Using Modified-Intake Plasma-Enhanced Metal–Organic Chemical Vapor Deposition System to Grow Gallium Doped Zinc Oxide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sikam, P.; Moontragoona, P.; Ikonic, Z.; Kaewmarayaa, T.; Thongbai, P. The study of structural, morphological and optical properties of (Al, Ga)-doped ZnO: DFT and experimental approaches. Appl. Surf. Sci. 2019, 480, 621–635. [Google Scholar] [CrossRef]
- Horzum, S.; Iyikanat, F.; Senger, R.T.; Çelebi, C.; Sbeta, M.; Yildiz, A.; Serin, T. Monitoring the characteristic properties of Ga-doped ZnO by Raman spectroscopy and atomic scale calculations. J. Mol. Struct. 2019, 1180, 505–511. [Google Scholar] [CrossRef]
- Bi, W.L.; Lee, W.H.; Yeh, H.H.; Wu, M.C. Ultraviolet light-emitting diode arrays using Ga-doped ZnO as current spreading layer. J. Vac. Sci. Technol. B 2020, 38, 010601. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, K.J.; Oh, S.; Han, J.H.; Lee, D.; Park, S.J. Enhanced performance of InGaN/GaN MQW LED with strain-relaxing Ga-doped ZnO transparent conducting layer. Express Opt. 2019, 27, A458–A467. [Google Scholar] [CrossRef] [PubMed]
- Estrich, N.A.; Hook, D.H.; Smith, A.N.; Leonard, J.T.; Laughlin, B.; Maria, J.P. Ga-doped ZnO conducting antireflection coatings for crystalline silicon solar cells. J. Appl. Phys. 2013, 113, 233703. [Google Scholar] [CrossRef]
- Yang, L.C.; Wang, R.X.; Xu, S.J.; Xing, Z.; Fan, Y.M.; Shi, X.S.; Fu, K.; Zhang, B.S. Effects of annealing temperature on the characteristics of Ga-doped ZnO film metal-semiconductor-metal ultraviolet photodetectors. J. Appl. Phys. 2013, 113, 084501. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Hu, Z.Z.; Liu, J.W.; Li, D.Z.; Zhang, X.Y.; Chen, J.; Fang, J.L. Ga doped ZnO photonic crystals with enhanced photocatalytic activityand its reaction mechanism. Appl. Catal. B 2016, 195, 29–38. [Google Scholar] [CrossRef]
- Mughal, A.J.; Oh, S.; Myzaferi, A.; Nakamura, S.; Speck, J.S.; DenBaars, S.P. High-power LEDs using Ga-doped ZnO current-spreading layers. Electron. Lett. 2016, 52, 304–306. [Google Scholar] [CrossRef]
- Shaheera, M.; Girija, K.G.; Kaur, M.; Geetha, V.; Debnath, A.K.; Vatsa, R.K.; Muthe, K.P.; Gadkari, S.C. Characterization and device application of indium doped ZnO homojunction prepared by RF magnetron sputtering. Opt. Mater. 2020, 101, 109723. [Google Scholar] [CrossRef]
- Liau, L.C.K.; Huang, J.S. Effect of indium- and gallium-doped ZnO fabricated through sol-gel processing on energy level variations. Mater. Res. Bull. 2018, 97, 6–12. [Google Scholar] [CrossRef]
- Sankar Ganesh, R.; Navaneethan, M.; Mani, G.K.; Ponnusamy, S.; Tsuchiya, K.; Muthamizhchelvan, C.; Kawasaki, S.; Hayakawa, Y. Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J. Alloys Compd. 2017, 698, 555–564. [Google Scholar] [CrossRef]
- Zhang, W.; Gan, J.; Li, L.Q.; Hu, Z.G.; Shi, L.Q.; Xu, N.; Sun, J.; Wu, J.D. Tailoring of optical and electrical properties of transparent and conductive Al-doped ZnO films by adjustment of Al concentration. Mater. Sci. Semicond. Process. 2018, 74, 147–153. [Google Scholar] [CrossRef]
- Chen, H.C.; Cheng, P.W.; Huang, K.T. Biaxial stress and optoelectronic properties of Al-doped ZnO thin films deposited on flexible substrates by radio frequency magnetron sputtering. Appl. Opt. 2017, 56, C163–C167. [Google Scholar] [CrossRef]
