Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = in-house 3D-printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3117 KiB  
Article
Feasibility and Accuracy of a Dual-Function AR-Guided System for PSI Positioning and Osteotomy Execution in Pelvic Tumour Surgery: A Cadaveric Study
by Tanya Fernández-Fernández, Javier Orozco-Martínez, Carla de Gregorio-Bermejo, Elena Aguilera-Jiménez, Amaia Iribar-Zabala, Lydia Mediavilla-Santos, Javier Pascau, Mónica García-Sevilla, Rubén Pérez-Mañanes and José Antonio Calvo-Haro
Bioengineering 2025, 12(8), 810; https://doi.org/10.3390/bioengineering12080810 - 28 Jul 2025
Viewed by 305
Abstract
Objectives: Pelvic tumor resections demand high surgical precision to ensure clear margins while preserving function. Although patient-specific instruments (PSIs) improve osteotomy accuracy, positioning errors remain a limitation. This study evaluates the feasibility, accuracy, and usability of a novel dual-function augmented reality (AR) [...] Read more.
Objectives: Pelvic tumor resections demand high surgical precision to ensure clear margins while preserving function. Although patient-specific instruments (PSIs) improve osteotomy accuracy, positioning errors remain a limitation. This study evaluates the feasibility, accuracy, and usability of a novel dual-function augmented reality (AR) system for intraoperative guidance in PSI positioning and osteotomy execution using a head-mounted display (HMD). The system provides dual-function support by assisting both PSI placement and osteotomy execution. Methods: Ten fresh-frozen cadaveric hemipelves underwent AR-assisted internal hemipelvectomy, using customized 3D-printed PSIs and a new in-house AR software integrated into an HMD. Angular and translational deviations between planned and executed osteotomies were measured using postoperative CT analysis. Absolute angular errors were computed from plane normals; translational deviation was assessed as maximum error at the osteotomy corner point in both sagittal (pitch) and coronal (roll) planes. A Wilcoxon signed-rank test and Bland–Altman plots were used to assess intra-workflow cumulative error. Results: The mean absolute angular deviation was 5.11 ± 1.43°, with 86.66% of osteotomies within acceptable thresholds. Maximum pitch and roll deviations were 4.53 ± 1.32 mm and 2.79 ± 0.72 mm, respectively, with 93.33% and 100% of osteotomies meeting translational accuracy criteria. Wilcoxon analysis showed significantly lower angular error when comparing final executed planes to intermediate AR-displayed planes (p < 0.05), supporting improved PSI positioning accuracy with AR guidance. Surgeons rated the system highly (mean satisfaction ≥ 4.0) for usability and clinical utility. Conclusions: This cadaveric study confirms the feasibility and precision of an HMD-based AR system for PSI-guided pelvic osteotomies. The system demonstrated strong accuracy and high surgeon acceptance, highlighting its potential for clinical adoption in complex oncologic procedures. Full article
Show Figures

Figure 1

18 pages, 24429 KiB  
Article
Design and Experimental Validation of a 3D-Printed Two-Finger Gripper with a V-Shaped Profile for Lightweight Waste Collection
by Mahboobe Habibi, Giuseppe Sutera, Dario Calogero Guastella and Giovanni Muscato
Robotics 2025, 14(7), 87; https://doi.org/10.3390/robotics14070087 - 25 Jun 2025
Cited by 1 | Viewed by 357
Abstract
This study presents the design, fabrication, and experimental validation of a two-finger robotic gripper featuring a 135° V-shaped fingertip profile tailored for lightweight waste collection in laboratory-scale environmental robotics. The gripper was developed with a strong emphasis on cost-effectiveness and manufacturability, utilizing a [...] Read more.
This study presents the design, fabrication, and experimental validation of a two-finger robotic gripper featuring a 135° V-shaped fingertip profile tailored for lightweight waste collection in laboratory-scale environmental robotics. The gripper was developed with a strong emphasis on cost-effectiveness and manufacturability, utilizing a desktop 3D printer and off-the-shelf servomotors. A four-bar linkage mechanism enables parallel jaw motion and ensures stable surface contact during grasping, achieving a maximum opening range of 71.5 mm to accommodate common cylindrical objects. To validate structural integrity, finite element analysis (FEA) was conducted under a 0.6 kg load, yielding a safety factor of 3.5 and a peak von Mises stress of 12.75 MPa—well below the material yield limit of PLA. Experimental testing demonstrated grasp success rates of up to 80 percent for typical waste items, including bottles, disposable cups, and plastic bags. While the gripper performs reliably with rigid and semi-rigid objects, further improvements are needed for handling highly deformable materials such as thin films or soft bags. The proposed design offers significant advantages in terms of rapid prototyping (a print time of approximately 10 h), modularity, and low manufacturing cost (with an estimated in-house material cost of USD 20 to 40). It provides a practical and accessible solution for small-scale robotic waste-collection tasks and serves as a foundation for future developments in affordable, application-specific grippers. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

