Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = in-situ rheology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7601 KiB  
Article
(Ti, Nb)(C, B)/IN625 In-Situ Reactive Coating Prepared by Ultra-High-Speed Laser Cladding: Interfacial Characterization, Residual Stress and Surface Wear Mechanisms
by Borui Du, Nan Zhang, Xiaodong Hou, Yifei Xu, Hua Shi, Miaohui Wang, Shaoping Chen and Jing Yu
Coatings 2023, 13(12), 2099; https://doi.org/10.3390/coatings13122099 - 18 Dec 2023
Cited by 2 | Viewed by 1818
Abstract
In this study, homogeneous (Ti, Nb)(C, B)/IN625 composite coatings with almost defect-free microstructures were successfully prepared on a 42CrMo steel substrate by coupling ultra-high-speed laser cladding (USLC) with the direct reaction synthesis (DRS) technique to introduce the in-situ exothermic reaction into the cladding [...] Read more.
In this study, homogeneous (Ti, Nb)(C, B)/IN625 composite coatings with almost defect-free microstructures were successfully prepared on a 42CrMo steel substrate by coupling ultra-high-speed laser cladding (USLC) with the direct reaction synthesis (DRS) technique to introduce the in-situ exothermic reaction into the cladding materials; these were comparatively analyzed with the pure IN625 coating prepared only by USLC. Our results showed that the interface of the composite coating/substrate was greatly affected by about 670 kJ Joule heat released from the in-situ reaction happening during the cladding process, which was sufficient to remelt the as-deposited materials and significantly increased the coating/substrate interface width to around 24 μm, six times the interface width of pure IN625 coating. Furthermore, the residual stress inside the coating and across the interfacial region was also reduced, alleviating the interface stress mismatch. However, the surface hardness of (Ti, Nb)(C, B)/IN625 composite coating was found to be lower than that of the IN625 coating, and the average wear weight loss was only 10% of that of the IN625 coating, attributable to the in-situ authigenic TiCB, TiC, NbMo3B4 and NbMo2B2 phases providing load transfer from the hard phases to the IN625 composite matrix to achieve abrasion reduction and wear resistance. It was also found that the formation of nano-equiaxial ultrafine grains in the depth range of 250 nm below the wear surface was facilitated by the coupling of the three fields of plastic rheology-heat-force, which dynamically strengthened the wear surface. Based on these findings, it is suggested to promote the strategy of combing USLC and DRS techniques to achieve an additional ability to enhance the coating microstructure and reduce residual stress, to achieve better tribological performance. Full article
Show Figures

Figure 1

19 pages, 3199 KiB  
Article
Design and Synthesis of Hybrid Thermo-Responsive Hydrogels Based on Poly(2-oxazoline) and Gelatin Derivatives
by Annelore Podevyn, Sandra Van Vlierberghe, Peter Dubruel and Richard Hoogenboom
Gels 2022, 8(2), 64; https://doi.org/10.3390/gels8020064 - 18 Jan 2022
Cited by 7 | Viewed by 4166
Abstract
The combination of natural and synthetic polymers to form hybrid hydrogels offers the potential of fabricating new materials that possess a combination of properties resulting from both types of polymer classes. Within this work, two alkene-functionalized poly(2-alkyl/aryl–2-oxazoline) (PAOx) copolymers and one gelatin derivative, [...] Read more.
The combination of natural and synthetic polymers to form hybrid hydrogels offers the potential of fabricating new materials that possess a combination of properties resulting from both types of polymer classes. Within this work, two alkene-functionalized poly(2-alkyl/aryl–2-oxazoline) (PAOx) copolymers and one gelatin derivative, thiolated gelatin (gel-SH), are synthesized as precursors for hybrid hydrogels through a photo-induced radical thiol-ene crosslinking process. In-situ photo-rheology revealed an increased mechanical stability for hydrogels that possess an excess amount of PAOx precursor. A final qualitative investigation of the thermo-responsive properties of a P(EtOx270–norbornenOx30):gel-SH (2:1) hydrogel film revealed a cloud point temperature (Tcp) in the same range as the Tcp of the P(EtOx270–norbornenOx30) polymer precursor, which is around 30 °C. This promising result demonstrates that thermo-responsive hybrid poly(2-oxazoline)-gelatin hydrogels could be prepared with predictable Tcps and that further investigation into this appealing feature might be of interest. Ultimately, this work shows a proof-of-concept of using PAOx as potential hybrid hydrogel precursor in combination with cell-interactive gelatin derivatives to potentially improve the mechanical stability of the final scaffolds and introduce additional features such as thermo-responsiveness for the purpose of drug delivery. Full article
(This article belongs to the Special Issue Polymer Gels)
Show Figures

