Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (213)

Search Parameters:
Keywords = in-silico analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6506 KB  
Article
In Silico Design and Characterization of a Rationally Engineered Cas12j2 Gene Editing System for the Treatment of HPV-Associated Cancers
by Caleb Boren, Rahul Kumar and Lauren Gollahon
Int. J. Mol. Sci. 2026, 27(2), 1054; https://doi.org/10.3390/ijms27021054 - 21 Jan 2026
Abstract
CRISPR-Cas9 systems have enabled unprecedented advances in genome engineering, particularly in developing treatments for human diseases, like cancer. Despite potential applications, limitations of Cas9 include its relatively large size and strict targeting requirements. Cas12j2, a variant ofCasΦ-2, shows promise for overcoming these limitations. [...] Read more.
CRISPR-Cas9 systems have enabled unprecedented advances in genome engineering, particularly in developing treatments for human diseases, like cancer. Despite potential applications, limitations of Cas9 include its relatively large size and strict targeting requirements. Cas12j2, a variant ofCasΦ-2, shows promise for overcoming these limitations. However, its effectiveness in mammalian cells remains relatively unexplored. This study sought to develop an optimized CRISPR-Cas12j2 system for targeted knockout of the E6 oncogene in HPV-associated cancers. A combination of computational tools (ColabFold, CCTop, Cas-OFFinder, HADDOCK2.4, and Amber for Molecular Dynamics) was utilized to investigate the impact of engineered modifications on structural integrity and gRNA binding of Cas12j2 fusion constructs, in potential intracellular conditions. Cas12j2_F2, a Cas12j2 variant designed and evaluated in this study, behaves similarly to the wild-type Cas12j2 structure in terms of RMSD/RMSF profiles, compact Rg values, and minimal electrostatic perturbation. The computationally validated Cas12j2 variant was incorporated into a custom expression vector, co-expressing the engineered construct along with a dual gRNA for packaging into a viral vector for targeted knockout of HPV-associated cancers. This study provides a structural and computational foundation for the rational design of Cas12j2 fusion constructs with enhanced stability and functionality, supporting their potential application for precise genome editing in mammalian cells. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

27 pages, 6290 KB  
Article
The Role of the Cell Surface Heparan Sulfate Proteoglycan Syndecan-3 in Breast Cancer Pathophysiology
by Lena Habenicht, Nourhan Hassan, Nancy A. Espinoza-Sànchez, Jessica Oyie Sousa Onyeisi, Balázs Győrffy, Lars Hanker, Burkhard Greve and Martin Götte
Cells 2025, 14(20), 1612; https://doi.org/10.3390/cells14201612 - 17 Oct 2025
Cited by 1 | Viewed by 1224
Abstract
The heparan sulfate proteoglycan syndecan-3 (SDC3) is a critical regulator of cell–matrix interactions. While other syndecan family members contribute to the progression of multiple cancers, SDC3’s functional contributions to tumor biology remain largely unexplored. This study investigates the potential role of SDC3 in [...] Read more.
The heparan sulfate proteoglycan syndecan-3 (SDC3) is a critical regulator of cell–matrix interactions. While other syndecan family members contribute to the progression of multiple cancers, SDC3’s functional contributions to tumor biology remain largely unexplored. This study investigates the potential role of SDC3 in the pathogenesis of breast cancer. By conducting an in-silico analysis of publicly available datasets, including TNM-plot, The Human Protein Atlas, and Kaplan–Meier Plotter, we observed that SDC3 is upregulated in breast cancer tissue. Notably, high SDC3 expression correlates with improved relapse-free survival in breast cancer patients. In vitro experiments revealed that SDC3 depletion significantly impairs cell viability, cell-cycle progression, cell migration, and 3D-spheroid-formation in MDA-MB-231 and MCF-7 breast cancer cells. Furthermore, SDC3 depletion results in dysregulated gene expression of matrix metalloproteinases (MMP1, MMP2, MMP9) in MDA-MB-231 cells, and upregulation of E-cadherin (CDH1) and vascular endothelial growth factor A (VEGFA) in MCF-7 cells. Activation of proto-oncogene tyrosine-protein kinase Src was inhibited when SDC3 depletion was combined with tissue factor pathway inhibitor treatment. These findings demonstrate that breast cancer cell-derived SDC3 plays a pivotal role in tumor progression. Full article
(This article belongs to the Special Issue Role of Extracellular Matrix in Cancer and Disease)
Show Figures

