Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = indium-doped ZnO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9567 KiB  
Article
Characterization of Zno:Al Nanolayers Produced by ALD for Clean Energy Applications
by Marek Szindler, Magdalena Szindler, Krzysztof Matus, Błażej Tomiczek and Barbara Hajduk
Energies 2025, 18(11), 2860; https://doi.org/10.3390/en18112860 - 30 May 2025
Viewed by 457
Abstract
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like [...] Read more.
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like ITO raises concerns over cost and material scarcity, prompting the search for more abundant and scalable alternatives. This study focuses on the fabrication and characterization of aluminum-doped zinc oxide (ZnO:Al, AZO) thin films deposited via Atomic Layer Deposition (ALD), targeting their application as transparent conductive oxides in silicon solar cells. The ZnO:Al thin films were synthesized by alternating supercycles of ZnO and Al2O3 depositions at 225 °C, allowing precise control of composition and thickness. Structural, optical, and electrical properties were assessed using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), Raman spectroscopy, spectroscopic ellipsometry, and four-point probe measurements. The results confirmed the formation of uniform, crack-free ZnO:Al thin films with a spinel-type ZnAl2O4 crystalline structure. Optical analyses revealed high transparency (more than 80%) and tunable refractive indices (1.64 ÷ 1.74); the energy band gap was 2.6 ÷ 3.07 eV, while electrical measurements demonstrated low sheet resistance values, reaching 85 Ω/□ for thicker films. This combination of optical and electrical properties underscores the potential of ALD-grown AZO thin films to meet the stringent demands of next-generation photovoltaics. Integration of Zn:Al thin films into silicon solar cells led to an optimized photovoltaic performance, with the best cell achieving a short-circuit current density of 36.0 mA/cm2 and a power conversion efficiency of 15.3%. Overall, this work highlights the technological relevance of ZnO:Al thin films as a sustainable and cost-effective alternative to conventional TCOs, offering pathways toward more accessible and efficient solar energy solutions. Full article
Show Figures

Figure 1

18 pages, 4516 KiB  
Article
Fabrication and Optoelectronic Properties of Advanced Quinary Amorphous Oxide Semiconductor InGaZnSnO Thin Film
by Hongyu Wu, Liang Fang, Zhiyi Li, Fang Wu, Shufang Zhang, Gaobin Liu, Hong Zhang, Wanjun Li and Wenlin Feng
Materials 2025, 18(9), 2090; https://doi.org/10.3390/ma18092090 - 2 May 2025
Viewed by 504
Abstract
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger [...] Read more.
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger mobility owing to the addition of Tin (Sn) in IZO. So, whether Sn doping can increase the optoelectronic properties of IGZO is a new topic worth studying. In this study, four series of quinary InGaZnSnO (IGZTO) oxide thin films were deposited on glass substrates using a high-purity IGZTO (In:Ga:Zn:Sn:O = 1:0.5:1.5:0.25:x, atomic ratio) ceramic target by RF magnetron sputtering. The effects of fabrication parameters (sputtering power, argon gas flow, and target-to-substrate distance) and film thickness on the microstructure, optical, and electrical properties of IGZTO thin films were investigated. The results show that all IGZTO thin films deposited at room temperature (RT) are amorphous and have a smooth and uniform surface with a low roughness (RMS of 0.441 nm, RA of 0.332 nm). They exhibit good average visible light transmittance (89.02~90.69%) and an optical bandgap of 3.47~3.56 eV. When the sputtering power is 90 W, the argon gas flow rate is 50 sccm, and the target-to-substrate distance is 60 mm, the IGZTO films demonstrate optimal electrical properties: carrier concentration (3.66 × 1019 cm−3), Hall mobility (29.91 cm2/Vs), and resistivity (0.54 × 10−2 Ω·cm). These results provide a valuable reference for the property modulation of IGZTO films and the potential application in optoelectronic devices such as TFTs. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Graphical abstract

