Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (157)

Search Parameters:
Keywords = impedance spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3348 KiB  
Article
Moderate-Temperature Pyrolysis Characteristics of Lump Coal Under Varying Coal Particle Sizes
by Yuanpei Luo, Luxuan Liu, Liangguo Lv, Shengping Zhang, Fei Dai, Hongguang Jin and Jun Sui
Energies 2025, 18(12), 3220; https://doi.org/10.3390/en18123220 - 19 Jun 2025
Viewed by 384
Abstract
Pyrolysis is an important methodology for achieving efficient and clean utilization of coal. Lump coal pyrolysis demonstrates distinct advantages over pulverized coal processing, particularly in enhanced gas yield and superior coke quality. As a critical parameter in lump coal pyrolysis, particle size significantly [...] Read more.
Pyrolysis is an important methodology for achieving efficient and clean utilization of coal. Lump coal pyrolysis demonstrates distinct advantages over pulverized coal processing, particularly in enhanced gas yield and superior coke quality. As a critical parameter in lump coal pyrolysis, particle size significantly influences heat transfer and mass transfer during pyrolysis, yet its governing mechanisms remain insufficiently explored. This research systematically investigates pyrolysis characteristics of the low-rank coal from Ordos, Inner Mongolia, across graded particle sizes (2–5 mm, 5–10 mm, 10–20 mm, and 20–30 mm) through pyrolysis experiments. Real-time central temperature monitoring of coal bed coupled with advanced characterization techniques—including X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), gas chromatography (GC), and GC–mass spectrometry (GC-MS)—reveals particle-size-dependent pyrolysis mechanisms. Key findings demonstrate that the larger particles enhance bed-scale convective heat transfer, accelerating temperature propagation from reactor walls to the coal center. However, excessive sizes cause significant intra-particle thermal gradients, impeding core pyrolysis. The 10–20 mm group emerges as optimal—balancing these effects to achieve uniform thermal attainment, evidenced by 20.99 vol% peak hydrogen yield and maximum char graphitization. Tar yield first demonstrates a tendency to rise and then decline, peaking at 14.66 wt.% for 5–10 mm particles. This behavior reflects competing mechanisms: enlarging particle size can improve bed permeability (reducing tar residence time and secondary reactions), but it can also inhibit volatile release and intensify thermal cracking of tar in oversized coal blocks. The BET analysis result reveals elevated specific surface area and pore volume with increasing particle size, except for the 10–20 mm group, showing abrupt porosity reduction—attributed to pore collapse caused by intense polycondensation reactions. Contrasting previous studies predominantly focused on less than 2 mm pulverized coal, this research selects large-size (from 2 mm to 30 mm) lump coal to clarify the effect of particle size on coal pyrolysis, providing critical guidance for industrial-scale lump coal pyrolysis optimization. Full article
Show Figures

Figure 1

23 pages, 4593 KiB  
Article
Laser-Induced Liquid-Phase Boron Doping of 4H-SiC
by Gunjan Kulkarni, Yahya Bougdid, Chandraika (John) Sugrim, Ranganathan Kumar and Aravinda Kar
Materials 2025, 18(12), 2758; https://doi.org/10.3390/ma18122758 - 12 Jun 2025
Viewed by 465
Abstract
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted [...] Read more.
4H-silicon carbide (4H-SiC) is a cornerstone for next-generation optoelectronic and power devices owing to its unparalleled thermal, electrical, and optical properties. However, its chemical inertness and low dopant diffusivity for most dopants have historically impeded effective doping. This study unveils a transformative laser-assisted boron doping technique for n-type 4H-SiC, employing a pulsed Nd:YAG laser (λ = 1064 nm) with a liquid-phase boron precursor. By leveraging a heat-transfer model to optimize laser process parameters, we achieved dopant incorporation while preserving the crystalline integrity of the substrate. A novel optical characterization framework was developed to probe laser-induced alterations in the optical constants—refraction index (n) and attenuation index (k)—across the MIDIR spectrum (λ = 3–5 µm). The optical properties pre- and post-laser doping were measured using Fourier-transform infrared spectrometry, and the corresponding complex refraction indices were extracted by solving a coupled system of nonlinear equations derived from single- and multi-layer absorption models. These models accounted for the angular dependence in the incident beam, enabling a more accurate determination of n and k values than conventional normal-incidence methods. Our findings indicate the formation of a boron-acceptor energy level at 0.29 eV above the 4H-SiC valence band, which corresponds to λ = 4.3 µm. This impurity level modulated the optical response of 4H-SiC, revealing a reduction in the refraction index from 2.857 (as-received) to 2.485 (doped) at λ = 4.3 µm. Structural characterization using Raman spectroscopy confirmed the retention of crystalline integrity post-doping, while secondary ion mass spectrometry exhibited a peak boron concentration of 1.29 × 1019 cm−3 and a junction depth of 450 nm. The laser-fabricated p–n junction diode demonstrated a reverse-breakdown voltage of 1668 V. These results validate the efficacy of laser doping in enabling MIDIR tunability through optical modulation and functional device fabrication in 4H-SiC. The absorption models and doping methodology together offer a comprehensive platform for paving the way for transformative advances in optoelectronics and infrared materials engineering. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