Figure 1

14 pages, 5315 KB  
Article
Genome-Wide Analysis of Terpene Synthase Genes in Crocus sativus Reveals Their Regulatory Roles in Terpenoid Biosynthesis and Abiotic Stress Tolerance
by Muqaddas Bano, Xingnuo Li, Ahmad Ali, Mohsin Khan, Liang Chen and Xiujun Zhang
Int. J. Mol. Sci. 2025, 26(19), 9548; https://doi.org/10.3390/ijms26199548 - 30 Sep 2025
Viewed by 910
Abstract
Terpene synthases (TPS) facilitate terpenoid production, influencing the flavor, color, and medicinal properties of Crocus sativus (saffron), a triploid geophyte of significant commercial importance. Despite its importance, the CsTPS gene family remains poorly characterized, limiting genetic enhancements in saffron’s agronomic features. This research [...] Read more.
Terpene synthases (TPS) facilitate terpenoid production, influencing the flavor, color, and medicinal properties of Crocus sativus (saffron), a triploid geophyte of significant commercial importance. Despite its importance, the CsTPS gene family remains poorly characterized, limiting genetic enhancements in saffron’s agronomic features. This research performed a comprehensive genome-wide analysis of CsTPS genes using genomic, transcriptomic, and in silico approaches. BLASTP and PfamScan discovered thirty CsTPS genes, demonstrating conserved TPS domains, varied exon–intron architectures, and chromosomal clustering indicative of tandem duplications. Phylogenetic research categorized these genes into five subfamilies (TPS-a to TPS-e), with the prevalence of TPS-a suggesting a role in sesquiterpene biosynthesis. RNA-seq data (PRJNA976833, PRJNA400472) revealed tissue-specific expression, with CsTPS1 and CsTPS5 expressed in reproductive tissues and CsTPS2 in vegetative tissues. Stress-responsive genes (CsTPS1, CsTPS4) exhibited upregulation in response to cold and pathogen stress, with cis-regulatory elements (e.g., ARE, ABRE) indicating hormone control. The in-silico validation of CsTPS1, chosen for its elevated GMQE score (0.89), included primer design, ePCR, and vector optimization for expression in Arabidopsis thaliana. This study elucidates the contribution of the CsTPS family to saffron terpenoid diversity, providing a foundation for enhancing flavor, yield, and stress tolerance through genetic engineering. Full article
(This article belongs to the Special Issue Plant Molecular Regulatory Networks and Stress Responses)
Show Figures

Figure 1

13 pages, 1571 KB  
Article
CREPE (CREate Primers and Evaluate): A Computational Tool for Large-Scale Primer Design and Specificity Analysis
by Jonathan W. Pitsch, Sara A. Wirth, Nicole T. Costantino, Josh Mejia, Rose M. Doss, Ava V. A. Warren, Jack Ustanik, Xiaoxu Yang and Martin W. Breuss
Genes 2025, 16(9), 1062; https://doi.org/10.3390/genes16091062 - 10 Sep 2025
Viewed by 982
Abstract
Background/Objectives: Polymerase chain reaction (PCR) is ubiquitous in biological research labs, as it is a fast, flexible, and cost-effective technique to amplify a DNA region of interest. However, manual primer design can be an error-prone and time-consuming process depending on the number and [...] Read more.
Background/Objectives: Polymerase chain reaction (PCR) is ubiquitous in biological research labs, as it is a fast, flexible, and cost-effective technique to amplify a DNA region of interest. However, manual primer design can be an error-prone and time-consuming process depending on the number and composition of target sites. While Primer3 has emerged as an accessible tool to solve some of these issues, additional computational pipelines are required for appropriate scaling. Moreover, this does not replace the manual confirmation of primer specificity (i.e., the assessment of off-targets). Methods: To overcome the challenges of large-scale primer design, we fused the functionality of Primer3 and In-Silico PCR (ISPCR); this integrated pipeline, CREPE (CREate Primers and Evaluate), performs primer design and specificity analysis through a custom evaluation script for any given number of target sites at scale. Results: CREPE’s final output summarizes the lead forward and reverse primer pair for each target site, a measure of the likelihood of binding to off-targets, and additional information to aid decision-making. We provide this through a customized workflow for targeted amplicon sequencing (TAS) on a 150 bp paired-end Illumina platform. Experimental testing showed successful amplification for more than 90% of primers deemed acceptable by CREPE. Conclusions: We here provide CREPE, a software platform that allows for parallelized primer design for PCR applications and that is optimized for targeted amplicon sequencing. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Graphical abstract

