Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = in vivo patch-clamp recording

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2639 KB  
Article
Estradiol Triggers Cerebellar MLI-PC LTP via ERβ/Protein Kinase C Signaling Cascades in Mice In Vivo
by Zhao-Yi Zhang, Li Chen, Ming-Ze Sun, Chao-Yue Chen, Chun-Yan Wang, Yuki Todo, Zheng Tang, Yan-Cong Lv, Qin-Yong Zou, Chun-Ping Chu, Yin-Hua Xu and De-Lai Qiu
Int. J. Mol. Sci. 2025, 26(20), 9973; https://doi.org/10.3390/ijms26209973 - 14 Oct 2025
Viewed by 217
Abstract
17β-estradiol (E2) enhances the cerebellar molecular layer interneurons (MLIs)—Purkinje cells (PCs) synaptic transmission via activation of the Erβ in vivo in mice. Whether E2 regulates cerebellar MLI-PC synaptic plasticity is unknown. To investigate the mechanism of E2, we evaluated the modulation of facial [...] Read more.
17β-estradiol (E2) enhances the cerebellar molecular layer interneurons (MLIs)—Purkinje cells (PCs) synaptic transmission via activation of the Erβ in vivo in mice. Whether E2 regulates cerebellar MLI-PC synaptic plasticity is unknown. To investigate the mechanism of E2, we evaluated the modulation of facial stimulation-evoked MLI-PC long-term plasticity in mice. Cell-attached recordings from PCs of Crus II were performed using an Axopatch-700B patch-clamp amplifier. The MLI-PC synaptic transmission was evoked by facial stimulation. Immunohistochemistry was used to detect the expression of ERβ. Under control conditions, 1 Hz facial stimuli induced long-term depression (LTD) at MLI-PC synapses, characterized by a sustained reduction in P1 amplitude and a simple spike (SS) pause. The facial stimulus-induced MLI-PC LTD was completely prevented by E2, but this effect was reversed by a selective ERα/ERβ antagonist, ICI182780. Blockade of cannabinoid receptor 1 (CB1R) eliminated the MLI-PC LTD under control conditions, but revealed an E2-triggered long-term potentiation (LTP). The E2-triggered MLI-PC LTP persisted in the presence of an ERα antagonist but was absent in the presence of an ERβ antagonist PHTPP. The E2-triggered MLI-PC LTP remained unaffected by protein kinase A inhibition but was abolished by inhibition of protein kinase C (PKC) and intracellular Ca2+ depletion. Moreover, ERβ immunoreactivity was abundantly distributed around dendrites and somas of PCs in the Crus II region of the mouse cerebellar cortex. The present results suggest that E2 activates ERβ, thereby triggering facial stimulation-induced MLI-PC LTP via the PKC signaling cascade, which occludes CB1R-dependent MLI-PC LTD in the cerebellar cortex of mice in vivo. Full article
(This article belongs to the Special Issue Brain Plasticity in Health and Disease)
Show Figures