28 pages, 9568 KiB  
Article
Electrochemical Investigations of Galium verum Ethanolic Extract as a Steel Corrosion Eco-Inhibitor in the Acid Media: An Unexpected Versatility of Plant Chemistry
by Anca Cojocaru, Gabriela Elena Badea, Ioana Maior, Simona Dzitac, Oana Delia Stănășel, Mioara Sebeșan, Camelia Daniela Ionaș and Petru Creț
Materials 2025, 18(9), 2078; https://doi.org/10.3390/ma18092078 - 1 May 2025
Viewed by 554
Abstract
Corrosion inhibitors are substances that reduce or eliminate the corrosion of a metal in a certain environment. Corrosion inhibitors act by several mechanisms, including adsorption, film formation, passivation, and oxygen scavenging. Due to their toxicity, classic corrosion inhibitors affect the environment. Therefore, in [...] Read more.
Corrosion inhibitors are substances that reduce or eliminate the corrosion of a metal in a certain environment. Corrosion inhibitors act by several mechanisms, including adsorption, film formation, passivation, and oxygen scavenging. Due to their toxicity, classic corrosion inhibitors affect the environment. Therefore, in recent years, more and more studies have focused on the development of eco-friendly inhibitors for the environment. In this study, ethanolic extract of Galium verum (GV) was tested for the inhibition of steel corrosion in 1 M HCl medium using electrochemical methods: open circuit potential (OCP), potentiodynamic polarization (PP), and electrochemical impedance spectroscopy (EIS). Reverse-phase liquid chromatography (HPLC) and gas chromatography mass spectrometry (MS-GC) previous studies state that GV extract contains polyphenols and other chemical species responsible for the inhibitory effect. Corrosion investigations have highlighted the influence of the concentration of the GV extract, in the range of 50 ÷ 400 ppm G.A.E./mL, as well as the influence of temperature in the range of 20 ÷ 50 °C. The corrosion inhibitory efficiency of the Galium verum ethanolic extract had a maximum value of 91.82% for a concentration of 400 ppm polyphenol content, demonstrating the inhibitory potential of this green product in an acidic environment for mild steel. Statistical calculus on the obtained values of EIS inhibitor efficiency showed that the effect of the extract becomes stronger at higher concentrations. Full article
(This article belongs to the Special Issue New Advances in Corrosion Inhibitor for Metals and Alloys)
Show Figures