15 pages, 2442 KiB  
Article
Complete Dosimetric Characterization of an In-House Manufactured SFRT Grid Collimator by 3D Printing with PLA-W Composite Filament
by José Velásquez, Melani Fuentealba and Mauricio Santibáñez
Polymers 2025, 17(11), 1496; https://doi.org/10.3390/polym17111496 - 28 May 2025
Viewed by 343
Abstract
This study presents a comprehensive dosimetric characterization and commissioning of a grid-type collimator manufactured via 3D printing using PLA-W composite filament, following an international protocol for small-field dosimetry. PLA doped with high concentrations of tungsten (>90% w/w) enables the fabrication [...] Read more.
This study presents a comprehensive dosimetric characterization and commissioning of a grid-type collimator manufactured via 3D printing using PLA-W composite filament, following an international protocol for small-field dosimetry. PLA doped with high concentrations of tungsten (>90% w/w) enables the fabrication of miniaturized collimators (<1 cm) with complex geometries, suitable for non-conventional radiotherapy applications. However, accurate assessment of spatial dose modulation is challenged by penumbra overlap between closely spaced beamlets, limiting the application of conventional instrumentation and protocols. To address this, absolute and relative dose distributions were evaluated for various radiation field configurations (number of beamlets) in both lateral and depth directions. Measurements were performed according to the IAEA TRS-483 protocol, using micro-ionization chambers and diode detectors. Additionally, long-term stability assessments were carried out to evaluate both the structural integrity and modulation performance of the printed grid over time. Point dose measurements using the same detectors were repeated after one year, and 2D surface dose distributions measured with EBT3 films were compared to SRS MapCHECK measurements two years later. The generated radiation field size of the central beamlet (FWHM) differed by less than 0.2% (15.8 mm) from the physical projection size (15.6 mm) and the lateral transmission due simultaneous beamlets resulted in FWHM variations of less than 3.8%, confirming manufacturing precision and collimator capability. Output factor measurements increased with the number of beamlets, from 0.75 for a single beamlet to 0.82 for the full beamlets configuration. No significant changes were observed in the depth of maximum dose across the different beamlets configurations (1.20 ± 0.20 cm). On the other hand, the long-term evaluations show no relevant changes in the FWHM or VPR, confirming the performance and reliability of the system. These results support the clinical feasibility and lasting performance stability of in-house manufactured grid collimators using PLA-W filaments and accessible 3D printing technology. Full article
(This article belongs to the Special Issue Polymeric Materials for 3D Printing)
Show Figures