Figure 1

16 pages, 2395 KB  
Article
Non-Invasive Mapping of Ventricular Action Potential Reconstructed from Contactless Magnetocardiographic Recordings in Intact and Conscious Guinea Pigs
by Riccardo Fenici, Marco Picerni, Peter Fenici and Donatella Brisinda
J. Cardiovasc. Dev. Dis. 2025, 12(9), 343; https://doi.org/10.3390/jcdd12090343 - 6 Sep 2025
Viewed by 476
Abstract
Optical mapping, nanotechnology-based multielectrode arrays and automated patch-clamp allow transmembrane voltage mapping with high spatial resolution, as well as L-type calcium and inward rectifier currents measurements using native mammalian cardiomyocytes. However, these methods are limited to in vitro and ex vivo experiments, while [...] Read more.
Optical mapping, nanotechnology-based multielectrode arrays and automated patch-clamp allow transmembrane voltage mapping with high spatial resolution, as well as L-type calcium and inward rectifier currents measurements using native mammalian cardiomyocytes. However, these methods are limited to in vitro and ex vivo experiments, while magnetocardiography (MCG) might offer a novel approach for non-invasive preclinical safety assessments of new drugs in intact and even conscious rodents by reconstructing the ventricular action potential waveform (rVAPw) from MCG signals. Objective: This study aims to assess the feasibility of rVAPw reconstruction from MCG signals in Guinea pigs (GPs) and validate the results by comparison with simultaneously recorded epicardial ventricular monophasic action potentials (eVMAP). Methods: Unshielded MCG (uMCG) data of 18 GPs, investigated anaesthetized and awake at ages of 5, 14, and 26 months using a 36-channel DC-SQUID system, were analyzed to calculate rVAPw from MCG’s current arrow map. Results: Successful rVAPw reconstruction from averaged MCG showed good alignment with eVMAP waveforms. However, some rVAPw displayed incomplete or distorted repolarization at sites with lower MCG amplitude. Conclusions: 300-s uMCG averaging allowed rVAPw reconstruction in intact GPs. Occasionally distorted rVAPw suggests the need for dedicated MCG devices development, with higher density of optimized vector sensors, and modelling tailored for small animal hearts. Full article
Show Figures

Graphical abstract

20 pages, 4066 KB  
Article
Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex
by Jason S. Hauptman, Joseph Antonios, Gary W. Mathern, Michael S. Levine and Carlos Cepeda
Cells 2025, 14(2), 79; https://doi.org/10.3390/cells14020079 - 8 Jan 2025
Viewed by 1614
Abstract
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR [...] Read more.
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten-/-, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs). Whole-cell patch clamp recordings in ex vivo slices examined the intrinsic and synaptic membrane properties of layer II/III CPNs in normal mice treated with rapamycin for four weeks, and Pten-/- mice with and without chronic treatment with rapamycin. Compared with control mice, CPNs from Pten-/- mice demonstrated increased membrane capacitance and time constant in association with increased neuronal somatic size, reduced neuronal firing, and decreased frequency of spontaneous and miniature inhibitory postsynaptic currents, consistent with decreased pre-synaptic GABA release. Rapamycin treatment for four weeks prevented these changes in Pten-/- mice. CPNs from normal mice chronically treated with rapamycin, compared with CPNs from naïve mice, showed reduced capacitance and time constant, increased input resistance, and changes in inhibitory synaptic inputs, consistent with increased pre-synaptic GABA release. These results support the concept that Pten deletion results in significant changes in inhibitory inputs onto CPNs, and these alterations can be prevented with chronic rapamycin treatment. In addition, normal mice treated with rapamycin also display altered membrane and synaptic properties. These findings have potential implications for the treatment of neurological disorders associated with mTOR pathway dysfunction, such as epilepsy and autism. Full article
(This article belongs to the Special Issue PI3K/AKT/mTOR Signaling Network in Human Health and Diseases 2.0)
Show Figures