- Wu, Y.; Potts, S.E.; Hermkens, P.M.; Knoops, H.C.M.; Roozeboom, F.; Kessels, W.M.M. Enhanced Doping Efficiency of Al-Doped ZnO by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide as an Alternative Aluminum Precursor. Chem. Mater. 2013, 35, 4619–4622. [Google Scholar] [CrossRef]
- Gabas, M.; Torelli, P.; Barrett, N.T.; Sacchi, M.; Barrado, J.R.R. Electronic structure of Al-and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy. APL Mater. 2014, 2, 012112. [Google Scholar] [CrossRef] [Green Version]
- Bhoomanee, C.; Ruankham, P.; Choopun, S.; Wongratanaphisan, D. Diffusion-induced doping effects of Ga in ZnO/Ga/ZnO and AZO/Ga/AZO multilayer thin films. Appl. Surf. Sci. 2019, 474, 127–134. [Google Scholar] [CrossRef]
- Gandla, S.; Gollu, S.R.; Sharma, R.; Sarangi, V.; Gupta, D. Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors. Appl. Phys. Lett. 2015, 107, 152102. [Google Scholar] [CrossRef]
- Mao, C.Y.; Fang, L.; Zhang, H.; Li, W.J.; Wu, F.; Qin, G.P.; Ruan, H.B.; Kong, C.Y. Effect of B doping on optical, electrical properties and defects of ZnO films. J. Alloys Compd. 2016, 676, 135–141. [Google Scholar] [CrossRef]
- Yildiz, A.; Ozturk, E.; Atilgan, A.; Sbeta, M.; Atli, A.; Serin, T. An understanding of the band gap shrinkage in Sn-doped ZnO for dye-sensitized solar cells. J. Electron. Mater. 2017, 46, 6739–6744. [Google Scholar] [CrossRef] [Green Version]
- Sheeba, N.H.; Vattappalam, S.C.; Naduvath, J.; Sreenivasan, P.V.; Mathew, S.; Philipa, R.R. Effect of Sn doping on properties of transparent ZnO thin filmsprepared by thermal evaporation technique. Chem. Phys. Lett. 2015, 635, 290–294. [Google Scholar] [CrossRef]
- Yildiz, A.; Uzun, S.; Serin, N.; Serin, T. Influence of grain boundaries on the figure of merit of undoped and Al, In, Sn doped ZnO thin films for photovoltaic applications. Scr. Mater. 2016, 113, 23–26. [Google Scholar] [CrossRef]
- Szabó, Z.; Volk, J.; Horváth, Z.E.; Medveczky, Z.; Czigány, Z.; Vad, K.; Baji, Z. Atomic layer deposition and annealing of Ga doped ZnO films. Mater. Sci. Semicond. Process. 2019, 101, 95–102. [Google Scholar] [CrossRef]
- Young, S.J.; Liu, Y.H. Ultraviolet photodetectors with Ga-doped ZnO nanosheets structure. Microelectron. Eng. 2015, 148, 14–16. [Google Scholar] [CrossRef]
- Yang, C.C.; Su, Y.K.; Chuang, M.Y.; Kao, T.H.; Yu, H.C.; Hsiao, C.H. The effect of Ga doping concentration on the low-frequency noise characteristics and photoresponse properties of ZnO nanorods-based UV photodetectors. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 3800707. [Google Scholar]
- Ko, H.J.; Chen, Y.F.; Hong, S.K.; Wenisch, H.; Yao, T.; Look, D.C. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecularbeam epitaxy. Appl. Phys. Lett. 2000, 77, 3761. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.F.; Tu, C.G.; Chang, T.W.; Chen, H.T.; Weng, C.M.; Su, C.Y.; Hsieh, C.H.; Liao, C.H.; Kiang, Y.W.; Yang, C.C. Growth of Highly Conductive Ga-Doped ZnO Nanoneedles. Appl. Mater. Interface 2015, 7, 10525–10533. [Google Scholar] [CrossRef] [PubMed]
- Temizer, N.K.; Nori, S.; Narayan, J. Ga and Al doped zinc oxide thin films for transparent conducting oxide applications: Structure-property correlations. J. Appl. Phys. 2014, 115, 023705. [Google Scholar] [CrossRef]
- Ajimsha, R.S.; Das, A.K.; Misra, P.; Joshi, M.P.; Kukreja, L.M.; Kumar, R.; Sharma, T.K.; Oak, S.M. Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition. J. Alloys Compd. 2015, 638, 55–58. [Google Scholar] [CrossRef]
- Zhong, J.; Muthukumar, S.; Chen, Y.; Lu, Y.; Ng, H.M.; Jiang, W.; Garfunkel, E.L. Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2003, 83, 3401. [Google Scholar] [CrossRef]