Figure 1

14 pages, 2851 KiB  
Article
Guided Frontal Sinus Osteotomy: A Pilot Study of a Digital Protocol for “In-House” Manufacturing Surgical Cutting Guides
by Antonio Romano, Stefania Troise, Raffaele Spinelli, Vincenzo Abbate and Giovanni Dell’Aversana Orabona
J. Clin. Med. 2025, 14(9), 3141; https://doi.org/10.3390/jcm14093141 - 1 May 2025
Viewed by 527
Abstract
Objective: Frontal sinus surgery is still challenging for surgeons; the frontal osteotomy with the preparation of a frontal bone flap to access the sinus is usually hand-crafted by experienced surgeons. The objective of our study is to present a fully digital protocol for [...] Read more.
Objective: Frontal sinus surgery is still challenging for surgeons; the frontal osteotomy with the preparation of a frontal bone flap to access the sinus is usually hand-crafted by experienced surgeons. The objective of our study is to present a fully digital protocol for the manufacturing of “in-house” surgical cutting guides, customized to the patient’s anatomy, to perform precise frontal sinus osteotomy, showing the costs, times, and intraoperative complications reduction. Materials and Methods: A prospective study was conducted on 12 patients with complex pathologies involving the frontal sinus who underwent frontal sinus osteotomy in the Maxillofacial Surgery Unit of the Federico II University of Naples, from January 2021 to April 2025, considering the last surgery in November 2023. The same digital protocol to manufacture the surgical cutting guide was used for all the 12 patients. The first step was to upload the preoperative CT images in DICOM format to the software Mimics Medical to perform a rapid segmentation of the skull region of interest to create a 3D object and to identify the frontal sinus margins and the osteotomy lines. The second step was to realize the surgical cutting guide, incorporating the design of titanium plates to fix onto the skull in order to make a precise osteotomy. The final digital step was to export the cutting guide 3D object in the software “Formlab-Form 3B” to print the model with a specific resin. The model was then used during the surgery to perform the precise frontal osteotomy by piezo surgery. The clinical outcomes, in terms of complications and recurrences, were then recorded. Results: In all the patients, no intraoperative complications occurred; the median follow-up was 31.7 months and at one year of follow-up only one patient experienced a recurrence. The mean operative time was about 4 h, with a frontal osteotomy time of about 23 min. Digital protocol time was about 4 h while printing times were between 2 and 4 h. Conclusions: This “in-house” protocol seems to demonstrate that the use of intraoperative templates for the realization of the frontal sinus osteotomy reduces preoperative and intraoperative costs and times, reducing the risk of intraoperative complications, and also allows less experienced surgeons to perform the procedure safely. Obviously, this study is to be considered a “pilot study”, and other studies with large cohorts of patients will have to confirm these promising results. Full article
(This article belongs to the Special Issue Innovations in Maxillofacial Surgery)
Show Figures

Graphical abstract

15 pages, 3423 KiB  
Article
The Accuracy of an Optical White Light Desktop 3D Scanner and Cone Beam CT Scanner Compared to a Multi-Slice CT Scanner to Digitize Anatomical 3D Models: A Pilot Study
by Mauranne Lievens, Lisa De Kock, Matthias Ureel, Geert Villeirs, Wim Van Paepegem and Renaat Coopman
Craniomaxillofac. Trauma Reconstr. 2025, 18(2), 27; https://doi.org/10.3390/cmtr18020027 - 25 Apr 2025
Viewed by 1875
Abstract
Additive manufacturing, in combination with virtual surgery planning, leads to the predictability of complex surgical cases. To guarantee patient safety, three-dimensional (3D) print quality must be ensured and verified. The aim of this study is to compare the accuracy of an optical white-light [...] Read more.
Additive manufacturing, in combination with virtual surgery planning, leads to the predictability of complex surgical cases. To guarantee patient safety, three-dimensional (3D) print quality must be ensured and verified. The aim of this study is to compare the accuracy of an optical white-light desktop scanner (OWLDS) and a cone beam CT (CBCT) scanner to that of a multi-slice CT scanner (MSCT) for scanning and digitizing 3D anatomical models. Twenty-two removable parts of a CE-certified anatomical skull, used as a patient-specific surrogate in a clinical workflow, were each scanned by MSCT, CBCT, and OWLDS scanners. The accuracy of the scanning modalities was investigated through a part comparison analysis of the stereolithography (STL) files derived from the different scanning modalities. The high-resolution OWLDS STL files show the smallest overall surface match deviation, at 0.04 mm, compared to the MSCT STL files. The CBCT STL files show an overall deviation of 0.07 mm compared to the MSCT STL files. This difference between the scan modalities increases as the volume of anatomical models decreases. The OWLDS is a safe, cost-effective, user-friendly, and highly accurate scanning modality suitable for accuracy evaluation during the manufacturing process of in-house 3D models. For smaller models, high-resolution optical scans are recommended. Full article
Show Figures