Figure 1

15 pages, 2671 KiB  
Article
The Role of Puccinia polysora Underw Effector PpEX in Suppressing Plant Defenses and Facilitating Pathogenicity
by Qiang Su, Xiaofan Qi, Kunyu Li and Wenli Zou
Int. J. Mol. Sci. 2025, 26(7), 3159; https://doi.org/10.3390/ijms26073159 - 29 Mar 2025
Viewed by 552
Abstract
Puccinia polysora Underw, the pathogen that causes southern corn rust (SCR), delivers effectors to manipulate host immune responses. However, the mechanisms by which these effectors modulate host defenses are not well characterized. In this study, we found that the P. polysora effector PpEX [...] Read more.
Puccinia polysora Underw, the pathogen that causes southern corn rust (SCR), delivers effectors to manipulate host immune responses. However, the mechanisms by which these effectors modulate host defenses are not well characterized. In this study, we found that the P. polysora effector PpEX is highly upregulated during infection. PpEX suppresses plant immune responses that are initiated by chitin, including the activation of mitogen-activated protein kinases (MAPKs) and the expression of pathogenesis-related (PR) genes. Maize plants transiently expressing PpEX exhibited higher pathogen infection rates, larger colony areas, and greater fungal biomass on their leaves compared to the control group. By employing TurboID proximity labeling technology coupled with mass spectrometry analysis, we discovered potential target proteins of PpEX in maize. The split-luciferase system enabled us to identify ZmMPK3, a component of the MAPK signaling pathway, as an interacting partner of PpEX among the candidate proteins. This interaction was subsequently confirmed by co-immunoprecipitation (Co-IP) experiments. Additionally, we verified that ZmMPK3 plays a positive role in regulating maize resistance to SCR. Thus, PpEX may function as a virulence effector that dampens plant PTI immunity by interacting with ZmMPK3 and impeding the MAPK signaling pathway. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 9070 KiB  
Article
Behavior of YSZ (High Y2O3 Content) Layer on Inconel to Electro-Chemical Corrosion
by Ionut Adomniței, Ramona Cimpoeșu, Daniela Lucia Chicet, Margareta Coteață, Fabian Cezar Lupu, Costică Bejinariu, Liviu Andrușcă, Petronela Paraschiv, Mihai Axinte, Gheorghe Bădărău and Nicanor Cimpoeșu
Materials 2025, 18(2), 400; https://doi.org/10.3390/ma18020400 - 16 Jan 2025
Cited by 1 | Viewed by 895
Abstract
The high yttria content of a stabilized zirconia (YSZ) (38 wt% Y2O3) coating was deposited by atmospheric plasma spraying (APS) from Metco 207 powders on an Inconel 718 (Ni-based superalloy) substrate. As a metal coating connection, a layer of [...] Read more.
The high yttria content of a stabilized zirconia (YSZ) (38 wt% Y2O3) coating was deposited by atmospheric plasma spraying (APS) from Metco 207 powders on an Inconel 718 (Ni-based superalloy) substrate. As a metal coating connection, a layer of cermet powder (Ni-20% Al—410NS) was used before the ceramic layer deposition. The electro-chemical corrosion resistance of these materials was tested using Inconel cylinders with a diameter of 10 mm and a thickness of 1 mm, with and without the ceramic layer. Linear and cyclic measurements were obtained in H2SO4 electrolyte media at pH = 2. Electro-impedance spectroscopy (EIS) experiments were performed on the sample covered with the ceramic layer to evaluate the interface behavior. Scanning electron microscopy (SEM), along with equipment to determine chemical composition, and an energy dispersive spectrometry (EDS) detector were used to characterize the material surface before and after corrosion tests. It was observed that the corrosion resistance of Inconel was influenced by the bonding layer and the ceramic coating. Full article
(This article belongs to the Special Issue Corrosion and Formation of Surface Films on Metals and Alloys)
Show Figures

Figure 1

36 pages, 1986 KiB  
Review
Exploring Innovative Approaches for the Analysis of Micro- and Nanoplastics: Breakthroughs in (Bio)Sensing Techniques
by Denise Margarita Rivera-Rivera, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, Araceli Sánchez-Álvarez, José Manuel Rodríguez-Delgado, Erika Iveth Cedillo-González, Garima Kaushik, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Biosensors 2025, 15(1), 44; https://doi.org/10.3390/bios15010044 - 13 Jan 2025
Cited by 10 | Viewed by 3966
Abstract
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation [...] Read more.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography–mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