28 pages, 1361 KB  
Review
Artificial Intelligence in Small-Molecule Drug Discovery: A Critical Review of Methods, Applications, and Real-World Outcomes
by Sarfaraz K. Niazi
Pharmaceuticals 2025, 18(9), 1271; https://doi.org/10.3390/ph18091271 - 26 Aug 2025
Cited by 3 | Viewed by 8314
Abstract
Artificial intelligence (AI) is emerging as a valuable complementary tool in small-molecule drug discovery, augmenting traditional methodologies rather than replacing them. This review examines the evolution of AI from early rule-based systems to advanced deep learning, generative models, diffusion models, and autonomous agentic [...] Read more.
Artificial intelligence (AI) is emerging as a valuable complementary tool in small-molecule drug discovery, augmenting traditional methodologies rather than replacing them. This review examines the evolution of AI from early rule-based systems to advanced deep learning, generative models, diffusion models, and autonomous agentic AI systems, highlighting their applications in target identification, hit discovery, lead optimization, and safety prediction. We present both successes and failures to provide a balanced perspective. Notable achievements include baricitinib (BenevolentAI/Eli Lilly, an existing drug repurposed through AI-assisted analysis for COVID-19 and rheumatoid arthritis), halicin (MIT, preclinical antibiotic), DSP-1181 (Exscientia, discontinued after Phase I), and ISM001-055/rentosertib (Insilico Medicine, positive Phase IIa results). However, several AI-assisted compounds have also faced challenges in clinical development. DSP-1181 was discontinued after Phase I, despite a favorable safety profile, highlighting that the acceleration of discovery timelines by AI does not guarantee clinical success. Despite progress, challenges such as data quality, model interpretability, regulatory hurdles, and ethical concerns persist. We provide practical insights for integrating AI into drug discovery workflows, emphasizing hybrid human-AI approaches and the emergence of agentic AI systems that can autonomously navigate discovery pipelines. A critical evaluation of current limitations and future opportunities reveals that while AI offers significant potential as a complementary technology, realistic expectations and careful implementation are crucial for delivering innovative therapeutics. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

26 pages, 5313 KB  
Article
Common Molecular Mechanisms and Biomarkers in Breast, Colon and Ovarian Cancer
by Vicente M. García-Cañizares, Alejandro González-Vidal, Antonio M. Burgos-Molina, Silvia Mercado-Sáenz, Francisco Sendra-Portero and Miguel J. Ruiz-Gómez
Appl. Sci. 2025, 15(13), 7018; https://doi.org/10.3390/app15137018 - 22 Jun 2025
Viewed by 1313
Abstract
Breast, colon, and ovarian cancers are among the most prevalent malignancies worldwide, with distinct clinical features. This study aims to identify key proteins as common biomarkers for breast, colon, and ovarian cancer through protein analysis, molecular mechanisms, and patient sample validation. Data mining [...] Read more.
Breast, colon, and ovarian cancers are among the most prevalent malignancies worldwide, with distinct clinical features. This study aims to identify key proteins as common biomarkers for breast, colon, and ovarian cancer through protein analysis, molecular mechanisms, and patient sample validation. Data mining from curated databases identified 483 proteins for breast cancer, 521 for colon cancer, and 223 for ovarian cancer. Interaction network analysis revealed shared clusters involved in cancer progression, DNA repair, and cell proliferation. A core set of 27 proteins was found to be common across all three cancer types, participating in key biological processes such as DNA damage response, cell proliferation, and apoptosis. Notably, these proteins are implicated in KEGG pathways linked to multiple cancers. Differential gene expression analysis revealed significant alterations in the expressions of MSH2 and KIT across the three cancers, suggesting their potential as common biomarkers. The high expression of these proteins was associated with better survival outcomes, highlighting their potential as common biomarkers for breast, colon, and ovarian cancers. The in-silico methodology integrated various bioinformatic tools—including cluster identification, gene expression profiling, protein network visualization, and biomarker prediction—enhancing the understanding of shared molecular mechanisms and potential therapeutic targets. Full article
(This article belongs to the Special Issue Recent Applications of Artificial Intelligence for Bioinformatics)
Show Figures