11 pages, 3152 KiB  
Article
Photovoltaic Effect of La and Mn Co-Doped BiFeO3 Heterostructure with Charge Transport Layers
by Jiwei Lv and Huanpo Ning
Materials 2024, 17(9), 2072; https://doi.org/10.3390/ma17092072 - 28 Apr 2024
Cited by 2 | Viewed by 1745
Abstract
Bismuth ferrite BiFeO3 (BFO)-based ferroelectrics have great potential as inorganic perovskite-like oxides for future solar cells applications due to their unique physical properties. In this work, La and Mn co-doped BFO thin films with compositions Bi0.9La0.1(Fe1−xMn [...] Read more.
Bismuth ferrite BiFeO3 (BFO)-based ferroelectrics have great potential as inorganic perovskite-like oxides for future solar cells applications due to their unique physical properties. In this work, La and Mn co-doped BFO thin films with compositions Bi0.9La0.1(Fe1−xMnx)O3 (x = 0, 0.05, 0.1, 0.15) (denoted as BLF, BLFM5, BLFM10, BLFM15, respectively) were prepared via a sol–gel technique on indium tin oxide (ITO) glass. All the films are monophasic, showing good crystallinity. The optical bandgap Eg was found to decrease monotonously with an increase in the Mn doping amount. Compared with other compositions, the BLFM5 sample exhibits a better crystallinity and less oxygen vacancies as indicated by XRD and XPS measurements, thereby achieving a better J–V performance. Based on BLFM5 as the light absorbing layer, the ITO/ZnO/BLFM5/Pt and ITO/ZnO/BLFM5/NiO/Pt heterostructure devices were designed and characterized. It was found that the introduction of the ZnO layer increases both the open circuit voltage (Voc) and the short circuit current density (Jsc) with Voc = 90.2 mV and Jsc = 6.90 μA/cm2 for the Pt/ BLFM5/ZnO/ITO device. However, the insertion of the NiO layer reduces both Voc and Jsc, which is attributed to the weakened built-in electric field at the NiO/BLFM5 interface. Full article
(This article belongs to the Special Issue Electrical and Optical Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

16 pages, 8552 KiB  
Article
A Comprehensive Investigation of the Mechanical and Tribological Properties of AZO Transparent Conducting Oxide Thin Films Deposited by Medium Frequency Magnetron Sputtering
by Michał Mazur, Milena Kiliszkiewicz, Witold Posadowski, Jarosław Domaradzki, Aleksandra Małachowska and Paweł Sokołowski
Materials 2024, 17(1), 81; https://doi.org/10.3390/ma17010081 - 23 Dec 2023
Viewed by 2018
Abstract
This paper presents a detailed analysis of aluminium-doped zinc oxide (AZO) thin films and considers them a promising alternative to indium tin oxide in transparent electrodes. The study focusses on critical properties of AZO, including optical, electrical, and mechanical properties, with potential applications [...] Read more.
This paper presents a detailed analysis of aluminium-doped zinc oxide (AZO) thin films and considers them a promising alternative to indium tin oxide in transparent electrodes. The study focusses on critical properties of AZO, including optical, electrical, and mechanical properties, with potential applications in displays, photovoltaic cells, and protective coatings. The deposited AZO thin films are characterised by excellent optical and electrical parameters, with transparency in the visible light range exceeding 80% and resistivity of 10−3 Ω·cm, which gives a high value of figure of merit of 63. Structural analysis confirms the nanocrystalline nature of as-deposited AZO thin films, featuring hexagonal ZnO, orthorhombic Al2O3, and cubic Al2ZnO4 phases. The study includes nanoindentation measurements, which reveal exceptional hardness (11.4 GPa) and reduced elastic modulus (98 GPa), exceeding typical values reported in the literature, highlighting their protective potential. Abrasion tests have shown extraordinary scratch resistance due to the lack of impact on topography and surface roughness up to 10,000 cycles. This comprehensive study demonstrated that as-deposited AZO thin films are multifunctional materials with exceptional optical, electrical, and mechanical properties. The findings open up possibilities for a variety of applications, especially in protective coatings, where the combination of hardness, scratch resistance, and transparency is both rare and valuable. Full article
(This article belongs to the Special Issue Microstructure, Tribological and Corrosion Behaviors of Coatings)
Show Figures