22 pages, 6439 KiB  
Article
Role of Increasing Body Mass Index in Gut Barrier Dysfunction, Systemic Inflammation, and Metabolic Dysregulation in Obesity
by Fatima Maqoud, Francesco Maria Calabrese, Giuseppe Celano, Domenica Mallardi, Francesco Goscilo, Benedetta D’Attoma, Antonia Ignazzi, Michele Linsalata, Gabriele Bitetto, Martina Di Chito, Pasqua Letizia Pesole, Arianna Diciolla, Carmen Aurora Apa, Giovanni De Pergola, Gianluigi Giannelli, Maria De Angelis and Francesco Russo
Nutrients 2025, 17(1), 72; https://doi.org/10.3390/nu17010072 - 28 Dec 2024
Cited by 3 | Viewed by 1998
Abstract
Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass. Methods: A cohort of 58 [...] Read more.
Aims: This study explores the link between body mass index (BMI), intestinal permeability, and associated changes in anthropometric and impedance parameters, lipid profiles, inflammatory markers, fecal metabolites, and gut microbiota taxa composition in participants having excessive body mass. Methods: A cohort of 58 obese individuals with comparable diet, age, and height was divided into three groups based on a priori clustering analyses that fit with BMI class ranges: Group I (25–29.9), Group II (30–39.9), and Group III (>40). Anthropometric and clinical parameters were assessed, including plasma C-reactive protein and cytokine profiles as inflammation markers. Intestinal permeability was measured using a multisaccharide assay, with fecal/serum zonulin and serum claudin-5 and claudin-15 levels. Fecal microbiota composition and metabolomic profiles were analyzed using a phylogenetic microarray and GC-MS techniques. Results: The statistical analyses of the clinical parameters were based on the full sample set, whereas a subset composed of 37 randomized patients was inspected for the GC/MS metabolite profiling of fecal specimens. An increase in potentially pro-inflammatory bacterial genera (e.g., Slackia, Dorea, Granulicatella) and a reduction in beneficial genera (e.g., Adlercreutzia, Clostridia UCG-014, Roseburia) were measured. The gas chromatography/mass spectrometry analysis of urine samples evidenced a statistically significant increase in m-cymen-8-ol, 1,3,5-Undecatriene, (E, Z) and a decreased concentration of p-cresol, carvone, p-cresol, and nonane. Conclusions: Together, these data demonstrated how an increased BMI led to significant changes in inflammatory markers, intestinal barrier metabolites, glucose metabolism, endocrine indicators, and fecal metabolomic profiles that can indicate a different metabolite production from gut microbiota. Our findings suggest that targeting intestinal permeability may offer a therapeutic approach to prevent and manage obesity and related metabolic complications, reinforcing the link between gut barrier function and obesity. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

19 pages, 5874 KiB  
Article
Li Chemical and Tracer Diffusivities in LiCoO2 Sintered Pellets
by Erwin Hüger and Harald Schmidt
Batteries 2024, 10(12), 446; https://doi.org/10.3390/batteries10120446 - 16 Dec 2024
Cited by 2 | Viewed by 1520
Abstract
LiCoO2 (LCO) is a crucial active material for positive electrodes of commercial lithium-ion batteries. It is typically present in the form of micrometer-sized LCO particles, which are surrounded by binders and conductive agents with a thickness of tens of microns. In order [...] Read more.
LiCoO2 (LCO) is a crucial active material for positive electrodes of commercial lithium-ion batteries. It is typically present in the form of micrometer-sized LCO particles, which are surrounded by binders and conductive agents with a thickness of tens of microns. In order to determine the intrinsic Li transport parameters of pure crystalline LCO, it is necessary to measure the Li diffusivity at room temperature in sintered LCO pellets free of additives. The LCO sintered bulk material consists of interconnected, about 3 µm clusters, composed of grains of about 70 nanometers in size. The Li chemical and tracer diffusivities are determined using electrochemical impedance spectroscopy (EIS) and potentiostatic intermittent titration technique (PITT), while the latter ones are in the range between 10−9 and 10−28 m2s−1, depending on the application of different relevant formulas and characteristic parameters. Consequently, it is essential to apply a classical non-electrochemical and Li selective method of tracer diffusion determination like 6Li depth profiling and secondary ion mass spectrometry (SIMS) for comparison. Li tracer diffusivities of about 10−22 m2s−1 at room temperature are obtained by the extrapolation of the SIMS results from higher temperatures. This significantly narrows the range of reliable electrochemically determined Li tracer diffusivities to a more limited range, between 10−21 and 10−22 m2s−1. Full article
Show Figures