Figure 1

24 pages, 3958 KB  
Article
Rare Homozygous Variants in INSR and NFXL1 Are Associated with Severe Treatment-Resistant Psychosis
by Ambreen Kanwal, Rimsha Zulfiqar, Husnain Arshad Cheema, Nauman Jabbar, Amina Iftikhar, Amina Iftikhar Butt, Sohail A. Sheikh, Jose V. Pardo and Sadaf Naz
Int. J. Mol. Sci. 2025, 26(10), 4925; https://doi.org/10.3390/ijms26104925 - 21 May 2025
Viewed by 1349
Abstract
Psychosis constitutes a cardinal component of schizophrenia and affects nearly fifty percent of those with bipolar disorder. We sought to molecularly characterize psychosis segregating in consanguineous families. Participants from eight multiplex families were evaluated using standardized testing tools. DNA was subjected to exome [...] Read more.
Psychosis constitutes a cardinal component of schizophrenia and affects nearly fifty percent of those with bipolar disorder. We sought to molecularly characterize psychosis segregating in consanguineous families. Participants from eight multiplex families were evaluated using standardized testing tools. DNA was subjected to exome sequencing followed by Sanger sequencing. Effects of variants were modeled using in-silico tools, while cDNA from a patient’s blood sample was analyzed to evaluate the effect of a splice-site variant. Twelve patients in six families were diagnosed with schizophrenia, whereas four patients from two families had psychotic bipolar disorder. Two homozygous rare deleterious variants in INSR (c.2232-7T>G) and NFXL1 (c.1322G>A; p.Cys441Tyr) were identified, which segregated with severe treatment-resistant psychosis/schizophrenia in two families. There were none, or ambiguous findings in the other six families. The predicted deleterious missense variant affected a conserved amino acid, while the intronic variant was predicted to affect splicing. However, cDNA analysis from a patient’s blood sample did not reveal an aberrant transcript. Our results indicate that INSR and NFXL1 variants may have a role in psychosis that requires to be investigated further. Lack of molecular diagnosis in some patients suggests the need for genome sequencing to pinpoint the genetic causes. Full article
(This article belongs to the Special Issue Involvement of Neuroinflammatory Processes in Psychiatric Conditions)
Show Figures