Figure 1

14 pages, 5355 KiB  
Article
Effects of Post-Annealing on the Properties of ZnO:Ga Films with High Transparency (94%) and Low Sheet Resistance (29 Ω/square)
by Li-Wen Wang and Sheng-Yuan Chu
Materials 2023, 16(19), 6463; https://doi.org/10.3390/ma16196463 - 28 Sep 2023
Cited by 10 | Viewed by 2320
Abstract
This study presents gallium-doped zinc oxide (ZnO:Ga, GZO) thin films. GZO thin films with both high transparency and low sheet resistance were prepared by RF sputtering and then post-annealed under nitrogen and hydrogen forming gas. With post-annealing at 450 °C, the proposed films [...] Read more.
This study presents gallium-doped zinc oxide (ZnO:Ga, GZO) thin films. GZO thin films with both high transparency and low sheet resistance were prepared by RF sputtering and then post-annealed under nitrogen and hydrogen forming gas. With post-annealing at 450 °C, the proposed films with a film thickness of 100 nm showed high transparency (94%), while the sheet resistance of the films was reduced to 29 Ω/square, which was comparable with the performances of commercial indium tin oxide (ITO) samples. Post-annealing under nitrogen and hydrogen forming gas enhanced the films’ conductivity while altering the thin-film composition and crystallinity. Nitrogen gas played a role in improving the crystallinity while maintaining the oxygen vacancy of the proposed films, whereas hydrogen did not dope into the thin film, thus maintaining its transparency. Furthermore, hydrogen lowered the resistance of GZO thin films during the annealing process. Then, the detailed mechanisms were discussed. Hydrogen post-annealing helped in the removal of oxygen, therefore increasing the Ga3+ content, which provided extra electrons to lower the resistivity of the films. After the preferable nitrogen/hydrogen forming gas treatment, our proposed films maintained high transparency and low sheet resistance, thus being highly useful for further opto-electronic applications. Full article
Show Figures

Figure 1

12 pages, 3941 KiB  
Article
Design and Fabrication of an Ag Ultrathin Layer-Based Transparent Band Tunable Conductor and Its Thermal Stability
by Er-Tao Hu, Hongzhi Zhao, Min Wang, Jing Wang, Qing-Yuan Cai, Kehan Yu and Wei Wei
Nanomaterials 2023, 13(14), 2108; https://doi.org/10.3390/nano13142108 - 19 Jul 2023
Cited by 1 | Viewed by 1615
Abstract
Transparent conductors (TC) have been widely applied in a wide range of optoelectronic devices. Nevertheless, different transparent spectral bands are always needed for particular applications. In this work, indium tin oxide (ITO)-free TCs with tunable transparent bands based on the film structure of [...] Read more.
Transparent conductors (TC) have been widely applied in a wide range of optoelectronic devices. Nevertheless, different transparent spectral bands are always needed for particular applications. In this work, indium tin oxide (ITO)-free TCs with tunable transparent bands based on the film structure of TiO2/Ag/AZO (Al-doped ZnO) were designed by the transfer matrix method and deposited by magnetron sputtering. The transparent spectra and figure-of-merit (FOM) were effectively adjusted by precisely controlling the Ag layer’s thickness. The fabricated as-deposited samples exhibited an average optical transmittance larger than 88.3% (400–700 nm), a sheet resistance lower than 7.7 Ω.sq−1, a low surface roughness of about 1.4 nm, and mechanical stability upon 1000 bending cycles. Moreover, the samples were able to hold optical and electrical properties after annealing at 300 °C for 60 min, but failed at 400 °C even for 30 min. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics)
Show Figures

Figure 1

13 pages, 8998 KiB  
Article
Enhancement in Efficiency of CIGS Solar Cell by Using a p-Si BSF Layer
by Meriem Chadel, Asma Chadel, Boumediene Benyoucef and Michel Aillerie
Energies 2023, 16(7), 2956; https://doi.org/10.3390/en16072956 - 23 Mar 2023
Cited by 14 | Viewed by 3347
Abstract
Copper–indium–gallium–diselenide Cu(In,Ga)Se2 (CIGS) is a semiconductor compound belonging to group I-III-VI, with a chalcopyrite crystal structure. CIGS is promising for the development of high-performance photovoltaic applications in terms of stability and conversion efficiency. It is one of the main candidates to rival [...] Read more.
Copper–indium–gallium–diselenide Cu(In,Ga)Se2 (CIGS) is a semiconductor compound belonging to group I-III-VI, with a chalcopyrite crystal structure. CIGS is promising for the development of high-performance photovoltaic applications in terms of stability and conversion efficiency. It is one of the main candidates to rival the efficiency and stability of conventional crystalline silicon cells, due to its high light absorption coefficient, lower material cost, and high stability. The limitation of its use is that CIGS integrates indium (In) and gallium (Ga), which are rare and expensive materials. The amount of these materials in the CIGS cell can be reduced by optimizing the thickness of the absorber. We show that the introduction of a layer of highly doped silicon in the structure of the solar cell between the absorber layer and the back surface field layer effectively allows for decreasing the thickness of the absorber. Within the same objective, we focus on the danger of cadmium in the CdS buffer layer. In the first optimizations, we replaced the n-type CdS buffer layer with a n-type Zn(O,S) buffer layer. For this work, we used a one-dimensional simulation program, named Solar Cell Capacitance Simulator in one Dimension (SCAPS-1D), to investigate this new CIGS solar cell structure. After optimization, a maximum conversion efficiency of 24.43% was achieved with a 0.2 μm CIGS absorber layer and a 1 µm Si BSF layer. Full article
(This article belongs to the Special Issue Advanced Materials and Structures for Photovoltaic Applications)
Show Figures