Figure 1

21 pages, 4998 KiB  
Article
Influence of Gradient Milling on Cooking and Sensory Attributes of Chinese Black Rice: Insights into Volatile Flavor Compounds
by Shuxin Ye, Qing Gao, Danxia Shi, Abel Wend-Soo Zongo, Jinsong He and Bin Li
Foods 2024, 13(21), 3453; https://doi.org/10.3390/foods13213453 - 29 Oct 2024
Cited by 4 | Viewed by 1464
Abstract
This study investigated the impact of gradient milling on the cooking properties and sensory characteristics of Yangxian black rice. The results showed that as the degree of milling increased, the gelatinization time decreased (36.85–23.54 min) and the water uptake ratio of whole black [...] Read more.
This study investigated the impact of gradient milling on the cooking properties and sensory characteristics of Yangxian black rice. The results showed that as the degree of milling increased, the gelatinization time decreased (36.85–23.54 min) and the water uptake ratio of whole black rice (188.29%) was significantly lower compared to that of refined grains (194.05%). Low-field nuclear magnetic resonance (NMR) was further used to monitor the water concentration and distribution of black rice during soaking and cooking. It was found that the bran layers of black rice, as a physical barrier, impeded the water penetration into the kernels for a given soaking and cooking duration. The sensory evaluation conducted by a panel of trained volunteers demonstrated a high score for all sensory attributes in slightly milled black rice, corroborating findings from the taste analyzer. Through correlation analysis of volatile components determined by gas chromatography-mass spectrometry (GC-MS), smell scores in sensory evaluation, and electronic nose response values, 2-pentyl-furan (54.84–12.72 ng/g) and guaiacol (19.39–5.51 ng/g) were found to be the predominant volatile flavor contributors in cooked black rice. Overall, this study provides valuable insight into the intricate relationship between milling degrees and the cooking properties, sensory characteristics, and volatile flavor compounds of Yangxian black rice. Full article
Show Figures

Graphical abstract

15 pages, 4777 KiB  
Article
Effect of Surface Roughness on Corrosion Resistance of Mooring Chains for Offshore Floating Photovoltaics
by Feng Wang, Yong Wang, Wei Wang, Bin Lin and Minggui Qu
Metals 2024, 14(10), 1181; https://doi.org/10.3390/met14101181 - 17 Oct 2024
Cited by 1 | Viewed by 1529
Abstract
Mooring chains are key components of offshore floating photovoltaic systems. Although their service safety is often affected by the harsh service environment, the influence of surface roughness on their corrosion resistance is not clear. This study investigated the corrosion behavior of mooring chain [...] Read more.
Mooring chains are key components of offshore floating photovoltaic systems. Although their service safety is often affected by the harsh service environment, the influence of surface roughness on their corrosion resistance is not clear. This study investigated the corrosion behavior of mooring chain steel using cyclic salt-spray corrosion and electrochemical tests. Scanning electron microscopy, energy-dispersive spectrometry, optical profilometry, and other analytical techniques were used to study the composition and morphology of the corrosion products. The corrosion behavior was studied by electrochemical polarization curves, alternating current impedance spectroscopy, and X-ray photoelectron spectroscopy. The results show that the salt-spray corrosion resistance of mooring chain steel significantly improved with the reduction in specimen surface roughness, and the number and depth of corrosion pits were reduced. Mass loss after 24 h of salt-spray corrosion was exponentially related to initial roughness (Ra). Improved surface roughness significantly increased the pitting potential of the specimens, widened the passivation range, and enhanced the repassivation capability, thus significantly improving the pitting resistance. The pitting potential is linearly related to the initial roughness of the specimen. The oxide contents of Fe, Mo, and Si in the passivation film tended to increase with a smoother surface, which contributes to its densification. This effectively blocks chloride ion attack, thus improving the corrosion resistance of the mooring chain steel. Full article
Show Figures