Figure 1

17 pages, 4095 KB  
Article
Case Study: Genetic and In Silico Analysis of Familial Pancreatitis
by Yash Sharma and Deborah J. Good
Genes 2025, 16(5), 603; https://doi.org/10.3390/genes16050603 - 20 May 2025
Viewed by 1422
Abstract
Background/Objectives: Chronic pancreatitis (CP) is a progressive inflammatory condition of the pancreas that leads to irreversible changes in pancreatic structure. The pancreatic α and β cells secrete hormones such as insulin and glucagon into the bloodstream. The pancreatic acinar cells secrete digestive enzymes [...] Read more.
Background/Objectives: Chronic pancreatitis (CP) is a progressive inflammatory condition of the pancreas that leads to irreversible changes in pancreatic structure. The pancreatic α and β cells secrete hormones such as insulin and glucagon into the bloodstream. The pancreatic acinar cells secrete digestive enzymes that break down macromolecules. When these digestive enzymes do not function properly, maldigestion, malabsorption, and malnutrition may result. Presented here is a case study of an individual newly diagnosed with chronic pancreatitis, along with a genetic analysis of his son and an in-silico analysis of two of the variant proteins. Methods: This study was conducted using human subjects, namely, the proband (father) and his son. Medical genetic testing of the proband (father) identified the presence of two variants in the cystic fibrosis transmembrane receptor gene (CFTR): variant rs213950, resulting in a single amino acid change (p. Val470Met), and variant rs74767530, a nonsense variant (Arg1162Ter) with known pathogenicity for cystic fibrosis. Medical testing also revealed an additional missense variant, rs515726209 (Ala73Thr), in the CTRC gene. Cheek cell DNA was collected from both the proband and his son to determine the inheritance pattern and identify any additional variants. A variant in the human leukocyte antigen (rs7454108), which results in the HLA-DQ8 haplotype, was examined in both the proband and his son due to its known association with autoimmune disease, a condition also linked to chronic pancreatitis. In silico tools were subsequently used to examine the impact of the identified variants on protein function. Results: Heterozygosity for all variants originally identified through medical genetic testing was confirmed in the proband and was absent in the son. Both the proband and his son were found to have the DRB1*0301 (common) haplotype for the HLA locus. However, the proband was also found to carry a linked noncoding variant, rs2647088, which was absent in the son. In silico analysis of variant rs213950 (Val470Met) in CFTR and rs515726209 (Ala73Thr) in CTRC revealed distinct changes in predicted ligand binding for both proteins, which may affect protein function and contribute to the development of CP. Conclusions: This case study of a proband and his son provides additional evidence for a polygenic inheritance pattern in CP. The results also highlight new information on the role of the variants on protein function, suggesting additional testing of ligand binding for these variants should be done to confirm the functional impairments. Full article
Show Figures

Graphical abstract

15 pages, 2172 KB  
Article
Structural Characterisation of TetR/AcrR Regulators in Streptomyces fildesensis So13.3: An In Silico CRISPR-Based Strategy to Influence the Suppression of Actinomycin D Production
by Karla Leal, Juan Machuca, Humberto Gajardo, Matías Palma, María José Contreras, Kattia Nuñez-Montero, Álvaro Gutiérrez and Leticia Barrientos
Int. J. Mol. Sci. 2025, 26(10), 4839; https://doi.org/10.3390/ijms26104839 - 19 May 2025
Cited by 1 | Viewed by 1409
Abstract
The growing threat of antimicrobial resistance has intensified the search for new bioactive compounds, particularly in extreme environments such as Antarctica. Streptomyces fildesensis So13.3, isolated from Antarctic soil, harbours a biosynthetic gene cluster (BGC) associated with actinomycin D production, an antibiotic with biomedical [...] Read more.
The growing threat of antimicrobial resistance has intensified the search for new bioactive compounds, particularly in extreme environments such as Antarctica. Streptomyces fildesensis So13.3, isolated from Antarctic soil, harbours a biosynthetic gene cluster (BGC) associated with actinomycin D production, an antibiotic with biomedical relevance. This study investigates the regulatory role of TetR/AcrR transcription factors encoded within this biosynthetic gene cluster (BGC), focusing on their structural features and expression under different nutritional conditions. Additionally, we propose that repressing an active pathway could lead to the activation of silent biosynthetic routes, and our in-silico analysis provides a foundation for selecting key mutations and experimentally validating this strategy. Expression analysis revealed that TetR-279, in particular, was upregulated in ISP4 and IMA media, suggesting its participation in nutrient-dependent BGC regulation. Structural modelling identified key differences between TetR-206 and TetR-279, with the latter containing a tetracycline-repressor-like domain. Molecular dynamics simulations confirmed TetR-279’s structural stability but showed that the S166P CRISPy-web-guided mutation considerably affected its flexibility, while V167A and V167I had modest effects. These results underscore the importance of integrating omics, structural prediction, and gene editing to evaluate and manipulate transcriptional regulation in non-model bacteria. Targeted disruption of TetR-279 may derepress actinomycin biosynthesis, enabling access to silent or cryptic secondary metabolites with potential pharmaceutical applications. Full article
(This article belongs to the Special Issue CRISPR-Cas Systems and Genome Editing—2nd Edition)
Show Figures