Figure 1

17 pages, 17661 KiB  
Review
Recent Progress in Solution Processed Aluminum and co-Doped ZnO for Transparent Conductive Oxide Applications
by Mandeep Singh and Francesco Scotognella
Micromachines 2023, 14(3), 536; https://doi.org/10.3390/mi14030536 - 25 Feb 2023
Cited by 13 | Viewed by 3246
Abstract
With the continuous growth in the optoelectronic industry, the demand for novel and highly efficient materials is also growing. Specifically, the demand for the key component of several optoelectronic devices, i.e., transparent conducting oxides (TCOs), is receiving significant attention. The major reason behind [...] Read more.
With the continuous growth in the optoelectronic industry, the demand for novel and highly efficient materials is also growing. Specifically, the demand for the key component of several optoelectronic devices, i.e., transparent conducting oxides (TCOs), is receiving significant attention. The major reason behind this is the dependence of the current technology on only one material—indium tin oxide (ITO). Even though ITO still remains a highly efficient material, its high cost and the worldwide scarcity of indium creates an urgency for finding an alternative. In this regard, doped zinc oxide (ZnO), in particular, solution-processed aluminum doped ZnO (AZO), is emerging as a leading candidate to replace ITO due to its high abundant and exceptional physical/chemical properties. In this mini review, recent progress in the development of solution-processed AZO is presented. Beside the systematic review of the literature, the solution processable approaches used to synthesize AZO and the effect of aluminum doping content on the functional properties of AZO are also discussed. Moreover, the co-doping strategy (doping of aluminum with other elements) used to further improve the properties of AZO is also discussed and reviewed in this article. Full article
(This article belongs to the Special Issue Nanomaterials Photonics)
Show Figures

Figure 1

14 pages, 5183 KiB  
Article
Al-Doped ZnO Thin Films with 80% Average Transmittance and 32 Ohms per Square Sheet Resistance: A Genuine Alternative to Commercial High-Performance Indium Tin Oxide
by Ivan Ricardo Cisneros-Contreras, Geraldine López-Ganem, Oswaldo Sánchez-Dena, Yew Hoong Wong, Ana Laura Pérez-Martínez and Arturo Rodríguez-Gómez
Physics 2023, 5(1), 45-58; https://doi.org/10.3390/physics5010004 - 6 Jan 2023
Cited by 9 | Viewed by 4011
Abstract
In this study, a low-sophistication low-cost spray pyrolysis system built by undergraduate students is used to grow aluminum-doped zinc oxide thin films (ZnO:Al). The pyrolysis system was able to grow polycrystalline ZnO:Al with a hexagonal wurtzite structure preferentially oriented on the c-axis, corresponding [...] Read more.
In this study, a low-sophistication low-cost spray pyrolysis system built by undergraduate students is used to grow aluminum-doped zinc oxide thin films (ZnO:Al). The pyrolysis system was able to grow polycrystalline ZnO:Al with a hexagonal wurtzite structure preferentially oriented on the c-axis, corresponding to a hexagonal wurtzite structure, and exceptional reproducibility. The ZnO:Al films were studied as transparent conductive oxides (TCOs). Our best ZnO:Al TCO are found to exhibit an 80% average transmittance in the visible range of the electromagnetic spectrum, a sheet resistance of 32 Ω/□, and an optical bandgap of 3.38 eV. After an extensive optical and nanostructural characterization, we determined that the TCOs used are only 4% less efficient than the best ZnO:Al TCOs reported in the literature. This latter, without neglecting that literature-ZnO:Al TCOs, have been grown by sophisticated deposition techniques such as magnetron sputtering. Consequently, we estimate that our ZnO:Al TCOs can be considered an authentic alternative to high-performance aluminum-doped zinc oxide or indium tin oxide TCOs grown through more sophisticated equipment. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