Figure 1

16 pages, 1912 KB  
Article
Inhibition of Ionic Currents by Fluoxetine in Vestibular Calyces in Different Epithelial Loci
by Nesrien M. M. Mohamed, Frances L. Meredith and Katherine J. Rennie
Int. J. Mol. Sci. 2024, 25(16), 8801; https://doi.org/10.3390/ijms25168801 - 13 Aug 2024
Viewed by 1752
Abstract
Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been [...] Read more.
Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been reported to block certain types of K+ channel in other systems. Here, we investigated the direct actions of fluoxetine on membrane currents in presynaptic hair cells and postsynaptic calyx afferents of the gerbil peripheral vestibular system using whole cell patch clamp recordings in crista slices. We explored differences in K+ currents in peripheral zone (PZ) and central zone (CZ) calyces of the crista and their response to fluoxetine application. Outward K+ currents in PZ calyces showed greater inactivation at depolarized membrane potentials compared to CZ calyces. The application of 100 μM fluoxetine notably reduced K+ currents in calyx terminals within both zones of the crista, and the remaining currents exhibited distinct traits. In PZ cells, fluoxetine inhibited a non-inactivating K+ current and revealed a rapidly activating and inactivating K+ current, which was sensitive to blocking by 4-aminopyridine. This was in contrast to CZ calyces, where low-voltage-activated and non-inactivating K+ currents persisted following application of 100 μM fluoxetine. Additionally, marked inhibition of transient inward Na+ currents by fluoxetine was observed in calyces from both crista zones. Different concentrations of fluoxetine were tested, and the EC50 values were found to be 40 µM and 32 µM for K+ and Na+ currents, respectively. In contrast, 100 μM fluoxetine had no impact on voltage-dependent K+ currents in mechanosensory type I and type II vestibular hair cells. In summary, micromolar concentrations of fluoxetine are expected to strongly reduce both Na+ and K+ conductance in afferent neurons of the peripheral vestibular system in vivo. This would lead to inhibition of action potential firing in vestibular sensory neurons and has therapeutic implications for disorders of balance. Full article
(This article belongs to the Special Issue Modulation of Ion Channels)
Show Figures

Figure 1

15 pages, 4596 KB  
Article
HCN2 Channels in the Ventral Hippocampal CA1 Regulate Nociceptive Hypersensitivity in Mice
by Yawen Zheng, Shan Shao, Yu Zhang, Shulu Yuan, Yuanwei Xing, Jiaxin Wang, Xuetao Qi, Kun Cui, Jifu Tong, Fengyu Liu, Shuang Cui, You Wan and Ming Yi
Int. J. Mol. Sci. 2023, 24(18), 13823; https://doi.org/10.3390/ijms241813823 - 7 Sep 2023
Viewed by 2385
Abstract
Chronic pain is a significant health problem worldwide. Recent evidence has suggested that the ventral hippocampus is dysfunctional in humans and rodents, with decreased neuronal excitability and connectivity with other brain regions, parallel pain chronicity, and persistent nociceptive hypersensitivity. But the molecular mechanisms [...] Read more.
Chronic pain is a significant health problem worldwide. Recent evidence has suggested that the ventral hippocampus is dysfunctional in humans and rodents, with decreased neuronal excitability and connectivity with other brain regions, parallel pain chronicity, and persistent nociceptive hypersensitivity. But the molecular mechanisms underlying hippocampal modulation of pain remain poorly elucidated. In this study, we used ex vivo whole-cell patch-clamp recording, immunofluorescence staining, and behavioral tests to examine whether hyperpolarization-activated cyclic nucleotide-gated channels 2 (HCN2) in the ventral hippocampal CA1 (vCA1) were involved in regulating nociceptive perception and CFA-induced inflammatory pain in mice. Reduced sag potential and firing rate of action potentials were observed in vCA1 pyramidal neurons from CFA-injected mice. Moreover, the expression of HCN2, but not HCN1, in vCA1 decreased in mice injected with CFA. HCN2 knockdown in vCA1 pyramidal neurons induced thermal hypersensitivity, whereas overexpression of HCN2 alleviated thermal hyperalgesia induced by intraplantar injection of CFA in mice. Our findings suggest that HCN2 in the vCA1 plays an active role in pain modulation and could be a promising target for the treatment of chronic pain. Full article
(This article belongs to the Special Issue Epigenetic Regulation of Gene Expression)
Show Figures