Figure 1

14 pages, 3418 KiB  
Article
In-Situ Epoxidation of Waste Cooking Oil and Its Methyl Esters for Lubricant Applications: Characterization and Rheology
by Atanu Kumar Paul, Venu Babu Borugadda and Vaibhav V. Goud
Lubricants 2021, 9(3), 27; https://doi.org/10.3390/lubricants9030027 - 2 Mar 2021
Cited by 42 | Viewed by 5989
Abstract
In the present investigation, in-situ epoxidation of waste cooking oil and its methyl esters was prepared, and the rheological behavior was analyzed for biolubricant applications. Rheological properties of the prepared epoxides were measured at a temperature of 25–100 °C, at a shear rate [...] Read more.
In the present investigation, in-situ epoxidation of waste cooking oil and its methyl esters was prepared, and the rheological behavior was analyzed for biolubricant applications. Rheological properties of the prepared epoxides were measured at a temperature of 25–100 °C, at a shear rate ranging from 5 to 300 s−1. As viscosity is one of the critical parameters for potential biolubricant applications, in the present study, the power-law model was used to investigate the flow behavior of the epoxides. The viscosity of epoxidized waste cooking oil and its methyl ester epoxides showed Newtonian flow behavior in the studied temperature range. Different shear rates (5–100, 5–300, 100–300 s−1) were studied to determine the shear rate dependency of the epoxidized waste cooking oil and its methyl ester epoxides at different temperatures. From the average viscosity values, it was shown that the epoxides show identical results at all shear rates. The dynamic viscosities of the epoxidized waste cooking oil and its methyl ester epoxides were found to be dependent on fatty acid chain length, unsaturation, and temperature. Detailed physicochemical characterization for epoxide waste cooking oil (EWCO) and epoxide waste cooking oil methyl esters (EWCOME) were carried out to evaluate the properties for suitable biolubricant applications using standard American Society for Testing and Materials (ASTM) and American Oil Chemists’ Society (AOCS) methods. Based on the viscosity for EWCO (278.9 mm2/s) and EWCOME (12.15 mm2/s) and viscosity index for EWCO (164.94) and EWCOME (151.97) of the prepared epoxides, they could complement the standard ISO vegetable grade (VG) lubricants in the market. Full article
(This article belongs to the Special Issue Advances in Green Eco-friendly Lubricants)
Show Figures

Graphical abstract

13 pages, 2594 KiB  
Article
Ocular Co-Delivery of Timolol and Brimonidine from a Self-Assembling Peptide Hydrogel for the Treatment of Glaucoma: In Vitro and Ex Vivo Evaluation
by Elissavet Taka, Christina Karavasili, Nikolaos Bouropoulos, Thomas Moschakis, Dimitrios D. Andreadis, Constantinos K. Zacharis and Dimitrios G. Fatouros
Pharmaceuticals 2020, 13(6), 126; https://doi.org/10.3390/ph13060126 - 21 Jun 2020
Cited by 26 | Viewed by 4464
Abstract
Effective pharmacotherapy during glaucoma treatment depends on interventions that reduce intraocular pressure (IOP) and retain the IOP lowering effect for sufficient time so as to reduce dosing frequency and enhance patient adherence. Combination anti-glaucoma therapy and dosage forms that increase precorneal residence time [...] Read more.
Effective pharmacotherapy during glaucoma treatment depends on interventions that reduce intraocular pressure (IOP) and retain the IOP lowering effect for sufficient time so as to reduce dosing frequency and enhance patient adherence. Combination anti-glaucoma therapy and dosage forms that increase precorneal residence time could therefore constitute a promising therapeutic intervention. The in-situ gel forming self-assembling peptide ac-(RADA)4-CONH2 was evaluated as carrier for the ocular co-delivery of timolol maleate (TM) and brimonidine tartrate (BR). The hydrogel’s microstructure and mechanical properties were assessed with atomic force microscopy and rheology, respectively. Drug diffusion from the hydrogel was evaluated in vitro in simulated tear fluid and ex vivo across porcine corneas and its effect on the treated corneas was assessed through physicochemical characterization and histological analysis. Results indicated that TM and BR co-delivery affected hydrogel’s microstructure resulting in shorter nanofibers and a less rigid hydrogel matrix. Rapid and complete release of both drugs was achieved within 8 h, while a 2.8-fold and 5.4-fold higher corneal permeability was achieved for TM and BR, respectively. No significant alterations were induced in the structural integrity of the corneas treated with the hydrogel formulation, suggesting that self-assembling peptide hydrogels might serve as promising systems for combination anti-glaucoma therapy. Full article
(This article belongs to the Special Issue Advances in Ocular Pharmacology)
Show Figures