8 pages, 1555 KiB  
Communication
Performance Enhancement for Indium-Free Metal Oxide Thin-Film Transistors with Double-Active-Layers by Magnetron Sputtering at Room Temperature
by Xingzhen Yan, Kaian Song, Bo Li, Yiqiang Zhang, Fan Yang, Yanjie Wang, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2022, 13(11), 2024; https://doi.org/10.3390/mi13112024 - 19 Nov 2022
Cited by 2 | Viewed by 2169
Abstract
We prepared an indium-free metal oxide thin-film transistor (TFT) using a double-active-layers structure at room temperature. We changed the growth sequence of Al-doped zinc oxide (AZO) and zinc oxide (ZnO) double-active-layers on Si/SiO2 substrates by magnetron sputtering deposition to regulate the field-effect [...] Read more.
We prepared an indium-free metal oxide thin-film transistor (TFT) using a double-active-layers structure at room temperature. We changed the growth sequence of Al-doped zinc oxide (AZO) and zinc oxide (ZnO) double-active-layers on Si/SiO2 substrates by magnetron sputtering deposition to regulate the field-effect performance of TFTs. According to the analysis of field-effect properties before and after annealing in different atmospheres, the performance of TFT devices with ZnO/AZO/SiO2/Si double-active-layers was obviously better than that with single AZO or ZnO active layer and inverted AZO/ZnO/SiO2/Si double-active-layers in the device structure. The active layer with higher carrier concentration (AZO in this case) was closer to the dielectric layer, which was more favorable for carrier regulation in TFT devices. In addition, the annealed device had a lower on/off ratio (Ion/Ioff), easier-to-reach on-state, and higher mobility. Furthermore, the performance of the devices annealed under vacuum condition was obviously better than that annealed under air atmosphere. The Ion/Ioff could reach 6.8 × 105 and the threshold voltage was only 2.9 V. Full article
(This article belongs to the Special Issue Recent Advances in Thin Film Transistors)
Show Figures

Figure 1

15 pages, 4809 KiB  
Article
Effect of Gamma Radiation on Structural and Optical Properties of ZnO and Mg-Doped ZnO Films Paired with Monte Carlo Simulation
by Mivolil Duinong, Rosfayanti Rasmidi, Fuei Pien Chee, Pak Yan Moh, Saafie Salleh, Khairul Anuar Mohd Salleh and Sofian Ibrahim
Coatings 2022, 12(10), 1590; https://doi.org/10.3390/coatings12101590 - 20 Oct 2022
Cited by 8 | Viewed by 3165
Abstract
In space, geostationary electronics located within the outer van Allen radiation belt are vulnerable to gamma radiation exposure. In terms of application, implementing an electronic system in a high radiation environment is impossible via conventional engineering materials such as metal alloys as they [...] Read more.
In space, geostationary electronics located within the outer van Allen radiation belt are vulnerable to gamma radiation exposure. In terms of application, implementing an electronic system in a high radiation environment is impossible via conventional engineering materials such as metal alloys as they are prone to radiation damage. Exposure to such radiation causes degradation and structural defects within the semiconductor component, significantly changing their overall density. The changes in the density will then cause electronic failure, known as the single event phenomena. Thus, the radiation response of material must be thoroughly investigated before the material is applied in a harsh radiation environment, specifically for flexible space borne electronic application. In this work, potential candidates for space-borne application devices: zinc oxide (ZnO) and Mg-doped ZnO thin film with a film thickness of 300 nm, were deposited onto an indium tin oxide (ITO) substrate via radio frequency (RF) sputtering method. The fabricated films were then irradiated by Co-60 gamma ray at a dose rate of 2 kGy/hr. The total ionizing dose (TID) effect of ZnO and Mg-doped ZnO thin films were then studied. From the results obtained, degradation towards the surface morphology, optical properties, and lattice parameters caused by increasing TID, ranging from 10 kGy–300 kGy, were evaluated. The alteration can be observed on the morphological changes due to the change in the roughness root mean square (RMS) with TID, while structural changes show increased strain and decreased crystallite size. For the optical properties, band gap tends to decrease with increased dose in response to colour centre (Farbe centre) effects resulting in a decrease in transmittance spectra of the fabricated films. Full article
(This article belongs to the Special Issue Optical Thin Film and Photovoltaic (PV) Related Technologies)
Show Figures