Figure 1

16 pages, 3190 KiB  
Article
3D-Printed Organ-Realistic Phantoms to Verify Quantitative SPECT/CT Accuracy for 177Lu-PSMA-617 Treatment Planning
by Lydia J. Wilson, Sara Belko, Eric Gingold, Shuying Wan, Rachel Monane, Robert Pugliese and Firas Mourtada
Pharmaceuticals 2025, 18(4), 550; https://doi.org/10.3390/ph18040550 - 8 Apr 2025
Viewed by 837
Abstract
Background/Objectives: Accurate patient-specific dosimetry is essential for optimizing radiopharmaceutical therapy (RPT), but current tools lack validation in clinically realistic conditions. This work aimed to develop a workflow for designing and fabricating patient-derived, organ-realistic RPT phantoms and evaluate their feasibility for commissioning patient-specific RPT [...] Read more.
Background/Objectives: Accurate patient-specific dosimetry is essential for optimizing radiopharmaceutical therapy (RPT), but current tools lack validation in clinically realistic conditions. This work aimed to develop a workflow for designing and fabricating patient-derived, organ-realistic RPT phantoms and evaluate their feasibility for commissioning patient-specific RPT radioactivity quantification. Methods: We used computed tomographic (CT) and magnetic resonance (MR) imaging of representative patients, computer-aided design, and in-house 3D printing technology to design and fabricate anthropomorphic kidney and parotid phantoms with realistic organ spacing, anatomically correct orientation, and surrounding tissue heterogeneities. We evaluated the fabrication process via geometric verification (i.e., volume comparisons) and leak testing (i.e., dye penetration tests). Clinical feasibility testing involved injecting known radioactivities of 177Lu-PSMA-617 into the parotid and kidney cortex phantom chambers and acquiring SPECT/CT images. MIM SurePlan MRT SPECTRA Quant software (v7.1.2) reconstructed the acquired SPECT projections into a quantitative SPECT image and we evaluated the accuracy by region-based comparison to the known injected radioactivities and determined recovery coefficients for each organ phantom. Results: Phantom fabrication costs totaled < USD 250 and required <84 h. Geometric verification showed a slight systematic expansion (<10%) from the representative patient anatomy and leak testing confirmed watertightness of fillable chambers. Quantitative SPECT imaging systematically underestimated the injected radioactivity (mean error: −17.0 MBq; −13.2%) with recovery coefficients ranging from 0.82 to 0.93 that were negatively correlated with the surface-area-to-volume ratio. Conclusions: Patient-derived, 3D-printed fillable phantoms are a feasible, cost-effective tool to support commissioning and quality assurance for patient-specific RPT dosimetry. The results of this work will support other centers and clinics implementing patient-specific RPT dosimetry by providing the tools needed to comprehensively evaluate accuracy in clinically relevant geometries. Looking forward, widespread accurate patient-specific RPT dosimetry will improve our understanding of RPT dose response and enable personalized RPT dosing to optimize patient outcomes. Full article
Show Figures

Figure 1

12 pages, 3312 KiB  
Article
Experimental Optimization of a Venturi-Type Fine Bubble Generation System Based on Gas Absorption Rate
by Gabriel Toma and Jesús Rafael Alcántara Avila
Fluids 2025, 10(2), 25; https://doi.org/10.3390/fluids10020025 - 24 Jan 2025
Viewed by 1080
Abstract
Fine bubbles (FBs) are defined by the ISO/TC 281 as gas bubbles with a diameter of less than 100 μm, and they have interesting properties such as high surface-to-volume ratio, low buoyancy, long residence time, electric charge, and self-pressurization effect. Typically, FBs are [...] Read more.
Fine bubbles (FBs) are defined by the ISO/TC 281 as gas bubbles with a diameter of less than 100 μm, and they have interesting properties such as high surface-to-volume ratio, low buoyancy, long residence time, electric charge, and self-pressurization effect. Typically, FBs are characterized in terms of size distribution, concentration, and zeta potential through specialized microscopic and nanoscopic measuring devices. This work proposes a multi-objective optimization problem to find the optimal conditions to generate FBs from experimental macroscopic measurements in terms of dissolved oxygen (DO). Then, detailed microscopic measurements in terms of size distribution and zeta potential are conducted. Additionally, two venturi-type Fine Bubble Generators (FBGs) were 3D-printed in-house to evaluate the relationship between the internal structure and the generation of FBs. The best FBGs have an obstacle in the diverging section that promotes FB generation under the evaluated experimental conditions. Under the best operating conditions, FBs were stable over 7 days with a size distribution between 60 and 90 nm and with an average of −21 mV. Full article
Show Figures