Graphical abstract

23 pages, 8970 KiB  
Article
Polymer Injectivity Test Design Using Numerical Simulation
by Mohamed Adel Alzaabi, Jørgen Gausdal Jacobsen, Shehadeh Masalmeh, Ali Al Sumaiti, Øystein Pettersen and Arne Skauge
Polymers 2020, 12(4), 801; https://doi.org/10.3390/polym12040801 - 3 Apr 2020
Cited by 9 | Viewed by 3917
Abstract
Polymer flooding is an enhanced oil recovery (EOR) process, which has received increasing interest in the industry. In this process, water-soluble polymers are used to increase injected water viscosity in order to improve mobility ratio and hence improve reservoir sweep. Polymer solutions are [...] Read more.
Polymer flooding is an enhanced oil recovery (EOR) process, which has received increasing interest in the industry. In this process, water-soluble polymers are used to increase injected water viscosity in order to improve mobility ratio and hence improve reservoir sweep. Polymer solutions are non-Newtonian fluids, i.e., their viscosities are shear dependent. Polymers may exhibit an increase in viscosity at high shear rates in porous media, which can cause injectivity loss. In contrast, at low shear rates they may observe viscosity loss and hence enhance the injectivity. Therefore, due to the complex non-Newtonian rheology of polymers, it is necessary to optimize the design of polymer injectivity tests in order to improve our understanding of the rheology behavior and enhance the design of polymer flood projects. This study has been addressing what information that can be gained from polymer injectivity tests, and how to design the test for maximizing information. The main source of information in the field is from the injection bottom-hole pressure (BHP). Simulation studies have analyzed the response of different non-Newtonian rheology on BHP with variations of rate and time. The results have shown that BHP from injectivity tests can be used to detect in-situ polymer rheology. Full article
Show Figures

Graphical abstract

26 pages, 6435 KiB  
Article
In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications
by Fatma Z. Kocak, Abdullah C.S. Talari, Muhammad Yar and Ihtesham U. Rehman
Int. J. Mol. Sci. 2020, 21(5), 1633; https://doi.org/10.3390/ijms21051633 - 27 Feb 2020
Cited by 49 | Viewed by 7054
Abstract
Biomaterials that promote angiogenesis are required for repair and regeneration of bone. In-situ formed injectable hydrogels functionalised with bioactive agents, facilitating angiogenesis have high demand for bone regeneration. In this study, pH and thermosensitive hydrogels based on chitosan (CS) and hydroxyapatite (HA) composite [...] Read more.
Biomaterials that promote angiogenesis are required for repair and regeneration of bone. In-situ formed injectable hydrogels functionalised with bioactive agents, facilitating angiogenesis have high demand for bone regeneration. In this study, pH and thermosensitive hydrogels based on chitosan (CS) and hydroxyapatite (HA) composite materials loaded with heparin (Hep) were investigated for their pro-angiogenic potential. Hydrogel formulations with varying Hep concentrations were prepared by sol–gel technique for these homogeneous solutions were neutralised with sodium bicarbonate (NaHCO3) at 4 °C. Solutions (CS/HA/Hep) constituted hydrogels setting at 37 °C which was initiated from surface in 5–10 minutes. Hydrogels were characterised by performing injectability, gelation, rheology, morphology, chemical and biological analyses. Hydrogel solutions facilitated manual dropwise injection from 21 Gauge which is highly used for orthopaedic and dental administrations, and the maximum injection force measured through 19 G needle (17.191 ± 2.296N) was convenient for manual injections. Angiogenesis tests were performed by an ex-ovo chick chorioallantoic membrane (CAM) assay by applying injectable solutions on CAM, which produced in situ hydrogels. Hydrogels induced microvascularity in CAM assay this was confirmed by histology analyses. Hydrogels with lower concentration of Hep showed more efficiency in pro-angiogenic response. Thereof, novel injectable hydrogels inducing angiogenesis (CS/HA/Hep) are potential candidates for bone regeneration and drug delivery applications. Full article
(This article belongs to the Special Issue Recent Advances in Dental Materials and Biomaterials)
Show Figures