Figure 1

12 pages, 4293 KiB  
Article
ZnO Electrodeposition Model for Morphology Control
by Javier Orozco-Messana and Rubens Camaratta
Nanomaterials 2022, 12(4), 720; https://doi.org/10.3390/nano12040720 - 21 Feb 2022
Cited by 7 | Viewed by 2775
Abstract
In this research, a model for electrodeposition of zinc oxide (ZnO) nanostructures over indium-doped tin-oxide (ITO) glass using pulsed current and zinc chloride as source of zinc was proposed. For the model, reactions kinetics rate constants were evaluated by obtaining the reaction product [...] Read more.
In this research, a model for electrodeposition of zinc oxide (ZnO) nanostructures over indium-doped tin-oxide (ITO) glass using pulsed current and zinc chloride as source of zinc was proposed. For the model, reactions kinetics rate constants were evaluated by obtaining the reaction product solid mass of the various species through time using an electrochemical quartz crystal microbalance (EQCM). To obtain a mathematical model of the electrodeposition using Ansys CFX 2D simulation software, the reaction kinetics rates were used to calculate mass transfer in the volume closest to the surface. The model was applied to the experimental electrodeposition conditions to validate its accuracy. Dense wurtzite nanostructures with controlled morphology were obtained on a indium-doped tin-oxide (ITO) glass. Sample characterization was performed using high-resolution field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) on focused ion beam milled (FIBed) sheets from wurtzite mono-crystals. Average crystallite size was evaluated by X-ray diffraction (XRD) using the Scherrer equation, and superficial areas were evaluated by Brunauer, Emmett, and Teller (BET) method. Through the experimental results, a chemical model was developed for the competing reactions based on the speciation of zinc considering pH evolution, and kinetic constants, on the oxygen rich aqueous environment. Owing to the model, an accurate prediction of thickness and type of electrodeposited layers, under given conditions, is achieved. This allows an excellent control of the optical properties of Wurtzite as a photon absorber, for an efficient separation of the electron-hole pair for conduction of the electric charges formed. The large surface area, and small wurtzite crystallites evenly distributed on the thin film electrodeposited over the ITO conductive layer are promising features for later dye-sensitized photovoltaic cell production. Full article
Show Figures

Figure 1

14 pages, 5382 KiB  
Article
Using Modified-Intake Plasma-Enhanced Metal–Organic Chemical Vapor Deposition System to Grow Gallium Doped Zinc Oxide
by Po-Hsun Lei, Jia-Jan Chen, Ming-Hsiu Song, Yuan-Yu Zhan and Zong-Lin Jiang
Micromachines 2021, 12(12), 1590; https://doi.org/10.3390/mi12121590 - 20 Dec 2021
Cited by 2 | Viewed by 2843
Abstract
We have used a modified-intake plasma-enhanced metal–organic chemical vapor deposition (MIPEMOCVD) system to fabricate gallium-doped zinc oxide (GZO) thin films with varied Ga content. The MIPEMOCVD system contains a modified intake system of a mixed tank and a spraying terminal to deliver the [...] Read more.
We have used a modified-intake plasma-enhanced metal–organic chemical vapor deposition (MIPEMOCVD) system to fabricate gallium-doped zinc oxide (GZO) thin films with varied Ga content. The MIPEMOCVD system contains a modified intake system of a mixed tank and a spraying terminal to deliver the metal–organic (MO) precursors and a radio-frequency (RF) system parallel to the substrate normal, which can achieve a uniform distribution of organic precursors in the reaction chamber and reduce the bombardment damage. We examined the substitute and interstitial mechanisms of Ga atoms in zinc oxide (ZnO) matrix in MIPEMOCVD-grown GZO thin films through crystalline analyses and Hall measurements. The optimal Ga content of MIPEMOCVD-grown GZO thin film is 3.01 at%, which shows the highest conductivity and transmittance. Finally, the optimal MIPEMOCVD-grown GZO thin film was applied to n-ZnO/p-GaN LED as a window layer. As compared with the indium–tin–oxide (ITO) window layer, the n-ZnO/p-GaN LED with the MIPEMOCVD-grown GZO window layer of the rougher surface and higher transmittance at near UV range exhibits an enhanced light output power owing to the improved light extraction efficiency (LEE). Full article
Show Figures