- Nulhakim, L.; Makino, H. Change of scattering mechanism and annealing out of defects on Ga-doped ZnO films deposited by radio-frequency magnetron sputtering. J. Appl. Phys. 2016, 119, 235302. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, S.M. Preparation and characterization of Mg, Al and Ga co-doped ZnO transparent conductive films deposited by magnetron sputtering. Results Phys. 2019, 14, 102514. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X.H.; Zhou, X.H.; Liang, S.H. Growth of Ga-doped ZnO films by thermal oxidation with gallium and their optical properties. AIP Adv. 2017, 7, 055106. [Google Scholar] [CrossRef] [Green Version]
- Miyake, M.; Inudo, S.; Doi, T.; Hirato, T. Annealing to achieve lower resistivity in Ga-doped ZnO epitaxial films grown from low-temperature aqueous solution. Mater. Chem. Phys. 2017, 190, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Ruangona, K.; Khamona, W.; Pecharapa, W. Influence of baking temperature on relevant properties of sol-gel Ga-doped ZnO thin films annealed at low temperature. Mater. Today 2018, 5, 14155–14159. [Google Scholar] [CrossRef]
- Panatarani, C.; Fitriyadi, S.; Balasubramanian, N.; Parmar, N.S.; Joni, I.M. Preparation and characterizations of electroluminescent p-ZnO:N/n-ZnO:Ga/ ITO thin films by spray pyrolysis method. AIP Adv. 2016, 6, 025121. [Google Scholar] [CrossRef]
- Singh, B.K.; Tripathi, S. p-n homojunction based on Bi doped p-type ZnO and undoped n-type ZnO for optoelectronic application in yellow-red region of visible spectrum. J. Lumin. 2018, 198, 427–432. [Google Scholar] [CrossRef]
- Yang, T.H.; Wu, J.M. Thermal stability of sol–gel p-type Al–N codoped ZnO films and electric properties of nanostructured ZnO homojunctions fabricated by spin-coating them on ZnO nanorods. Acta Mater. 2012, 60, 3310–3320. [Google Scholar] [CrossRef]
- Chen, D.Y.; Chen, S.S.; Yue, S.L.; Lu, B.; Pan, X.H.; He, H.P.; Ye, Z.Z. N-ZnO nanorod arrays/p-GaN light-emitting diodes with grapheme transparent electrode. J. Lumin. 2019, 216, 116719. [Google Scholar] [CrossRef]
- Yu, C.Y.; Li, R.; Li, T.B.; Dong, H.L.; Jia, W.; Xu, B.S. Effect of indium doping on the photoelectric properties of n-ZnO nanorods/p-GaN heterojunction light-emitting diodes. Superlattices Microstruct. 2018, 120, 298–304. [Google Scholar] [CrossRef]
- Lei, P.H.; Hsu, C.M.; Fan, Y.S. Flexible organic light-emitting diodes on a polyestersulfone (PES) substrate using Al-doped ZnO anode grown by dual-plasma-enhanced metalorganic deposition system. Org. Electron. 2013, 14, 236–249. [Google Scholar] [CrossRef]
- Birkholz, M. Thin Film Analysis by X-ray Scattering; Addison-Wesley: New York, NY, USA, 2006. [Google Scholar]
- Chaabouni, F.; Khalfallah, B.; Abaab, M. Doping Ga effect on ZnO radio frequency sputtered films from a powder target. Thin Solid Films 2016, 617, 95–102. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, G.M.; Gao, L.W.; Chen, Q.; Ren, J.T.; Yu, J.; Yang, Y.Z.; Hao, Y.Y.; Liu, X.G.; Xu, B.S.; et al. Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment. Mater. Sci. Semicond. Process. 2020, 117, 105205. [Google Scholar] [CrossRef]
- Volintiru, I.; Creatore, M.; van de Sanden, M.C.M. In situ spectroscopic ellipsometry growth studies on the Al-doped ZnO films deposited by remote plasma-enhanced metalorganic chemical vapor deposition. J. Appl. Phys. 2008, 103, 033704. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.G.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Wang, L.; Yuan, J.; Zhao, B.H.; Liang, Q.L. Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions. J. Appl. Phys. 2006, 100, 073714. [Google Scholar] [CrossRef]