Graphical abstract

22 pages, 12717 KiB  
Article
Investigation of the Incompatibilities of Cement and Superplasticizers and Their Influence on the Rheological Behavior
by Ursula Pott, Cordula Jakob, Daniel Jansen, Jürgen Neubauer and Dietmar Stephan
Materials 2020, 13(4), 977; https://doi.org/10.3390/ma13040977 - 21 Feb 2020
Cited by 32 | Viewed by 3523
Abstract
The rheological behavior of cement paste and the improvement of its flowability takes center stage in many research projects. An improved flowability can be achieved by the addition of superplasticizers (SP), such as polycarboxylate ethers (PCE). In order to be able to use [...] Read more.
The rheological behavior of cement paste and the improvement of its flowability takes center stage in many research projects. An improved flowability can be achieved by the addition of superplasticizers (SP), such as polycarboxylate ethers (PCE). In order to be able to use these PCEs effectively and in a variety of ways and to make them resistant to changes in the environment, it is crucial to understand the influence of SPs on cement hydration. For that reason, the topic of this paper was the incompatibility of a specific SP and an ordinary Portland cement (OPC). The incompatible behavior was analyzed using rheological tests, such as the spread flow test and penetration test, and the behavior was compared by means of an ultrasound technique and explained by the phase content measured by in-situ X-ray diffraction (XRD) the heat evolution measured by calorimetry, and scanning electron microscope (SEM) images. We showed that the addition of the SP in a high dosage led to a prevention of the passivation of the most reactive and aluminum-containing clinker phases, aluminate and brownmillerite. This induced the aluminate reaction to take place in the initial period and led to an immediate stiffening of the cement paste and, therefore, to the complete loss of workability. The results showed that in addition to the ettringite, which began to form directly after water addition, hemicarbonate precipitated. The fast stiffening of the paste could be prevented by delayed addition of the SP or by additional gypsum. This fast stiffening was not desirable for SPs, but in other fields, for example, 3D printing, this undesirable interaction could be used to improve the properties of printable mortar. Full article
(This article belongs to the Special Issue Rheology of Reactive, Multiscale, Multiphase Construction Materials)
Show Figures

Figure 1

13 pages, 2128 KiB  
Article
Qualification of New Methods for Measuring In Situ Rheology of Non-Newtonian Fluids in Porous Media
by Jørgen Gausdal Jacobsen, Behruz Shaker Shiran, Tormod Skauge, Kenneth Stuart Sorbie and Arne Skauge
Polymers 2020, 12(2), 452; https://doi.org/10.3390/polym12020452 - 14 Feb 2020
Cited by 5 | Viewed by 2736
Abstract
Pressure drop (ΔP) versus volumetric injection rate (Q) data from linear core floods have typically been used to measure in situ rheology of non-Newtonian fluids in porous media. However, linear flow is characterized by steady-state conditions, in contrast to [...] Read more.
Pressure drop (ΔP) versus volumetric injection rate (Q) data from linear core floods have typically been used to measure in situ rheology of non-Newtonian fluids in porous media. However, linear flow is characterized by steady-state conditions, in contrast to radial flow where both pressure and shear-forces have non-linear gradients. In this paper, we qualify recently developed methods for measuring in situ rheology in radial flow experiments, and then quantitatively investigate the robustness of these methods against pressure measurement error. Application of the new methods to experimental data also enabled accurate investigation of memory and rate effects during polymer flow through porous media. A radial polymer flow experiment using partially hydrolyzed polyacrylamide (HPAM) was performed on a Bentheimer sandstone disc where pressure ports distributed between a central injector and the perimeter production line enabled a detailed analysis of pressure variation with radial distance. It has been suggested that the observed shear-thinning behavior of HPAM solutions at low flux in porous media could be an experimental artifact due to the use of insufficiently accurate pressure transducers. Consequently, a generic simulation study was conducted where the level of pressure measurement error on in situ polymer rheology was quantitatively investigated. Results clearly demonstrate the robustness of the history match methods to pressure measurement error typical for radial flow experiments, where negligible deviations from the reference rheology was observed. It was not until the error level was increased to five-fold of typical conditions that significant deviation from the reference rheology emerged. Based on results from pore network modelling, Chauveteau (1981) demonstrated that polymer flow in porous media may at some rate be influenced by the prior history. In this paper, polymer memory effects could be evaluated at the Darcy scale by history matching the pressure drop between individual pressure ports and the producer as a function of injection rate (conventional method). Since the number of successive contraction events increases with radial distance, the polymer has a different pre-history at the various pressure ports. Rheology curves obtained from history matching the radial flow experiment were overlapping, which shows that there is no influence of geometry on in-situ rheology for the particular HPAM polymer investigated. In addition, the onset of shear-thickening was independent of volumetric injection rate in radial flow. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