Figure 1

16 pages, 5282 KB  
Article
Xenon’s Sedative Effect Is Mediated by Interaction with the Cyclic Nucleotide-Binding Domain (CNBD) of HCN2 Channels Expressed by Thalamocortical Neurons of the Ventrobasal Nucleus in Mice
by Nour El Dine Kassab, Verena Mehlfeld, Jennifer Kass, Martin Biel, Gerhard Schneider and Gerhard Rammes
Int. J. Mol. Sci. 2023, 24(10), 8613; https://doi.org/10.3390/ijms24108613 - 11 May 2023
Cited by 4 | Viewed by 2488
Abstract
Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 [...] Read more.
Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 channels are dually gated by the membrane voltage and via cyclic nucleotides binding to the cyclic nucleotide-binding domain (CNBD) on the channel. In this study, we hypothesize that xenon interferes with the HCN2 CNBD to mediate its effect. Using the transgenic mice model HCN2EA, in which the binding of cAMP to HCN2 was abolished by two amino acid mutations (R591E, T592A), we performed ex-vivo patch-clamp recordings and in-vivo open-field test to prove this hypothesis. Our data showed that xenon (1.9 mM) application to brain slices shifts the V1/2 of Ih to more hyperpolarized potentials in wild-type thalamocortical neurons (TC) (V1/2: −97.09 [−99.56–−95.04] mV compared to control −85.67 [−94.47–−82.10] mV; p = 0.0005). These effects were abolished in HCN2EA neurons (TC), whereby the V1/2 reached only −92.56 [−93.16– −89.68] mV with xenon compared to −90.03 [−98.99–−84.59] mV in the control (p = 0.84). After application of a xenon mixture (70% xenon, 30% O2), wild-type mice activity in the open-field test decreased to 5 [2–10] while in HCN2EA mice it remained at 30 [15–42]%, (p = 0.0006). In conclusion, we show that xenon impairs HCN2 channel function by interfering with the HCN2 CNBD site and provide in-vivo evidence that this mechanism contributes to xenon-mediated hypnotic properties. Full article
Show Figures

Figure 1

15 pages, 16259 KB  
Article
Heparan Sulfates Regulate Axonal Excitability and Context Generalization through Ca2+/Calmodulin-Dependent Protein Kinase II
by Inseon Song, Tatiana Kuznetsova, David Baidoe-Ansah, Hadi Mirzapourdelavar, Oleg Senkov, Hussam Hayani, Andrey Mironov, Rahul Kaushik, Michael Druzin, Staffan Johansson and Alexander Dityatev
Cells 2023, 12(5), 744; https://doi.org/10.3390/cells12050744 - 25 Feb 2023
Cited by 2 | Viewed by 2461
Abstract
Our previous studies demonstrated that enzymatic removal of highly sulfated heparan sulfates with heparinase 1 impaired axonal excitability and reduced expression of ankyrin G at the axon initial segments in the CA1 region of the hippocampus ex vivo, impaired context discrimination in vivo, [...] Read more.
Our previous studies demonstrated that enzymatic removal of highly sulfated heparan sulfates with heparinase 1 impaired axonal excitability and reduced expression of ankyrin G at the axon initial segments in the CA1 region of the hippocampus ex vivo, impaired context discrimination in vivo, and increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity in vitro. Here, we show that in vivo delivery of heparinase 1 in the CA1 region of the hippocampus elevated autophosphorylation of CaMKII 24 h after injection in mice. Patch clamp recording in CA1 neurons revealed no significant heparinase effects on the amplitude or frequency of miniature excitatory and inhibitory postsynaptic currents, while the threshold for action potential generation was increased and fewer spikes were generated in response to current injection. Delivery of heparinase on the next day after contextual fear conditioning induced context overgeneralization 24 h after injection. Co-administration of heparinase with the CaMKII inhibitor (autocamtide-2-related inhibitory peptide) rescued neuronal excitability and expression of ankyrin G at the axon initial segment. It also restored context discrimination, suggesting the key role of CaMKII in neuronal signaling downstream of heparan sulfate proteoglycans and highlighting a link between impaired CA1 pyramidal cell excitability and context generalization during recall of contextual memories. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Cell Microenvironment)
Show Figures

