Measuring the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) for the simulated data and the contrast-to-noise ratio (CNR) for the real-world data, our approach not only outperforms previously used methods—namely the unsupervised Low2High method and the total variation-constrained iterative reconstruction method—but also does not require complex parameter tuning. Full article
(This article belongs to the Special Issue Recent Advances in X-Ray Sensing and Imaging)
Show Figures

Figure 1

19 pages, 29067 KiB  
Article
Hybrid Steel-Polyethylene Fiber-Reinforced Iron Ore Tailing Concrete: Mechanical, Sulfate Freeze–Thaw Resistance, and Microscopic Characteristics
by Jing Wang and Xiaopeng Li
Buildings 2024, 14(6), 1843; https://doi.org/10.3390/buildings14061843 - 18 Jun 2024
Viewed by 1074
Abstract
This study examines the effects of iron ore tailing (IOT) replacement ratios and the hybridization of steel fiber (SF) and polyethylene (PE) fiber (PF) on the mechanical, sulfate freeze–thaw (F–T) resistance, and microscopic characteristics of IOT concrete. The mechanical properties of specimens including [...] Read more.
This study examines the effects of iron ore tailing (IOT) replacement ratios and the hybridization of steel fiber (SF) and polyethylene (PE) fiber (PF) on the mechanical, sulfate freeze–thaw (F–T) resistance, and microscopic characteristics of IOT concrete. The mechanical properties of specimens including compressive strength (fcu) and splitting tensile strength (fsts) were evaluated. Sulfate F–T cycle indices of specimens including surface damage, fcu loss, relative dynamic elastic modulus (RDEM), and mass loss are examined. Meanwhile, microscopic characteristics are analyzed using industrial computer technology (CT) and scanning electron microscopy (SEM). Results indicated that IOT replacement ratios below 40% positively influenced mechanical properties and sulfate F–T resistance, whereas ratios exceeding 40% exhibited adverse effects. Incorporating hybrid SF and PF further enhanced the mechanical properties and sulfate F–T resistance of IOT concrete. The IOT concrete containing 1.5% SF and 0.6% PF (designated T40S1.5P0.6) demonstrates significantly improved mechanical properties and sulfate F–T resistance. A set of parameters was proposed to predict the fsts. The Weibull damage model, capable of quantitatively reflecting the F–T damage of IOT concrete, was established. The pore structure of IOT concrete gradually deteriorates with increasing sulfate F–T cycles. The pore characteristics of T40S1.5P0.6 were superior. This was further validated through SEM observations. Full article
Show Figures

Figure 1

16 pages, 8233 KiB  
Article
Promoting Sustainable Coal Gas Development: Microscopic Seepage Mechanism of Natural Fractured Coal Based on 3D-CT Reconstruction
by Chunwang Zhang, Zhixin Jin, Guorui Feng, Lei Zhang, Rui Gao and Chun Li
Sustainability 2024, 16(11), 4434; https://doi.org/10.3390/su16114434 - 23 May 2024
Cited by 4 | Viewed by 1449
Abstract
Green mining is an effective way to achieve sustainable development in the coal industry. Preventing coal and gas outburst dynamic disasters are essential for ensuring sustainable and safe mining. The numerous microscopic pores within the coal serve as the primary storage space for [...] Read more.
Green mining is an effective way to achieve sustainable development in the coal industry. Preventing coal and gas outburst dynamic disasters are essential for ensuring sustainable and safe mining. The numerous microscopic pores within the coal serve as the primary storage space for gas, making it critical to explore the structural distribution and seepage characteristics to reveal the disaster mechanism. Under mining stress, gas within the micropores of the coal migrates outward through cracks, with these cracks exerting a significant control effect on gas migration. Therefore, this study focuses on utilizing natural fractured coal bodies as research objects, employing a micro-CT imaging system to conduct scanning tests and digital core technology to reconstruct sample pore and fracture structures in three dimensions, and characterizing the pores, cracks, skeleton structure, and connectivity. A representative elementary volume (REV) containing macro cracks was selected to establish an equivalent model of the pore network, and a seepage simulation analysis was performed using the visualization software. Revealing the seepage characteristics of fractured coal mass from a microscopic perspective. The research results can provide guidance for gas drainage and dynamic disaster early warning in deep coal mines, thus facilitating the sustainable development of coal mining enterprises. Full article
Show Figures