18 pages, 7293 KiB  
Article
Development and Characterization of Stable Polymer Formulations for Manufacturing Magnetic Composites
by Balakrishnan Nagarajan, Milad Kamkar, Martin A.W. Schoen, Uttandaraman Sundararaj, Simon Trudel, Ahmed Jawad Qureshi and Pierre Mertiny
J. Manuf. Mater. Process. 2020, 4(1), 4; https://doi.org/10.3390/jmmp4010004 - 12 Jan 2020
Cited by 19 | Viewed by 5045
Abstract
Polymer bonded permanent magnets find significant applications in a multitude of electrical and electronic devices. In this study, magnetic particle-loaded epoxy resin formulations were developed for in-situ polymerization and material jetting based additive manufacturing processes. Fundamental material and process issues like particle settling [...] Read more.
Polymer bonded permanent magnets find significant applications in a multitude of electrical and electronic devices. In this study, magnetic particle-loaded epoxy resin formulations were developed for in-situ polymerization and material jetting based additive manufacturing processes. Fundamental material and process issues like particle settling at room temperature and elevated temperature curing, rheology control and geometric stability of the magnetic polymer during the thermal curing process are addressed. Control of particle settling, modifications in rheological behavior and geometric stability were accomplished using an additive that enabled the modification of the formulation behavior at different process conditions. The magnetic particle size and additive loading were found to influence the rheological properties significantly. The synergistic effect of the additive enabled the developing of composites with engineered magnetic filler loading. Morphological characterization using scanning electron microscopy revealed a homogenous particle distribution in composites. It was observed that the influence of temperature was profound on the coercive field and remanent magnetization of the magnetic composites. The characterization of magnetic polymers and composites using rheometry, scanning electron microscopy, X-ray diffraction and superconducting quantum interference device (SQUID) magnetometry analysis enabled the correlating of the behavior observed in different stages of the manufacturing processes. Furthermore, this fundamental research facilitates a pathway to construct robust materials and processes to develop magnetic composites with engineered properties. Full article
Show Figures

Figure 1

17 pages, 8872 KiB  
Article
Stability Control for the Rheological Roadway by a Novel High-Efficiency Jet Grouting Technique in Deep Underground Coal Mines
by Yuantian Sun, Guichen Li, Junfei Zhang and Deyu Qian
Sustainability 2019, 11(22), 6494; https://doi.org/10.3390/su11226494 - 18 Nov 2019
Cited by 42 | Viewed by 2847
Abstract
In maintaining the efficiency of coal mining, the stability of roadway plays a significant role, as it is closely related to the production of coal and the safety of personnel. In deep underground coal mines, the rheological deformation of roadway normally occurs, which [...] Read more.
In maintaining the efficiency of coal mining, the stability of roadway plays a significant role, as it is closely related to the production of coal and the safety of personnel. In deep underground coal mines, the rheological deformation of roadway normally occurs, which affects its service life. To address this problem, in this paper, a novel high-efficiency Jet Grouting (JG) technique was presented, and its control effect on roadway stability was investigated. A creep test of a coal specimen in a laboratory scale was performed, and its creep behavior was revealed. The rheology of the coal mass surrounding the roadway was further analyzed according to the field-monitoring results of roadway deformation. A time-dependent numerical model with a Burger-creep visco-plastic model (CVISC) was established and validated by comparing the calculated displacement with in-situ measurement. The JG technique was tested in the field, and its applicability and practicability were confirmed. According to the validated model and field test results of JG, a numerical model with CVISC by JG support was established to analyze the effect of JG on the roadway. The results showed that the JG support can effectively reduce roadway deformation, optimize stress conditions, and reduce the extent of the plastic zone around the roadway. The rheological properties of the soft coal roadway were constrained and long-term stability was ensured. This pioneering work can guide the application of JG for the stability control of roadways and promote the sustainability of coal mining efficiently. Full article
Show Figures