Figure 1

18 pages, 2479 KB  
Article
AsNAC Genes: Response to High Mercury Concentrations in Allium sativum Seed Clove
by Brenda Mendoza-Almanza, María de la Luz Guerrero-González, Marcos Loredo-Tovias, María Elena García-Arreola, Catarina Loredo-Osti, Erika Padilla-Ortega and Pablo Delgado-Sánchez
BioTech 2025, 14(2), 27; https://doi.org/10.3390/biotech14020027 - 8 Apr 2025
Cited by 1 | Viewed by 1487
Abstract
Heavy metal contamination in soils is a growing concern due to anthropogenic activities, and Allium sativum (garlic) has shown tolerance to mercury pollution. We analyzed the physiological and molecular responses of garlic cloves exposed to HgCl2 at 0, 5000, 23,000, and 46,000 [...] Read more.
Heavy metal contamination in soils is a growing concern due to anthropogenic activities, and Allium sativum (garlic) has shown tolerance to mercury pollution. We analyzed the physiological and molecular responses of garlic cloves exposed to HgCl2 at 0, 5000, 23,000, and 46,000 mg/kg for 2, 3, and 4 h. The germination percentage was lower than 46,000 mg/kg Hg for 4 h. We also analyzed the expression levels of NAC transcription factors and found that AsNAC11 had higher expression at 46,000 mg/kg at 2 h; AsNAC17 was underexpressed and the maximum was at 2 h at 23,000 mg/kg. AsNAC20 had the highest expression (30 times more than the control) at 3 and 4 h with 23,000 mg/Kg. AsNAC27 showed the highest expression at 3 h with 23,000 mg/kg. The tissues exhibited a maximum Hg bioconcentration factor of 0.037 at 23,000 mg/kg, indicating moderate mercury absorption. However, at a concentration of 46,000 mg/kg, the BCF decreased to 0.023. Our in-silico analysis revealed that the analyzed AsNACs are associated with various abiotic stress responses. This study provides valuable insights into genes that could be utilized for genetic improvement to enhance crop resistance to mercury soil contamination. Full article
(This article belongs to the Section Environmental Biotechnology)
Show Figures

Graphical abstract

8 pages, 2691 KB  
Proceeding Paper
An In Silico Approach for Comparative Characterization of Imidazolonepropionase from Agrobacterium fabrum & Bacillus subtilis: An Imperative Enzyme for Histidine Degradation
by Ishita Biswas, Trishanjan Biswas and Debanjan Mitra
Biol. Life Sci. Forum 2025, 41(1), 3; https://doi.org/10.3390/blsf2025041003 - 13 Mar 2025
Viewed by 825
Abstract
Introduction: The third step in histidine degradation is catalysed by imidazolonepropionase. It catalyses the conversion of 4-imidazolone-5-propionic acid to produce N-formimino-L-glutamic acid by hydrolyzing the carbon-nitrogen bonds. The histidine is a very expensive amino acid inside the cell and its degradation is a [...] Read more.
Introduction: The third step in histidine degradation is catalysed by imidazolonepropionase. It catalyses the conversion of 4-imidazolone-5-propionic acid to produce N-formimino-L-glutamic acid by hydrolyzing the carbon-nitrogen bonds. The histidine is a very expensive amino acid inside the cell and its degradation is a very conserved process. To date, very few reports are there regarding the structure of bacterial imidazolonepropionase but no reports have been published regarding the comparative structure and sequence analysis of this enzyme from bacterial sources. Methods: An in-silico study has been done to characterize the imidazolonepropionase from gram-positive Bacillus subtilis and gram-negative Agrobacterium fabrum. Results: The sequence analysis revealed that a higher amount of charged residues are present in Bacillus subtilis. These charged residues help in the increment of polarity and hydrophilicity of Bacillus subtilis. The formation of intra-protein interactions was also high in gram-positive species. Interestingly, both species have almost equal abundance of aromatic amino acids in their sequences, but the formation of aromatic-aromatic interactions was high in Bacillus subtilis. Finally, the molecular dynamics simulation study revealed that imidazolonepropionase from Bacillus subtilis was more stable and compact than Agrobacterium fabrum. Conclusions: The imidazolonepropionase from Bacillus subtilis was more stable than Agrobacterium fabrum. Due to the presence of higher stable imidazolonepropionase in Bacillus subtilis, it can use histidine more efficiently. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Agronomy)
Show Figures