Figure 1

15 pages, 1140 KB  
Article
Inhibition of Canonical Transient Receptor Potential Channels 4/5 with Highly Selective and Potent Small-Molecule HC-070 Alleviates Mechanical Hypersensitivity in Rat Models of Visceral and Neuropathic Pain
by Niina Jalava, Janne Kaskinoro, Hugh Chapman, Miguel Morales, Hanna Metsänkylä, Satu-Maarit Heinonen and Ari-Pekka Koivisto
Int. J. Mol. Sci. 2023, 24(4), 3350; https://doi.org/10.3390/ijms24043350 - 8 Feb 2023
Cited by 4 | Viewed by 3520
Abstract
Transient receptor potential channels C4/C5 are widely expressed in the pain pathway. Here, we studied the putative analgesic efficacy of the highly selective and potent TRPC4/C5 antagonist HC-070 in rats. Inhibitory potency on human TRPC4 was assessed by using the whole-cell manual patch-clamp [...] Read more.
Transient receptor potential channels C4/C5 are widely expressed in the pain pathway. Here, we studied the putative analgesic efficacy of the highly selective and potent TRPC4/C5 antagonist HC-070 in rats. Inhibitory potency on human TRPC4 was assessed by using the whole-cell manual patch-clamp technique. Visceral pain sensitivity was assessed by the colonic distension test after intra-colonic trinitrobenzene sulfonic acid injection and partial restraint stress. Mechanical pain sensitivity was assessed by the paw pressure test in the chronic constriction injury (CCI) neuropathic pain model. We confirm that HC-070 is a low nanomolar antagonist. Following single oral doses (3–30 mg/kg in male or female rats), colonic hypersensitivity was significantly and dose-dependently attenuated, even fully reversed to baseline. HC-070 also had a significant anti-hypersensitivity effect in the established phase of the CCI model. HC-070 did not have an effect on the mechanical withdrawal threshold of the non-injured paw, whereas the reference compound morphine significantly increased it. Analgesic effects are observed at unbound brain concentrations near the 50% inhibitory concentration (IC50) recorded in vitro. This suggests that analgesic effects reported here are brought about by TRPC4/C5 blocking in vivo. The results strengthen the idea that TRPC4/C5 antagonism is a novel, safe non-opioid treatment for chronic pain. Full article
(This article belongs to the Special Issue Targeting TRP Channels for Pain, Itch and Inflammation Relief)
Show Figures

Figure 1

11 pages, 2293 KB  
Article
Developing a Novel Method for the Analysis of Spinal Cord–Penile Neurotransmission Mechanisms
by Daisuke Uta, Kazuhiro Kiyohara, Yuuya Nagaoka, Yurika Kino and Takuya Fujita
Int. J. Mol. Sci. 2023, 24(2), 1434; https://doi.org/10.3390/ijms24021434 - 11 Jan 2023
Cited by 3 | Viewed by 3014
Abstract
Sexual dysfunction can be caused by impaired neurotransmission from the peripheral to the central nervous system. Therefore, it is important to evaluate the input of sensory information from the peripheral genital area and investigate the control mechanisms in the spinal cord to clarify [...] Read more.
Sexual dysfunction can be caused by impaired neurotransmission from the peripheral to the central nervous system. Therefore, it is important to evaluate the input of sensory information from the peripheral genital area and investigate the control mechanisms in the spinal cord to clarify the pathological basis of sensory abnormalities in the genital area. However, an in vivo evaluation system for the spinal cord–penile neurotransmission mechanism has not yet been developed. Here, urethane-anesthetized rats were used to evaluate neuronal firing induced by innocuous or nociceptive stimulation of the penis using extracellular recording or patch-clamp techniques in the lumbosacral spinal dorsal horn and electrophysiological evaluation in the peripheral pelvic nerves. As a result, innocuous and nociceptive stimuli-evoked neuronal firing was successfully recorded in the deep and superficial spinal dorsal horns, respectively. The innocuous stimuli-evoked nerve firing was also recorded in the pelvic nerve. These firings were suppressed by lidocaine. To the best of our knowledge, this is the first report of a successful quantitative evaluation of penile stimuli-evoked neuronal firing. This method is not only useful for analyzing the pathological basis of spinal cord–penile neurotransmission in sexual dysfunction but also provides a useful evaluation system in the search for new treatments. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Neurobiology in Japan)
Show Figures