Figure 1

22 pages, 13654 KiB  
Article
Structure Analysis and Its Correlation with Mechanical Properties of Microcellular Polyamide Composites Reinforced with Glass Fibers
by Piotr Szewczykowski, Dariusz Sykutera, Piotr Czyżewski, Mieczysław Cieszko, Zbigniew Szczepański and Bartosz Nowinka
Materials 2023, 16(23), 7501; https://doi.org/10.3390/ma16237501 - 4 Dec 2023
Cited by 2 | Viewed by 2027
Abstract
Thin-walled and thick-walled microcellular moldings were obtained by MuCell® technology with nitrogen as a supercritical fluid. 2 mm thick polyamide 6 (PA6) with 30% wt. glass fiber (GF) samples were cut from automotive industrial elements, while 4 mm, 6 mm, and 8.4 [...] Read more.
Thin-walled and thick-walled microcellular moldings were obtained by MuCell® technology with nitrogen as a supercritical fluid. 2 mm thick polyamide 6 (PA6) with 30% wt. glass fiber (GF) samples were cut from automotive industrial elements, while 4 mm, 6 mm, and 8.4 mm thick moldings of PA6.6 with 30% wt. GF were molded into a dumbbell shape. The internal structure was investigated by scanning electron microscopy (SEM) and X-ray computed microtomography (micro-CT) and compared by numerical simulations for microcellular moldings using Moldex3D® 2022 software. Young’s modulus, and tensile and impact strength were investigated. Weak mechanical properties of 2 mm thick samples and excellent results for thick-walled moldings were explained. SEM pictures, micro-CT, and simulation graphs revealed the tendency to decrease the cell size diameter together with increasing sample thickness from 2 mm up to 8.4 mm. Full article
(This article belongs to the Special Issue Non-Destructive Testing (NDT) of Advanced Composites and Structures)
Show Figures

Graphical abstract

13 pages, 3638 KiB  
Article
Characterizing the Internal Structure of Chinese Steamed Bread during Storage for Quality Evaluation Using X-ray Computer Tomography
by Yonghui Yu, Chanchan Jia, Jiahua Wang, Fuwei Pi, Huang Dai and Xiaodan Liu
Sensors 2023, 23(21), 8804; https://doi.org/10.3390/s23218804 - 29 Oct 2023
Cited by 4 | Viewed by 1861
Abstract
Chinese steamed bread (CSB) is a traditional food of the Chinese nation, and the preservation of its quality and freshness during storage is very important for its industrial production. Therefore, it is necessary to study the storage characteristics of CSB. Non-destructive CT technology [...] Read more.
Chinese steamed bread (CSB) is a traditional food of the Chinese nation, and the preservation of its quality and freshness during storage is very important for its industrial production. Therefore, it is necessary to study the storage characteristics of CSB. Non-destructive CT technology was utilized to characterize and visualize the microstructure of CSB during storage, and also to further study of quality changes. Two-dimensional and three-dimensional images of CSBs were obtained through X-ray scanning and 3D reconstruction. Morphological parameters of the microstructure of CSBs were acquired based on CT image using image processing methods. Additionally, commonly used physicochemical indexes (hardness, flexibility, moisture content) for the quality evaluation of CSBs were analyzed. Moreover, a correlation analysis was conducted based on the three-dimensional morphological parameters and physicochemical indexes of CSBs. The results showed that three-dimensional morphological parameters of CSBs were negatively correlated with moisture content (Pearson correlation coefficient range−0.86~−0.97) and positively correlated with hardness (Pearson correlation coefficient range−0.87~0.99). The results indicate the inspiring capability of CT in the storage quality evaluation of CSB, providing a potential analytical method for the detection of quality and freshness in the industrial production of CSB. Full article
(This article belongs to the Special Issue Optical Instruments and Sensors and Their Applications)
Show Figures