Graphical abstract

15 pages, 2936 KiB  
Article
The Effects of Light Crystal Display 3D Printers, Storage Time and Steam Sterilization on the Dimensional Stability of a Photopolymer Resin for Surgical Guides: An In Vitro Study
by Nicola Pranno, Alessio Franchina, Francesca De Angelis, Maurizio Bossù, Alessandro Salucci, Edoardo Brauner, Maria Paola Cristalli and Gerardo La Monaca
Materials 2025, 18(3), 474; https://doi.org/10.3390/ma18030474 - 21 Jan 2025
Cited by 1 | Viewed by 973
Abstract
Background: Implant surgical guides manufactured in-house using 3D printing technology are widely used in clinical practice to translate virtual planning to the operative field. Aim: The present in vitro study investigated the dimensional changes of 3D surgical guides printed in-house using Shining 3D [...] Read more.
Background: Implant surgical guides manufactured in-house using 3D printing technology are widely used in clinical practice to translate virtual planning to the operative field. Aim: The present in vitro study investigated the dimensional changes of 3D surgical guides printed in-house using Shining 3D surgical guide resin (SG01). Materials and methods: Five test bodies, varying in shape and dimensions, were designed using computer-aided design (CAD) software and manufactured using three different Light Crystal Display (LCD) 3D printers (AccuFab-L4D, Elegoo Mars Pro 3, and Zortrax Inspire). Specific printing and post-processing parameters for the SG01 resin were set to produce 25 test bodies (5 of each shape) from each of the three printers, resulting in a total of 75 samples. The dimensional changes were evaluated using a digital calliper at four different time points: immediately after printing (T0), one month after storage (T1), immediately after sterilization (T2), and one month after sterilization (T3). Results: All the test bodies showed deviations from the overall CAD reference value of 12.25 mm after printing and post-processing (T0) and following steam sterilization (T2). Similar trends were observed for the effect of storage times at T1 and T3. The AccuFab prints demonstrated a better dimensional stability than the Elegoo and Zortrax samples. Conclusions: The LCD 3D printers, sterilization, and storage times influenced the dimensional stability of the test bodies made with SGO1 resin. Full article
(This article belongs to the Special Issue Properties and Applications of Oral Implant Biomaterials)
Show Figures

Figure 1

19 pages, 3744 KiB  
Article
In-House Fabrication and Validation of 3D-Printed Custom-Made Medical Devices for Planning and Simulation of Peripheral Endovascular Therapies
by Arianna Mersanne, Ruben Foresti, Chiara Martini, Cristina Caffarra Malvezzi, Giulia Rossi, Anna Fornasari, Massimo De Filippo, Antonio Freyrie and Paolo Perini
Diagnostics 2025, 15(1), 8; https://doi.org/10.3390/diagnostics15010008 - 25 Dec 2024
Cited by 1 | Viewed by 1114
Abstract
Objectives: This study aims to develop and validate a standardized methodology for creating high-fidelity, custom-made, patient-specific 3D-printed vascular models that serve as tools for preoperative planning and training in the endovascular treatment of peripheral artery disease (PAD). Methods: Ten custom-made 3D-printed vascular models [...] Read more.
Objectives: This study aims to develop and validate a standardized methodology for creating high-fidelity, custom-made, patient-specific 3D-printed vascular models that serve as tools for preoperative planning and training in the endovascular treatment of peripheral artery disease (PAD). Methods: Ten custom-made 3D-printed vascular models were produced using computed tomography angiography (CTA) scans of ten patients diagnosed with PAD. CTA images were analyzed using Syngo.via by a specialist to formulate a medical prescription that guided the model’s creation. The CTA data were then processed in OsiriX MD to generate the .STL file, which is further refined in a Meshmixer. Stereolithography (SLA) 3D printing technology was employed, utilizing either flexible or rigid materials. The dimensional accuracy of the models was evaluated by comparing their CT scan images with the corresponding patient data, using OsiriX MD. Additionally, both flexible and rigid models were evaluated by eight vascular surgeons during simulations in an in-house-designed setup, assessing both the technical aspects and operator perceptions of the simulation. Results: Each model took approximately 21.5 h to fabricate, costing €140 for flexible and €165 for rigid materials. Bland–Alman plots revealed a strong agreement between the 3D models and patient anatomy, with outliers ranging from 4.3% to 6.9%. Simulations showed that rigid models performed better in guidewire navigation and catheter stability, while flexible models offered improved transparency and lesion treatment. Surgeons confirmed the models’ realism and utility. Conclusions: The study highlights the cost-efficient, high-fidelity production of 3D-printed vascular models, emphasizing their potential to enhance training and planning in endovascular surgery. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