Figure 1

14 pages, 4296 KB  
Article
Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart
by Layse Malagueta-Vieira, Julieta Fernández-Ruocco, María P. Hortigón-Vinagre, Víctor Zamora, Julián Zayas-Arrabal, Leyre Echeazarra, Godfrey L. Smith, Martín Vila Petroff, Emiliano Medei, Óscar Casis and Mónica Gallego
Int. J. Mol. Sci. 2022, 23(11), 6021; https://doi.org/10.3390/ijms23116021 - 27 May 2022
Cited by 5 | Viewed by 7468
Abstract
Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia [...] Read more.
Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in clinical trials. In order to explore the mechanisms responsible for the lack of protective effect, we investigated in vivo the effect of metformin on cardiac electrical activity in non-diabetic rats; and in vitro in isolated ventricular myocytes, HEK293 cells expressing the hERG channel and human induced pluripotent stem cells derived cardiomyocytes (hIPS-CMs). Surface electrocardiograms showed that long-term metformin treatment (7 weeks) at therapeutic doses prolonged cardiac repolarization, reflected as QT and QTc interval duration, and increased ventricular arrhythmia during the caffeine/dobutamine challenge. Patch-clamp recordings in ventricular myocytes isolated from treated animals showed that the cellular mechanism is a reduction in the cardiac transient outward potassium current (Ito). In vitro, incubation with metformin for 24 h also reduced Ito, prolonged action potential duration, and increased spontaneous contractions in ventricular myocytes isolated from control rats. Metformin incubation also reduced IhERG in HEK293 cells. Finally, metformin incubation prolonged action potential duration at 30% and 90% of repolarization in hIPS-CMs, which is compatible with the reduction of Ito and IhERG. Our results show that metformin directly modifies the electrical behavior of the normal heart. The mechanism consists in the inhibition of repolarizing currents and the subsequent decrease in repolarization capacity, which prolongs AP and QTc duration. Full article
(This article belongs to the Special Issue Membrane Channels in Physiology and Pathology)
Show Figures

Figure 1

18 pages, 3627 KB  
Article
Human iPSC Modeling of Genetic Febrile Seizure Reveals Aberrant Molecular and Physiological Features Underlying an Impaired Neuronal Activity
by Stefania Scalise, Clara Zannino, Valeria Lucchino, Michela Lo Conte, Luana Scaramuzzino, Pierangelo Cifelli, Tiziano D’Andrea, Katiuscia Martinello, Sergio Fucile, Eleonora Palma, Antonio Gambardella, Gabriele Ruffolo, Giovanni Cuda and Elvira Immacolata Parrotta
Biomedicines 2022, 10(5), 1075; https://doi.org/10.3390/biomedicines10051075 - 5 May 2022
Cited by 14 | Viewed by 4329
Abstract
Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) NaV1.1, are widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na+ current density, mainly affecting the inhibitory neuronal transmission. Here, we [...] Read more.
Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) NaV1.1, are widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na+ current density, mainly affecting the inhibitory neuronal transmission. Here, we generated induced pluripotent stem cells (iPSCs)-derived neurons (idNs) from a patient belonging to a genetically well-characterized Italian family, carrying the c.434T > C mutation in SCN1A gene (hereafter SCN1AM145T). A side-by-side comparison of diseased and healthy idNs revealed an overall maturation delay of SCN1AM145T cells. Membranes isolated from both diseased and control idNs were injected into Xenopus oocytes and both GABA and AMPA currents were successfully recorded. Patch-clamp measurements on idNs revealed depolarized action potential for SCN1AM145T, suggesting a reduced excitability. Expression analyses of VGSCs and chloride co-transporters NKCC1 and KCC2 showed a cellular “dysmaturity” of mutated idNs, strengthened by the high expression of SCN3A, a more fetal-like VGSC isoform, and a high NKCC1/KCC2 ratio, in mutated cells. Overall, we provide strong evidence for an intrinsic cellular immaturity, underscoring the role of mutant NaV1.1 in the development of FS. Furthermore, our data are strengthening previous findings obtained using transfected cells and recordings on human slices, demonstrating that diseased idNs represent a powerful tool for personalized therapy and ex vivo drug screening for human epileptic disorders. Full article
Show Figures