Figure 1

23 pages, 3044 KB  
Article
The In Silico Optimization of a Fed-Batch Reactor Used for the Enzymatic Hydrolysis of Chicory Inulin to Fructose by Employing a Dynamic Approach
by Daniela Gheorghe, Gheorghe Maria, Laura Renea and Crina Muscalu
Dynamics 2025, 5(1), 10; https://doi.org/10.3390/dynamics5010010 - 7 Mar 2025
Cited by 1 | Viewed by 1949
Abstract
In recent years, inulin enzymatic hydrolysis has become a very promising alternative for producing fructose on a large scale. Genetically modified chicory was used to extract inulin of industrial quality. By using an adequate kinetic model from the literature, this study aimed to [...] Read more.
In recent years, inulin enzymatic hydrolysis has become a very promising alternative for producing fructose on a large scale. Genetically modified chicory was used to extract inulin of industrial quality. By using an adequate kinetic model from the literature, this study aimed to determine the optimal operating alternatives of a batch (BR) or fed-batch (FBR) reactor used for the hydrolysis of inulin to fructose. The operation of the FBR with a constant or variable/dynamic feeding was compared to that of the BR to determine which best maximizes reactor production while minimizing enzyme consumption. Multi-objective optimal solutions were also investigated by using the Pareto-optimal front technique. Our in-silico analysis reveals that, for this enzymatic process, the best alternative is the FBR operated with a constant control variable but using the set-point given by the (breakpoint) of the Pareto optimal front under the imposed technological constraints. This set point reported the best performances, regarding all the considered opposite economic objectives. Also, the FBR with a constant, but NLP optimal feeding, reported fairly good performances. Full article
Show Figures

Graphical abstract

35 pages, 10583 KB  
Article
Leveraging Artificial Intelligence and Gene Expression Analysis to Identify Some Potential Bovine Coronavirus (BCoV) Receptors and Host Cell Enzymes Potentially Involved in the Viral Replication and Tissue Tropism
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Reda Nacif ElAlaoui, Mohammed Cherkaoui and Maged Gomaa Hemida
Int. J. Mol. Sci. 2025, 26(3), 1328; https://doi.org/10.3390/ijms26031328 - 4 Feb 2025
Cited by 4 | Viewed by 2075
Abstract
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. [...] Read more.
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. Similarly, the roles of host proteases such as Furin, TMPRSS2, and Cathepsin-L (CTS-L), known to assist in the replication of other coronaviruses, have not been extensively explored for BCoV. This study aims to identify novel BCoV receptors and host proteases that modulate viral replication and tissue tropism. Bovine cell lines were infected with BCoV isolates from enteric and respiratory origins, and the host cell gene expression profiles post-infection were analyzed using next-generation sequencing (NGS). Differentially expressed genes encoding potential receptors and proteases were further assessed using in-silico prediction and molecular docking analysis. These analyses focused on known coronavirus receptors, including ACE2, NRP1, DPP4, APN, AXL, and CEACAM1, to identify their potential roles in BCoV infection. Validation of these findings was performed using the qRT-PCR assays targeting individual genes. We confirmed the gene expression profiles of these receptors and enzymes in some BCoV (+/−) lung tissues. Results revealed high binding affinities of 9-O-acetylated sialic acid and NRP1 to BCoV spike (S) and hemagglutinin-esterase (HE) proteins compared to ACE2, DPP4, and CEACAM1. Additionally, Furin and TMPRSS2 were predicted to interact with the BCoV-S polybasic cleavage site (RRSRR|A), suggesting their roles in S glycoprotein activation. This is the first study to explore the interactions of BCoV with multiple host receptors and proteases. Functional studies are recommended to confirm their roles in BCoV infection and replication. Full article
(This article belongs to the Special Issue Molecular Design of Artificial Receptors Using Virtual Approaches)
Show Figures