9 pages, 2443 KiB  
Case Report
A Case of Application of Computer-Aided Design and Manufacturing Technology and Extended Reality Surgical Assistance to Marginal Mandibulectomy
by Takahiro Nakada, Masahide Koyachi, Keisuke Sugahara, Akihiro Nishiyama, Mana Kawakami, Shintaro Nakajima, Kotaro Tachizawa, Kento Odaka, Satoru Matsunaga, Maki Sugimoto and Akira Katakura
J. Clin. Med. 2025, 14(1), 8; https://doi.org/10.3390/jcm14010008 - 24 Dec 2024
Viewed by 946
Abstract
Background/Objectives: Mandibular gingival squamous cell carcinoma (SCC) is the second most common oral cancer after tongue cancer. As these carcinomas often invade the mandible early, accurately defining the resection extent is important. This report highlights the use of preoperative virtual surgery data, computer-aided [...] Read more.
Background/Objectives: Mandibular gingival squamous cell carcinoma (SCC) is the second most common oral cancer after tongue cancer. As these carcinomas often invade the mandible early, accurately defining the resection extent is important. This report highlights the use of preoperative virtual surgery data, computer-aided design and manufacturing (CAD/CAM) technology, surgical guidance, and extended reality (XR) support in achieving highly accurate marginal mandibulectomy without recurrence or metastasis. Methods: CT imaging data obtained a month before surgery were imported into Materialize Mimics and Materialize Magics (Materialize, Leuven, Belgium, Ver22.0) CAD/CAM software and used to design an osteotomy guide. An STL file was generated, and the guide was fabricated using a 3D printer (Objet 260 Connex; Stratasys Ltd., Eden Prairie, MN, USA) prior to the operation. An XR application, installed on a HoloLens (Microsoft, WA, USA) head-mounted display, projected a hologram onto the surgical field. Results: The rapid intraoperative diagnostic tests were negative, and histopathology confirmed SCC without vascular or perineural invasion. No complications, including occlusal or feeding problems and sensory abnormalities, were observed. Postoperative imaging 3 years later showed no recurrence. Conclusions: Combining CAD/CAM and XR techniques for mandibulectomy may improve surgical accuracy and safety in oral and maxillofacial surgeries, whereas in-house 3D printing aids in managing tumor progression. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

14 pages, 3716 KiB  
Technical Note
Mandibular Reconstruction with Osseous Free Flap and Immediate Prosthetic Rehabilitation (Jaw-in-a-Day): In-House Manufactured Innovative Modular Stackable Guide System
by Matthias Ureel, Pieter-Jan Boderé, Benjamin Denoiseux, Pasquier Corthouts and Renaat Coopman
Bioengineering 2024, 11(12), 1254; https://doi.org/10.3390/bioengineering11121254 - 11 Dec 2024
Cited by 3 | Viewed by 1762
Abstract
Background: Head and neck reconstruction following ablative surgery results in alterations to maxillofacial anatomy and function. These postoperative changes complicate dental rehabilitation. Methods: An innovative modular, stackable guide system for immediate dental rehabilitation during mandibular reconstruction is presented. The virtual surgical planning was [...] Read more.
Background: Head and neck reconstruction following ablative surgery results in alterations to maxillofacial anatomy and function. These postoperative changes complicate dental rehabilitation. Methods: An innovative modular, stackable guide system for immediate dental rehabilitation during mandibular reconstruction is presented. The virtual surgical planning was performed in Materialise Innovation Suite v26 and Blender 3.6 with the Blenderfordental add-on. The surgical guides and models were designed and manufactured at the point of care. Results: The duration of the surgery was 9 h and 35 min. Good implant stability (>35 Ncm) and a stable occlusion were achieved. After 9 months of follow-up, the occlusion remained stable, and a mouth opening of 25 mm was registered. The dental implants showed no signs of peri-implant bone loss. Superposition of the preoperative planning and postoperative position of the fibula parts resulted in an average difference of 0.70 mm (range: −1.9 mm; 5.4 mm). Conclusions: The in-house developed stackable guide system resulted in a predictive workflow and accurate results. The preoperative virtual surgical planning was time-consuming and required extensive CAD/CAM and surgical expertise. The addition of fully guided implant placement to this stackable guide system would be beneficial. More research with longer follow-ups is necessary to validate these results. Full article
(This article belongs to the Special Issue Computer-Assisted Maxillofacial Surgery)
Show Figures