Figure 1

13 pages, 3083 KiB  
Article
An 8 MeV Electron Beam Modified In:ZnO Thin Films for CO Gas Sensing towards Low Concentration
by Aninamol Ani, P. Poornesh, Albin Antony, K. K. Nagaraja, Ashok Rao, Gopalkrishna Hegde, Evgeny Kolesnikov, Igor V. Shchetinin, Suresh D. Kulkarni, Vikash Chandra Petwal, Vijay Pal Verma and Jishnu Dwivedi
Nanomaterials 2021, 11(11), 3151; https://doi.org/10.3390/nano11113151 - 22 Nov 2021
Cited by 5 | Viewed by 2836
Abstract
In the present investigation, electron beam-influenced modifications on the CO gas sensing properties of indium doped ZnO (IZO) thin films were reported. Dose rates of 5, 10, and 15 kGy were irradiated to the IZO nano films while maintaining the In doping concentration [...] Read more.
In the present investigation, electron beam-influenced modifications on the CO gas sensing properties of indium doped ZnO (IZO) thin films were reported. Dose rates of 5, 10, and 15 kGy were irradiated to the IZO nano films while maintaining the In doping concentration to be 15 wt%. The wurtzite structure of IZO films is observed from XRD studies post electron beam irradiation, confirming structural stability, even in the intense radiation environment. The surface morphological studies by SEM confirms the granular structure with distinct and sharp grain boundaries for 5 kGy and 10 kGy irradiated films whereas the IZO film irradiated at 15 kGy shows the deterioration of defined grains. The presence of defects viz oxygen vacancies, interstitials are recorded from room temperature photoluminescence (RTPL) studies. The CO gas sensing estimations were executed at an optimized operating temperature of 300 °C for 1 ppm, 2 ppm, 3 ppm, 4 ppm, and 5 ppm. The 10 kGy treated IZO film displayed an enhanced sensor response of 2.61 towards low concentrations of 1 ppm and 4.35 towards 5 ppm. The enhancement in sensor response after irradiation is assigned to the growth in oxygen vacancies and well-defined grain boundaries since the former and latter act as vital adsorption locations for the CO gas. Full article
(This article belongs to the Special Issue Nanostructures for Surfaces, Catalysis and Sensing)
Show Figures

Figure 1

10 pages, 1859 KiB  
Article
The ZnO-In2O3 Oxide System as a Material for Low-Temperature Deposition of Transparent Electrodes
by Akhmed Akhmedov, Aslan Abduev, Eldar Murliev, Abil Asvarov, Arsen Muslimov and Vladimir Kanevsky
Materials 2021, 14(22), 6859; https://doi.org/10.3390/ma14226859 - 14 Nov 2021
Cited by 10 | Viewed by 3576
Abstract
The development of optoelectronic devices based on flexible organic substrates substantially decreases the possible process temperatures during all stages of device manufacturing. This makes it urgent to search for new transparent conducting oxide (TCO) materials, cheaper than traditional indium-tin oxide (ITO), for the [...] Read more.
The development of optoelectronic devices based on flexible organic substrates substantially decreases the possible process temperatures during all stages of device manufacturing. This makes it urgent to search for new transparent conducting oxide (TCO) materials, cheaper than traditional indium-tin oxide (ITO), for the low-temperature deposition of transparent electrodes, a necessary component of most optoelectronic devices. The article presents the results of a vertically integrated study aimed at the low-temperature production of TCO thin films based on a zinc-indium oxide (ZIO) system with acceptable functional characteristics. First, dense and conducting ceramic targets based on the (100-x) mol% (ZnO) + x mol% (In2O3) system (x = 0.5, 1.5, 2.5, 5.0, and 10.0) were synthesized by the spark plasma sintering method. The dependences of the microstructure and phase composition of the ZIO ceramic targets on the In2O3 content have been studied by powder X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy methods. Then, a set of ZIO thin films with different Zn/In ratios were obtained on unheated glass substrates by direct current (dc) magnetron sputtering of the sintered targets. Complex studies of microstructure, electrical and optical properties of the deposited films have revealed the presence of an optimal doping level (5 mol% In2O3) of the ZIO target at which the deposited TCO films, in terms of the combination of their electrical and optical properties, become comparable to the widely used expensive ITO. Full article
(This article belongs to the Special Issue Novel Optoelectronic Materials)
Show Figures

Figure 1

Back to TopTop