Figure 1

16 pages, 9389 KiB  
Article
Interlocking Evaluation of Mesoscopic Skeleton with the Compaction Degree of Hot-Mix Asphalt
by Xiangbing Gong, Ziming Liu, Guoping Qian and Zhiyang Liu
Materials 2023, 16(17), 5879; https://doi.org/10.3390/ma16175879 - 28 Aug 2023
Cited by 2 | Viewed by 1256
Abstract
Asphalt mixtures are multi-phase composites composed of aggregates, bitumen, mineral powders, and voids, and various structures are intertwined during the compaction process. Most of the traditional research focuses on the macro-scale domain, and it is difficult to obtain the internal structure of asphalt [...] Read more.
Asphalt mixtures are multi-phase composites composed of aggregates, bitumen, mineral powders, and voids, and various structures are intertwined during the compaction process. Most of the traditional research focuses on the macro-scale domain, and it is difficult to obtain the internal structure of asphalt mixture in different compaction processes. With the continuous development of digital image technology, the influence of the meso-structure of the asphalt mixture on the compaction quality of the asphalt mixture has become a new means to evaluate the performance of the asphalt mixture. In this paper, different numbers of compactions are selected to represent different stages in the compaction process, the digital images of specimens in different compaction stages are obtained by industrial CT scanning technology. Then, the images are processed and reconstructed in three dimensions using improved image segmentation methods, and the position characteristics and geometric information of coarse aggregate are obtained by combining the Oriented Bounding Box (OBB). The meso-response characteristics of the skeleton structure of the asphalt mixture during compaction were studied. The influence of the internal structure of the mixture on the compaction quality of the mixture was obtained, which is of great significance for the study of improving the durability of the pavement. The results show that the “effective coordination number” (the number of aggregate particles that can transmit force in the skeleton structure) is greatly related to the aggregate size. With the compaction process, the centroid of coarse aggregate in the upper layer of the specimen reflects the overall downward movement trend. The inclination angle of the aggregate spindle tends to be in the range of 80°~100°; the anisotropic amplitude of the xy plane increases, and the direction of the aggregate spindle becomes more and more consistent. With the increase in the number of rotational compactions, these four parameters showed obvious rules, indicating that this meso-characteristic index could well characterize the compaction quality of the asphalt mixture in the compaction process. Full article
Show Figures

Figure 1

17 pages, 9152 KiB  
Article
Predicting Soil Saturated Water Conductivity Using Pedo-Transfer Functions for Rocky Mountain Forests in Northern China
by Di Wang, Jianzhi Niu, Yubo Miao, Tao Yang and Ronny Berndtsson
Forests 2023, 14(6), 1097; https://doi.org/10.3390/f14061097 - 25 May 2023
Cited by 2 | Viewed by 1484 | Correction
Abstract
Soil physicochemical properties and macropore spatial structure affect saturated hydraulic conductivity (Ks). However, due to regional differences and long measurement time, Ks is tedious to quantify. Therefore, it is of great importance to find simplified but robust methods to predict Ks. [...] Read more.
Soil physicochemical properties and macropore spatial structure affect saturated hydraulic conductivity (Ks). However, due to regional differences and long measurement time, Ks is tedious to quantify. Therefore, it is of great importance to find simplified but robust methods to predict Ks. One possibility is to use pedo-transfer functions (PTFs). Along this line, stratified sampling was carried out in six typical forestlands in the rocky mountain area of Northern China. Penetration experiments and industrial CT scanning were combined to explore the distribution characteristics of regional Ks and its influencing factors. Based on this, we compared three Ks PTF models by multiple linear regression for Ks prediction. The results indicated that: (1) Ks decreased with increasing soil depth, which followed the order coniferous forest < broad-leaved forest < mixed forest, and the change range of mixed forest was greater than that of homogeneous forest. (2) Soil bulk density, water content, sand, silt, organic matter, total nitrogen, total phosphorus, and total potassium were significantly correlated with Ks (p < 0.05). In addition, stand type and soil depth had a certain impact on soil physicochemical properties that affected Ks. (3) Soil macropore structure, such as number density, length density, surface area density, and volume density, all decreased with increasing soil depth. They were all significantly positively correlated with Ks (p < 0.001). (4) The best predictability and universality for PTFs was achieved for PTFs containing bulk density, organic matter content, and total phosphorus. Only PTFs containing parameters of macropore spatial structure did not yield high predictability of Ks. The findings of this study contribute to the understanding of forest hydrological infiltration processes in rocky mountain forests in Northern China, and provide theoretical support for the prediction and management of water loss and soil erosion and the enhancement of water conservation functions. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