Figure 1

16 pages, 8265 KiB  
Article
Robotized 3D Scanning and Alignment Method for Dimensional Qualification of Big Parts Printed by Material Extrusion
by Juan Carlos Antolin-Urbaneja, Rakel Pacheco Goñi, Nerea Alberdi Olaizola and Ana Isabel Luengo Pizarro
Robotics 2024, 13(12), 175; https://doi.org/10.3390/robotics13120175 - 10 Dec 2024
Cited by 1 | Viewed by 1601
Abstract
Moulds for aeronautical applications must fulfil highly demanding requirements, including the geometrical tolerances before and after curing cycles at high temperatures and pressures. The growing availability of thermoplastic materials printed by material extrusion systems requires research to verify the geometrical accuracy after three-dimensional [...] Read more.
Moulds for aeronautical applications must fulfil highly demanding requirements, including the geometrical tolerances before and after curing cycles at high temperatures and pressures. The growing availability of thermoplastic materials printed by material extrusion systems requires research to verify the geometrical accuracy after three-dimensional printing processes to assess whether the part can meet the required geometry through milling processes. In this sense, the application of automated techniques to assess quick and reliable measurements is an open point under this promising technology. This work investigates the integration of a 3D vision system using a structured-light 3D scanner, placed onto an industrial robot in an eye-in-hand configuration and synchronized by a computer. The complete system validates an in-house algorithm, which inspects the whole reconstructed part, acquiring several views from different poses, and makes the alignment with the theoretical model of the geometry of big parts manufactured by 3D printing. Moreover, the automation of the validation process for the manufactured parts using contactless detection of the offset-printed material can be used to define milling strategies to achieve the geometric qualifications. The algorithm was tested using several parts printed by the material extrusion of a thermoplastic material based on black polyamide 6 reinforced with short carbon fibres. The complete inspection process was performed in 38 s in the three studied cases. The results assure that more than 95.50% of the evaluated points of each reconstructed point cloud differed by more than one millimetre from the theoretical model. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

10 pages, 3953 KiB  
Article
Comparison of the Sliding Resistance of Metallic, Composite and In-House 3D-Printed Brackets: An In Vitro Study
by Luca Brucculeri, Federica Pellitteri, Mario Palone and Luca Lombardo
Appl. Sci. 2024, 14(14), 6303; https://doi.org/10.3390/app14146303 - 19 Jul 2024
Viewed by 931
Abstract
Objective: To evaluate the differences in frictional resistance between in-house 3D-printed resin brackets (IH3DBs) and two types of commercially available brackets in combination with three different archwires. Methods: Friction tests were performed using a dynamometer and a millimetre sled to simulate first premolar [...] Read more.
Objective: To evaluate the differences in frictional resistance between in-house 3D-printed resin brackets (IH3DBs) and two types of commercially available brackets in combination with three different archwires. Methods: Friction tests were performed using a dynamometer and a millimetre sled to simulate first premolar post-extraction space closure. Three different brackets, namely PRIMO metallic brackets, Crystal composite brackets and in-house 3D-printed brackets, were tested in combination with three different archwires (0.016-inch NiTi, 0.019 × 0.025-inch NiTi and 0.019 × 0.025-inch SS). Statistical analysis was performed to verify the differences in friction among the bracket and archwire combinations. For all the tests, the significance level was set at p < 0.05. Results: There were significant differences among the three brackets tested with both the 0.016-inch NiTi and 0.019 × 0.025-inch SS archwires (p = 0.026 and p = 0.017, respectively). Only tests with the 0.019 × 0.025-inch NiTi archwire yielded no statistically significant differences between the groups. The composite bracket generated clinically and statistically more friction than both the IH3DB and metallic bracket, with no differences between the latter two. Conclusions: The IH3DBs demonstrated comparable frictional resistance properties to the metal brackets and better than the composite brackets with all the archwires tested. Full article
(This article belongs to the Special Issue State-of-the-Art of Dental Materials)
Show Figures