Figure 1

24 pages, 6593 KiB  
Article
Setting Mechanism of a CDHA Forming α-TCP Cement Modified with Sodium Phytate for Improved Injectability
by Jan Weichhold, Uwe Gbureck, Friedlinde Goetz-Neunhoeffer and Katrin Hurle
Materials 2019, 12(13), 2098; https://doi.org/10.3390/ma12132098 - 29 Jun 2019
Cited by 16 | Viewed by 3786
Abstract
A calcium deficient hydroxyapatite (CDHA) forming cement with a bimodal grain size distribution, composed of α-TCP and fine grained CDHA at a weight ratio of 9:1, was modified by the addition of sodium phytate (IP6) in variable amounts ranging from 0.25 to 2 [...] Read more.
A calcium deficient hydroxyapatite (CDHA) forming cement with a bimodal grain size distribution, composed of α-TCP and fine grained CDHA at a weight ratio of 9:1, was modified by the addition of sodium phytate (IP6) in variable amounts ranging from 0.25 to 2 wt.%, related to the powder content. The injectability of the cement paste was drastically increased by the IP6 addition, independent of the amount of added IP6. Additionally, the cement paste viscosity during the first minutes decreased. These effects could be clearly related to a slightly more negative zeta potential. Furthermore, IP6 was shown to strongly retard the setting reaction, as can be seen both in the calorimetry and X-ray diffraction measurements. In addition, octacalcium phosphate (OCP) was identified as a further setting product. All measurements were performed at 23 °C and 37 °C to assess the effect of temperature on the setting reaction for both clinical handling by the surgeon and the final hardening in the bone defect. Full article
(This article belongs to the Special Issue Mineral Bone Cements: Current Status and Future Prospects)
Show Figures

Figure 1

25 pages, 2992 KiB  
Article
Polymer Injectivity: Investigation of Mechanical Degradation of Enhanced Oil Recovery Polymers Using In-Situ Rheology
by Badar Al-Shakry, Tormod Skauge, Behruz Shaker Shiran and Arne Skauge
Energies 2019, 12(1), 49; https://doi.org/10.3390/en12010049 - 24 Dec 2018
Cited by 50 | Viewed by 8240
Abstract
Water soluble polymers have attracted increasing interest in enhanced oil recovery (EOR) processes, especially polymer flooding. Despite the fact that the flow of polymer in porous medium has been a research subject for many decades with numerous publications, there are still some research [...] Read more.
Water soluble polymers have attracted increasing interest in enhanced oil recovery (EOR) processes, especially polymer flooding. Despite the fact that the flow of polymer in porous medium has been a research subject for many decades with numerous publications, there are still some research areas that need progress. The prediction of polymer injectivity remains elusive. Polymers with similar shear viscosity might have different in-situ rheological behaviors and may be exposed to different degrees of mechanical degradation. Hence, determining polymer in-situ rheological behavior is of great significance for defining its utility. In this study, an investigation of rheological properties and mechanical degradation of different partially hydrolyzed polyacrylamide (HPAM) polymers was performed using Bentheimer sandstone outcrop cores. The results show that HPAM in-situ rheology is different from bulk rheology measured by a rheometer. Specifically, shear thickening behavior occurs at high rates, and near-Newtonian behavior is measured at low rates in porous media. This deviates strongly from the rheometer measurements. Polymer molecular weight and concentration influence its viscoelasticity and subsequently its flow characteristics in porous media. Exposure to mechanical degradation by flow at high rate through porous media leads to significant reduction in shear thickening and thereby improved injectivity. More importantly, the degraded polymer maintained in-situ viscosity at low flow rates indicating that improved injectivity can be achieved without compromising viscosity at reservoir flow rates. This is explained by a reduction in viscoelasticity. Mechanical degradation also leads to reduced residual resistance factor (RRF), especially for high polymer concentrations. For some of the polymer injections, successive degradation (increased degradation with transport length in porous media) was observed. The results presented here may be used to optimize polymer injectivity. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery 2019)
Show Figures