18 pages, 13186 KiB  
Article
The Application of Mixed Reality in Root Canal Treatment
by Damian Dolega-Dolegowski, Magdalena Dolega-Dolegowska, Agnieszka Pregowska, Krzysztof Malinowski and Klaudia Proniewska
Appl. Sci. 2023, 13(7), 4078; https://doi.org/10.3390/app13074078 - 23 Mar 2023
Cited by 10 | Viewed by 4253
Abstract
The priority of modern dentistry is to keep patients’ teeth for as long as possible. Tooth extraction is a procedure performed as a last resort when conservative methods and endodontic surgery procedures have not brought the expected results. As a consequence, the number [...] Read more.
The priority of modern dentistry is to keep patients’ teeth for as long as possible. Tooth extraction is a procedure performed as a last resort when conservative methods and endodontic surgery procedures have not brought the expected results. As a consequence, the number of patients in dental offices, who require first and repeated endodontic treatment, is increasing. Thus, the development of new technologies in the medical industry, including microscopy, computer tomography (CT), as well as diode and neodymium-YAG-erbium lasers, enables dentists to increase the percentage of successful treatments. Moreover, mixed reality (MR) is a very new technology, in which the 3D view can help plan or simulate various types of tasks before they will be carried out in real life. In dentistry, 3D holography can be applied to display CT data to plan endodontic treatment. The most important element in effective root canal treatment is the precise imaging of the root canal. The CT scans allow dentists to view the anatomy of the patient’s tooth with much higher precision and understanding than using 2D radiography (RTG-radiographic photo) pictures. Recently, the development of new 3D technologies allows dentists to obtain even more data from existing CT scans. In this paper, the CT scan data were applied to generate patient teeth in 3D and simulate the view of the root canal’s anatomy in MR devices, i.e., Microsoft HoloLens 2. Using DICOM RAW data from the CT exam, we generated a 3D model of the jaw with a tooth. In the next step, the crown of the tooth was removed in a similar way to how a dentist would do this using a dental handpiece. Furthermore, all root canals were cleaned of everything inside. This way we achieved empty tunnels, namely root canals. Finally, we added appropriate lighting, similar to the type of lighting that dentists use. The proposed approach enables to display of the root canals in the same way as during the endodontic procedure using a microscope. It allows for the visualization of the root canal and changing its direction, in which dimensional accuracy is crucial. It turns out that mixed reality can be considered a complementary method to the traditional approach, which reduces the amount of time for the root canal treatment procedure by up to 72.25%, depending on the complexity of the case, and increases its effectiveness. Thus, the mixed reality-based system can be considered an effective tool for planning dental treatment. Full article
(This article belongs to the Special Issue Materials and Technologies in Oral Research 2nd Edition)
Show Figures

Figure 1

14 pages, 11797 KiB  
Article
Three-Dimensional Immersion Scanning Technique: A Scalable Low-Cost Solution for 3D Scanning Using Water-Based Fluid
by Ricardo Spyrides Boabaid Pimentel Gonçalves and Jens Haueisen
Sensors 2023, 23(6), 3214; https://doi.org/10.3390/s23063214 - 17 Mar 2023
Cited by 2 | Viewed by 2512
Abstract
Three-dimensional scanning technology has been traditionally used in the medical and engineering industries, but these scanners can be expensive or limited in their capabilities. This research aimed to develop low-cost 3D scanning using rotation and immersion in a water-based fluid. This technique uses [...] Read more.
Three-dimensional scanning technology has been traditionally used in the medical and engineering industries, but these scanners can be expensive or limited in their capabilities. This research aimed to develop low-cost 3D scanning using rotation and immersion in a water-based fluid. This technique uses a reconstruction approach similar to CT scanners but with significantly less instrumentation and cost than traditional CT scanners or other optical scanning techniques. The setup consisted of a container filled with a mixture of water and Xanthan gum. The object to be scanned was submerged at various rotation angles. A stepper motor slide with a needle was used to measure the fluid level increment as the object being scanned was submerged into the container. The results showed that the 3D scanning using immersion in a water-based fluid was feasible and could be adapted to a wide range of object sizes. The technique produced reconstructed images of objects with gaps or irregularly shaped openings in a low-cost fashion. A 3D printed model with a width of 30.7200 ± 0.2388 mm and height of 31.6800 ± 0.3445 mm was compared to its scan to evaluate the precision of the technique. Its width/height ratio (0.9697 ± 0.0084) overlaps the margin of error of the width/height ratio of the reconstructed image (0.9649 ± 0.0191), showing statistical similarities. The signal-to-noise ratio was calculated at around 6 dB. Suggestions for future work are made to improve the parameters of this promising, low-cost technique. Full article
(This article belongs to the Special Issue 3D Sensing, Semantic Reconstruction and Modelling)
Show Figures