- Terasako, T.; Nomoto, J.; Makino, H.; Yamamoto, N.; Shirakata, S.; Yamamoto, T. Effects of oxygen gas flow rates and Ga contents on structural properties of Ga-doped ZnO films prepared by ion-plating with a DC arc discharge. Thin Solid Films 2015, 596, 24–28. [Google Scholar] [CrossRef]
- Han, T.; Meng, F.Y.; Zhang, S.; Cheng, X.M.; Oh, J.I. Band gap and electronic properties of wurtzite-structure ZnO co-doped with IIA and IIIA. J. Appl. Phys. 2011, 110, 063724. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Hsu, J.C.; Wang, P.W.; Pai, Y.W.; Wu, C.Y.; Lin, Y.H. Dependence of resistivity on structure and composition of AZO films fabricated by ion beam co-sputtering deposition. Appl. Surf. Sci. 2011, 257, 3446–3450. [Google Scholar] [CrossRef]
- Jäger, K.; Zeman, M. A scattering model for surface-textured thin films. Appl. Phys. Lett. 2009, 95, 171108. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.W.; Lin, S.X.; Hung, Y.Y.; Horng, J.H.; Houng, M.P. Improved extraction efficiency of light-emitting diodes by wet-etching modifying AZO surface roughness. IEEE Photon. Technol. Lett. 2011, 23, 362–364. [Google Scholar] [CrossRef]
- Ahmed, M.; Bakry, A.; Qasem, A.; Dalir, H. The main role of thermal annealing in controlling the structural and optical properties of ITO thin film layer. Opt. Mater. 2021, 113, 110866. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, J.H.; Kim, H.S.; Lee, C.H.; Ahn, H.S.; Cho, H.K.; Kim, Y.Y.; Kong, B.H.; Lee, H.S. A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED. Thin Solid Films 2009, 517, 5157–5160. [Google Scholar] [CrossRef]
Chamber pressure (Pa) | 2.25 × 10−4 |
Deposition temperature (°C) | 245 |
Deposition rate of MIPEMOCVD-grown GZO (nm/min) | 10 |
RF power (W) | 350 |
DEZn flow rate (sccm) | 37 |
O2 flow rate (sccm) | 7 |
TEGa flow rate (sccm) | 6–9 |
Temperature (°C) | FWHM of (002) Peak (Deg.) | Resistivity (Ωcm.) | Transmittance at 405 nm (%) |
---|---|---|---|
185 | 0.339 | 1.48 × 10−1 | 81.92 |
225 | 0.333 | 3.84 × 10−2 | 83.59 |
235 | 0.329 | 2.11 × 10−2 | 85..35 |
245 | 0.324 | 8.35 × 10−4 | 86.06 |
255 | 0.318 | 9.53 × 10−3 | 85.76 |
Ga Content (at%) | 2θ Angle of (002) Peak (Deg.) | FHWM of (002) Peak (Deg.) | Calculated Grain Size (nm) |
---|---|---|---|
0 | 34.40 | 0.378 | 44.25 |
1.95 | 34.39 | 0.356 | 46.99 |
3.01 | 34.38 | 0.324 | 51.86 |
4.52 | 34.35 | 0.320 | 52.28 |
5.42 | 34.32 | 0.316 | 52.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, P.-H.; Chen, J.-J.; Song, M.-H.; Zhan, Y.-Y.; Jiang, Z.-L. Using Modified-Intake Plasma-Enhanced Metal–Organic Chemical Vapor Deposition System to Grow Gallium Doped Zinc Oxide. Micromachines 2021, 12, 1590. https://doi.org/10.3390/mi12121590
Lei P-H, Chen J-J, Song M-H, Zhan Y-Y, Jiang Z-L. Using Modified-Intake Plasma-Enhanced Metal–Organic Chemical Vapor Deposition System to Grow Gallium Doped Zinc Oxide. Micromachines. 2021; 12(12):1590. https://doi.org/10.3390/mi12121590
Chicago/Turabian StyleLei, Po-Hsun, Jia-Jan Chen, Ming-Hsiu Song, Yuan-Yu Zhan, and Zong-Lin Jiang. 2021. "Using Modified-Intake Plasma-Enhanced Metal–Organic Chemical Vapor Deposition System to Grow Gallium Doped Zinc Oxide" Micromachines 12, no. 12: 1590. https://doi.org/10.3390/mi12121590