Figure 1

20 pages, 5122 KB  
Article
Machine Learning Tool for New Selective Serotonin and Serotonin–Norepinephrine Reuptake Inhibitors
by Natalia Łapińska, Jakub Szlęk, Adam Pacławski and Aleksander Mendyk
Molecules 2025, 30(3), 637; https://doi.org/10.3390/molecules30030637 - 31 Jan 2025
Cited by 1 | Viewed by 2714
Abstract
Depression, a serious mood disorder, affects about 5% of the population. Currently, there are two groups of antidepressants that are the first-line treatment for depressive disorder: selective serotonin reuptake inhibitors and serotonin–norepinephrine reuptake inhibitors. The aim of the study was to develop Quantitative [...] Read more.
Depression, a serious mood disorder, affects about 5% of the population. Currently, there are two groups of antidepressants that are the first-line treatment for depressive disorder: selective serotonin reuptake inhibitors and serotonin–norepinephrine reuptake inhibitors. The aim of the study was to develop Quantitative Structure–Activity Relationship (QSAR) models for serotonin (SERT) and norepinephrine (NET) transporters to predict the affinity and inhibition potential of new molecules. Models were developed using the Automated Machine Learning tool Mljar based on 80% of the dataset according to 10-fold cross-validation and externally validated on the remaining 20% of data. The molecular representation featured two-dimensional Mordred descriptors. For each model, Shapley additive explanations analysis was performed to clarify the influence of the descriptors on the models’ predictions. Based on the final QSAR models, the following results were obtained: NET and pIC50 value RMSEtest = 0.678, R2test = 0.640; NET and pKi RMSEtest = 0.590, R2test = 0.709; SERT and pIC50 RMSEtest = 0.645, R2test = 0.678; SERT and pKi value RMSEtest = 0.540, R2test = 0.828. QSAR models for serotonin and norepinephrine transporters have been made available in a new module of the SerotoninAI application to enhance usability for scientists. Full article
Show Figures

Figure 1

943 KB  
Proceeding Paper
Synthesis, Characterization, and In-Silico Studies of Some Novel Phenylhydrazone Derivatives as Potential Agents for Antimicrobial Activities
by Rabiu Bako, Abdullahi Yunusa Idris, Asma’u Nasiru Hamza, Gbonjubola O. Adeshina and Musa Abdullahi Garba
Chem. Proc. 2024, 16(1), 112; https://doi.org/10.3390/ecsoc-28-20254 - 15 Nov 2024
Viewed by 1203
Abstract
Antimicrobial chemotherapeutic failure as a result of pathogenic resistance stain is great concern across the globe, there is need to search for an effective antimicrobial agent from synthetic sources to overcome emergent of microbial resistant in clinical practice. The phenylhydrazone derivatives were scientifically [...] Read more.
Antimicrobial chemotherapeutic failure as a result of pathogenic resistance stain is great concern across the globe, there is need to search for an effective antimicrobial agent from synthetic sources to overcome emergent of microbial resistant in clinical practice. The phenylhydrazone derivatives were scientifically found to have wide application in the field of drug discovery due to their anticancer, anti-tubercular, antibacterial, and antifungal activities. The (E)-Substituted-N-(phenylhydrazones) derivatives were obtained by a condensation reaction between substituted acetophenone and substituted phenyl hydrazine through a one-step reaction, resulting of five (5) novel compounds such as HS1 (E)-1-(1-(4-bromophenyl)ethylidene)-2-(2,4-dinitrophenyl)hydrazine), HS2(E)-1-(1-(4-bromophenyl)ethylidene)-2-(4-nitrophenyl)hydrazine), HS3(E)-1-(4-nitrophenyl)-2-(1-(3-nitrophenyl)ethylidene)hydrazine), HS4(E)-1-(2,4-dinitrophenyl)-2-(1-(3-nitrophenyl)ethylidene)hydrazine), and HS5 (E)-1-(1-(3-nitrophenyl)ethylidene)-2-phenylhydrazine) and the in-silico prediction of physicochemical properties were found within Lipinski’s rule of five and the synthesized compounds were established by structurally elucidations on the basis of FTIR, 1D and 2D NMR spectral analysis and the newly synthesized compounds were then subjected to antimicrobial assessment for an in vitro test evaluation using the inhibition zone technique, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC). Full article
Show Figures

Figure 1

Back to TopTop