Figure 1

8 pages, 1018 KiB  
Article
Colour Stability between In-House 3D-Printed Resin Brackets and Conventionally Aesthetic Brackets: An In Vitro Study
by Luca Brucculeri, Federica Pellitteri, Virginia Falconi, Mario Palone and Luca Lombardo
Appl. Sci. 2024, 14(13), 5753; https://doi.org/10.3390/app14135753 - 1 Jul 2024
Viewed by 1071
Abstract
Background: To evaluate colour stability in artificial saliva by mechanically simulating brushing between in-house 3D-printed resin brackets (IH3DBs) and commercially available brackets. Methods: The samples consist of four sets of ten aesthetic brackets each supplied by four different manufacturers: clear Damon, Synovate C, [...] Read more.
Background: To evaluate colour stability in artificial saliva by mechanically simulating brushing between in-house 3D-printed resin brackets (IH3DBs) and commercially available brackets. Methods: The samples consist of four sets of ten aesthetic brackets each supplied by four different manufacturers: clear Damon, Synovate C, Crystal and in-house 3D printed brackets (IH3DBs). The brackets were immersed in a plastic tank containing artificial saliva maintained at a constant temperature of 37 °C with a 65-minute brushing system. Staining changes at T0 (pre-brushing) and T1 (post-brushing) were measured with a spectrophotometer according to the VITA and Master scale and brightness values. Statistical analysis compared the colour changes with the Wilcoxon test and in case of significance, severity was investigated. The significance level considered was p < 0.05. Results: The IH3DBs shows statistically significant differences for both scales and brightness values. The Damon and the Crystal brackets report a statistically significant difference only for brightness. The Synovate C bracket shows no statistically significant differences. Conclusions: The IH3DB produced chromaticity differences for the VITA and Master scale possibly due to the surface roughness created during the printing process. However, the IH3DBs together with Damon Clear improved brightness, due to the mechanical action of brushing. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

14 pages, 4973 KiB  
Article
Classical Orbital Floor Post-Traumatic Reconstruction vs. Customized Reconstruction with the Support of “In-House” 3D-Printed Models: A Retrospective Study with an Analysis of Volumetric Measurement
by Elvis Kallaverja, Ida Barca, Francesco Ferragina and Maria Giulia Cristofaro
Diagnostics 2024, 14(12), 1248; https://doi.org/10.3390/diagnostics14121248 - 13 Jun 2024
Cited by 1 | Viewed by 1399
Abstract
Background: Orbital floor fractures (OFFs) represent an interesting chapter in maxillofacial surgery, and one of the main challenges in orbit reconstruction is shaping and cutting the precise contour of the implants due to its complex anatomy. Objective: The aim of the retrospective study [...] Read more.
Background: Orbital floor fractures (OFFs) represent an interesting chapter in maxillofacial surgery, and one of the main challenges in orbit reconstruction is shaping and cutting the precise contour of the implants due to its complex anatomy. Objective: The aim of the retrospective study was to demonstrate, through pre- and postoperative volumetric measurements of the orbit, how the use of a preformed titanium mesh based on the stereolithographic model produced with 3D printers (“In-House” reconstruction) provides a better reconstruction volumetric compared to the intraoperatively shaped titanium mesh. Materials and Methods: The patients with OFF enrolled in this study were divided into two groups according to the inclusion criteria. In Group 1 (G1), patients surgically treated for OFF were divided into two subgroups: G1a, patients undergoing orbital floor reconstruction with an intraoperatively shaped mesh, and G1b, patients undergoing orbital floor reconstruction with a preoperative mesh shaped on a 3D-printed stereolithographic model. Group 2 (G2) consisted of patients treated for other traumatic pathologies (mandible fractures and middle face fractures not involving orbit). Pre- and postoperative orbital volumetric measurements were performed on both G1 and G2. The patients of both groups were subjected to the measurement of orbital volume using Osirix software (Pixmeo SARL, CH-1233 Bernex, Switzerland) on the new CT examination. Both descriptive (using central tendency indices such as mean and range) and regressive (using the Bravais–Pearson index, calculated using the GraphPad program) statistical analyses were performed on the recorded data. Results: From 1 January 2017 to 31 December 2021, of the 176 patients treated for OFF at the “Magna Graecia” University Hospital of Catanzaro 10 fulfilled the study’s inclusion criteria: 5 were assigned to G1a and 5 to G1b, with a total of 30 volumetric measurements. In G2, we included 10 patients, with a total of 20 volumetric measurements. From the volumetric measurements and statistical analysis carried out, it emerged that the average of the volumetric differences of the healthy orbits was ±0.6351 cm3, the standard deviation of the volumetric differences was ±0.3383, and the relationship between the treated orbit and the healthy orbit was linear; therefore, the treated orbital volumes tend to approach the healthy ones after surgical treatment. Conclusion: This study demonstrates that if the volume is restored within the range of the standardized mean, the diplopia is completely recovered already after surgery or after one month. For orbital volumes that do not fall within this range, functional recovery could occur within 6 months or be lacking. The restoration of the orbital volume using pre-modeled networks on the patient’s anatomical model, printed internally in 3D, allows for more accurate reconstructions of the orbital floor in less time, with clinical advantages also in terms of surgical timing. Full article
Show Figures

Figure 1

Back to TopTop