Figure 1

27 pages, 2265 KiB  
Article
Polymer Flow in Porous Media: Relevance to Enhanced Oil Recovery
by Arne Skauge, Nematollah Zamani, Jørgen Gausdal Jacobsen, Behruz Shaker Shiran, Badar Al-Shakry and Tormod Skauge
Colloids Interfaces 2018, 2(3), 27; https://doi.org/10.3390/colloids2030027 - 10 Jul 2018
Cited by 101 | Viewed by 10338
Abstract
Polymer flooding is one of the most successful chemical EOR (enhanced oil recovery) methods, and is primarily implemented to accelerate oil production by sweep improvement. However, additional benefits have extended the utility of polymer flooding. During the last decade, it has been evaluated [...] Read more.
Polymer flooding is one of the most successful chemical EOR (enhanced oil recovery) methods, and is primarily implemented to accelerate oil production by sweep improvement. However, additional benefits have extended the utility of polymer flooding. During the last decade, it has been evaluated for use in an increasing number of fields, both offshore and onshore. This is a consequence of (1) improved polymer properties, which extend their use to HTHS (high temperature high salinity) conditions and (2) increased understanding of flow mechanisms such as those for heavy oilmobilization. A key requirement for studying polymer performance is the control and prediction of in-situ porous medium rheology. The first part of this paper reviews recent developments in polymer flow in porous medium, with a focus on polymer in-situ rheology and injectivity. The second part of this paper reports polymer flow experiments conducted using the most widely applied polymer for EOR processes, HPAM (partially hydrolyzed polyacrylamide). The experiments addressed highrate, near-wellbore behavior (radial flow), reservoir rate steady-state flow (linear flow) and the differences observed in terms of flow conditions. In addition, the impact of oil on polymer rheology was investigated and compared to single-phase polymer flow in Bentheimer sandstone rock material. Results show that the presence of oil leads to a reduction in apparent viscosity. Full article
(This article belongs to the Special Issue Colloids and Interfaces in Oil Recovery)
Show Figures

Figure 1

16 pages, 9155 KiB  
Article
Early Damage Detection in Composites during Fabrication and Mechanical Testing
by Neha Chandarana, Daniel Martinez Sanchez, Constantinos Soutis and Matthieu Gresil
Materials 2017, 10(7), 685; https://doi.org/10.3390/ma10070685 - 22 Jun 2017
Cited by 54 | Viewed by 8930
Abstract
Fully integrated monitoring systems have shown promise in improving confidence in composite materials while reducing lifecycle costs. A distributed optical fibre sensor is embedded in a fibre reinforced composite laminate, to give three sensing regions at different levels through-the-thickness of the plate. This [...] Read more.
Fully integrated monitoring systems have shown promise in improving confidence in composite materials while reducing lifecycle costs. A distributed optical fibre sensor is embedded in a fibre reinforced composite laminate, to give three sensing regions at different levels through-the-thickness of the plate. This study follows the resin infusion process during fabrication of the composite, monitoring the development of strain in-situ and in real time, and to gain better understanding of the resin rheology during curing. Piezoelectric wafer active sensors and electrical strain gauges are bonded to the plate after fabrication. This is followed by progressive loading/unloading cycles of mechanical four point bending. The strain values obtained from the optical fibre are in good agreement with strain data collected by surface mounted strain gauges, while the sensing regions clearly indicate the development of compressive, neutral, and tensile strain. Acoustic emission event detection suggests the formation of matrix (resin) cracks, with measured damage event amplitudes in agreement with values reported in published literature on the subject. The Felicity ratio for each subsequent loading cycle is calculated to track the progression of damage in the material. The methodology developed here can be used to follow the full life cycle of a composite structure, from manufacture to end-of-life. Full article
(This article belongs to the Special Issue Structural Health Monitoring for Aerospace Applications 2017)
Show Figures

Figure 1

Back to TopTop