Graphical abstract

23 pages, 5316 KB  
Article
Microglia-like Cells Promote Neuronal Functions in Cerebral Organoids
by Ilkka Fagerlund, Antonios Dougalis, Anastasia Shakirzyanova, Mireia Gómez-Budia, Anssi Pelkonen, Henna Konttinen, Sohvi Ohtonen, Mohammad Feroze Fazaludeen, Marja Koskuvi, Johanna Kuusisto, Damián Hernández, Alice Pebay, Jari Koistinaho, Tuomas Rauramaa, Šárka Lehtonen, Paula Korhonen and Tarja Malm
Cells 2022, 11(1), 124; https://doi.org/10.3390/cells11010124 - 30 Dec 2021
Cited by 77 | Viewed by 13254
Abstract
Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show [...] Read more.
Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show that erythromyeloid progenitors (EMPs), differentiated from induced pluripotent stem cells, migrate to cerebral organoids, and mature into microglia-like cells and interact with synaptic material. Patch-clamp electrophysiological recordings show that the microglia-like population supported the emergence of more mature and diversified neuronal phenotypes displaying repetitive firing of action potentials, low-threshold spikes and synaptic activity, while multielectrode array recordings revealed spontaneous bursting activity and increased power of gamma-band oscillations upon pharmacological challenge with NMDA. To conclude, microglia-like cells within the organoids promote neuronal and network maturation and recapitulate some aspects of microglia-neuron co-development in vivo, indicating that cerebral organoids could be a useful biorealistic human in vitro platform for studying microglia-neuron interactions. Full article
(This article belongs to the Special Issue Pluripotent Stem Cells for Disease Modelling)
Show Figures

Figure 1

22 pages, 3148 KB  
Article
Lamotrigine Attenuates Neuronal Excitability, Depresses GABA Synaptic Inhibition, and Modulates Theta Rhythms in Rat Hippocampus
by Paulina Kazmierska-Grebowska, Marcin Siwiec, Joanna Ewa Sowa, Bartosz Caban, Tomasz Kowalczyk, Renata Bocian and M. Bruce MacIver
Int. J. Mol. Sci. 2021, 22(24), 13604; https://doi.org/10.3390/ijms222413604 - 19 Dec 2021
Cited by 9 | Viewed by 6878
Abstract
Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with brain disorders, including epilepsy and Alzheimer’s disease. [...] Read more.
Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with brain disorders, including epilepsy and Alzheimer’s disease. Theta rhythm generation involves a specific interplay between cellular (ion channel) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel modulator, and antiepileptic and neuroprotective agent, would affect HPC theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine depressed HPC theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in HPC neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy. Full article
Show Figures