Figure 1

23 pages, 5954 KiB  
Article
Mechanical and Tribological Performances of Thermoplastic Polymers Reinforced with Glass Fibres at Variable Fibre Volume Fractions
by Moustafa Mahmoud Yousry Zaghloul, Karen Steel, Martin Veidt and Michael T. Heitzmann
Polymers 2023, 15(3), 694; https://doi.org/10.3390/polym15030694 - 30 Jan 2023
Cited by 21 | Viewed by 3346
Abstract
High wear rates and frictional coefficients have always been the primary reasons for limiting the service life of critical elements such as pumps, couplings, bushings, bearings and gears. The premature and erratic failures are costing the industries extensive amounts of money every year. [...] Read more.
High wear rates and frictional coefficients have always been the primary reasons for limiting the service life of critical elements such as pumps, couplings, bushings, bearings and gears. The premature and erratic failures are costing the industries extensive amounts of money every year. Additionally, under severe service conditions, the wear resistance requirements are higher, which greatly hinders the application of neat thermoplastics in different sectors. Hence, it is vital to enhance the tribological characteristics of thermoplastics. The mechanical and tribological properties of Polyamide 6, Thermoplastic Polyurethane, and glass fibre reinforced (GFR) Polyadmide 6 Composites of variable fibre volume fractions were investigated. Pin specimens of Polyamide 6 reinforced with (25%, 33%, and 50%) by volume of fibres were fabricated by an injection moulding process. The specimens were tested for tensile, compression, hardness, and wear under dry abrasive conditions using a pin-on-disc setup. Furthermore, the samples were scanned using micro-computed tomography (micro-CT), and the worn-out samples were analysed using field emission scanning electron microscopy. The experimental results showed that the fibre volume fraction was inversely proportional to the wear resistance of the prepared composite materials. This research will enable the industry partners to supply cutting-edge technologies to the global oil and gas industry that not only minimizes the well running cost but also improves the well resilience. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymers (FRPs))
Show Figures

Graphical abstract

17 pages, 4356 KiB  
Article
Numerical Investigation of the Influence of Fatigue Testing Frequency on the Fracture and Crack Propagation Rate of Additive-Manufactured AlSi10Mg and Ti-6Al-4V Alloys
by Mustafa Awd and Frank Walther
Solids 2022, 3(3), 430-446; https://doi.org/10.3390/solids3030030 - 22 Jul 2022
Cited by 2 | Viewed by 3100
Abstract
Advances in machine systems and scanning technologies have increased the use of selective laser melted materials in industrial applications, resulting in almost full-density products. Inconsistent mechanical behavior of components under cyclic stress is caused by microstructure and porosity created during powder melting. The [...] Read more.
Advances in machine systems and scanning technologies have increased the use of selective laser melted materials in industrial applications, resulting in almost full-density products. Inconsistent mechanical behavior of components under cyclic stress is caused by microstructure and porosity created during powder melting. The extended finite element method, XFEM, was used to imitate crack propagation utilizing an arbitrary fracture route to study fatigue crack growth in additively produced fatigue specimens. The influence of loading level and testing frequency on fatigue life was studied using fracture energy rate curves. Micro-computed tomography (µ-CT) scans offer 2D images in angular increments. There are several ways to reduce the number of faces and vertices. Opensource software was used to isolate the cylindrical shell from interior pores and create finite element models from µ-CT projections. All simulations were on supposedly cylindrical fatigue specimens made by selective laser melting (SLM) based on previous experimental results of the authors. Crack propagation rate curves were utilized to evaluate the effects of loading level and testing frequency. At larger loads, the fracture area increases abruptly at 3E3 cycles, then stabilizes at 4E4 cycles in Al alloys in comparison to Ti-6Al-4V alloys. Crack propagation rate curves may be used to determine Paris constants based on the applied stresses. Full article
(This article belongs to the Special Issue Solids in Europe)
Show Figures

Figure 1

Back to TopTop