Graphical abstract

24 pages, 8916 KB  
Article
Human Stem Cell-Derived GABAergic Interneurons Establish Efferent Synapses onto Host Neurons in Rat Epileptic Hippocampus and Inhibit Spontaneous Recurrent Seizures
by Eliška Waloschková, Ana Gonzalez-Ramos, Apostolos Mikroulis, Jan Kudláček, My Andersson, Marco Ledri and Merab Kokaia
Int. J. Mol. Sci. 2021, 22(24), 13243; https://doi.org/10.3390/ijms222413243 - 8 Dec 2021
Cited by 21 | Viewed by 4758
Abstract
Epilepsy is a complex disorder affecting the central nervous system and is characterised by spontaneously recurring seizures (SRSs). Epileptic patients undergo symptomatic pharmacological treatments, however, in 30% of cases, they are ineffective, mostly in patients with temporal lobe epilepsy. Therefore, there is a [...] Read more.
Epilepsy is a complex disorder affecting the central nervous system and is characterised by spontaneously recurring seizures (SRSs). Epileptic patients undergo symptomatic pharmacological treatments, however, in 30% of cases, they are ineffective, mostly in patients with temporal lobe epilepsy. Therefore, there is a need for developing novel treatment strategies. Transplantation of cells releasing γ-aminobutyric acid (GABA) could be used to counteract the imbalance between excitation and inhibition within epileptic neuronal networks. We generated GABAergic interneuron precursors from human embryonic stem cells (hESCs) and grafted them in the hippocampi of rats developing chronic SRSs after kainic acid-induced status epilepticus. Using whole-cell patch-clamp recordings, we characterised the maturation of the grafted cells into functional GABAergic interneurons in the host brain, and we confirmed the presence of functional inhibitory synaptic connections from grafted cells onto the host neurons. Moreover, optogenetic stimulation of grafted hESC-derived interneurons reduced the rate of epileptiform discharges in vitro. We also observed decreased SRS frequency and total time spent in SRSs in these animals in vivo as compared to non-grafted controls. These data represent a proof-of-concept that hESC-derived GABAergic neurons can exert a therapeutic effect on epileptic animals presumably through establishing inhibitory synapses with host neurons. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy)
Show Figures

Figure 1

12 pages, 2870 KB  
Article
In Vivo Electrophysiology of Peptidergic Neurons in Deep Layers of the Lumbar Spinal Cord after Optogenetic Stimulation of Hypothalamic Paraventricular Oxytocin Neurons in Rats
by Daisuke Uta, Takumi Oti, Tatsuya Sakamoto and Hirotaka Sakamoto
Int. J. Mol. Sci. 2021, 22(7), 3400; https://doi.org/10.3390/ijms22073400 - 26 Mar 2021
Cited by 11 | Viewed by 6875
Abstract
The spinal ejaculation generator (SEG) is located in the central gray (lamina X) of the rat lumbar spinal cord and plays a pivotal role in the ejaculatory reflex. We recently reported that SEG neurons express the oxytocin receptor and are activated by oxytocin [...] Read more.
The spinal ejaculation generator (SEG) is located in the central gray (lamina X) of the rat lumbar spinal cord and plays a pivotal role in the ejaculatory reflex. We recently reported that SEG neurons express the oxytocin receptor and are activated by oxytocin projections from the paraventricular nucleus of hypothalamus (PVH). However, it is unknown whether the SEG responds to oxytocin in vivo. In this study, we analyzed the characteristics of the brain–spinal cord neural circuit that controls male sexual function using a newly developed in vivo electrophysiological technique. Optogenetic stimulation of the PVH of rats expressing channel rhodopsin under the oxytocin receptor promoter increased the spontaneous firing of most lamina X SEG neurons. This is the first demonstration of the in vivo electrical response from the deeper (lamina X) neurons in the spinal cord. Furthermore, we succeeded in the in vivo whole-cell recordings of lamina X neurons. In vivo whole-cell recordings may reveal the features of lamina X SEG neurons, including differences in neurotransmitters and response to stimulation. Taken together, these results suggest that in vivo electrophysiological stimulation can elucidate the neurophysiological response of a variety of spinal neurons during male sexual behavior. Full article
(This article belongs to the Special Issue Effects of Hormones on the Nervous System and Behavior)
Show Figures

Graphical abstract

Back to TopTop