Figure 1

13 pages, 3254 KiB  
Article
Seed Coating with Thiamethoxam-Induced Plant Volatiles Mediates the Olfactory Behavior of Sitobion miscanthi
by Jiacong Sun, Yonggang Liu, Shaodan Fei, Yixuan Wang, Jinglong Liu and Haiying Zhang
Insects 2024, 15(10), 810; https://doi.org/10.3390/insects15100810 - 16 Oct 2024
Viewed by 1426
Abstract
Pesticides can induce target plants to release odors that are attractive or repellent to their herbivore insects. But, to date, the activity of volatile organic compounds (VOCs), singly or as mixtures, which play a crucial role in the olfactory behavior of herbivore insects, [...] Read more.
Pesticides can induce target plants to release odors that are attractive or repellent to their herbivore insects. But, to date, the activity of volatile organic compounds (VOCs), singly or as mixtures, which play a crucial role in the olfactory behavior of herbivore insects, remains unclear. The objective of our research was to investigate the impact of thiamethoxam (TMX), a pesticide, on the emission of odors by wheat plants, and how these odors influence the behavior of grain aphids (Sitobion miscanthi). S. miscanthi showed a greater repellent response to the volatiles emitted by Thx-induced plants compared to those emitted by uncoated plants. Using gas chromatography–mass spectrometry (GCMS), we discovered that TMX greatly induced the release of VOCs in wheat plants. For instance, the levels of Bornyl acetate, 2-Oxepanone, Methyl acrylate, Cyclohexene, α-Pinene, and 1-Nonanol in coated wheat plants were significantly higher as compared to uncoated wheat plants. Moreover, varying concentrations also had an impact on the olfactory behavior of S. miscanthi. For instance, Cyclohexene exhibited clear attractiveness to aphids at concentrations of 100 μL/mL, whereas it displayed evident repellent properties at concentrations of 1 μL/mL and 10 μL/mL. These new findings demonstrate how TMX-induced VOCs affect the behavior of S. miscanthi and could help in developing innovative approaches to manage aphids by manipulating the emission of plant volatiles. Furthermore, these findings can also be utilized to evaluate substances that either attract or repel aphids, with the aim of implementing early monitoring and environmentally friendly methods to manage aphids, while simultaneously impeding the spread of viruses. Full article
(This article belongs to the Special Issue Biology and Molecular Mechanisms of Plant-Aphid Interactions)
Show Figures

Graphical abstract

16 pages, 6653 KiB  
Article
Chloramphenicol Interferes with 50S Ribosomal Subunit Maturation via Direct and Indirect Mechanisms
by Ting Yu and Fuxing Zeng
Biomolecules 2024, 14(10), 1225; https://doi.org/10.3390/biom14101225 - 27 Sep 2024
Cited by 3 | Viewed by 2965
Abstract
Chloramphenicol (CAM), a well-known broad-spectrum antibiotic, inhibits peptide bond formation in bacterial ribosomes. It has been reported to affect ribosome assembly mainly through disrupting the balance of ribosomal proteins. The present study investigates the multifaceted effects of CAM on the maturation of the [...] Read more.
Chloramphenicol (CAM), a well-known broad-spectrum antibiotic, inhibits peptide bond formation in bacterial ribosomes. It has been reported to affect ribosome assembly mainly through disrupting the balance of ribosomal proteins. The present study investigates the multifaceted effects of CAM on the maturation of the 50S ribosomal subunit in Escherichia coli (E. coli). Using label-free quantitative mass spectrometry (LFQ-MS), we observed that CAM treatment also leads to the upregulation of assembly factors. Further cryo-electron microscopy (cryo-EM) analysis of the ribosomal precursors characterized the CAM-treatment-accumulated pre-50S intermediates. Heterogeneous reconstruction identified 26 distinct pre-50S intermediates, which were categorized into nine main states based on their structural features. Our structural analysis highlighted that CAM severely impedes the formation of the central protuberance (CP), H89, and H58 during 50S ribosomal subunit maturation. The ELISA assay further demonstrated the direct binding of CAM to the ribosomal precursors, suggesting that the interference with 50S maturation occurs through a combination of direct and indirect mechanisms. These findings provide new insights into the mechanism of the action of CAM and provide a foundation for a better understanding of the assembly landscapes of the ribosome. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids and Nucleic Acids)
Show Figures

Figure 1

15 pages, 5929 KiB  
Article
Analysis of the Thermal Aging Kinetics of Tallow, Chicken Oil, Lard, and Sheep Oil
by Yun-Chuan Hsieh, Hao Ouyang, Yulin Zhang, Donyau Chiang, Fuqian Yang, Hsin-Lung Chen and Sanboh Lee
Molecules 2024, 29(17), 4191; https://doi.org/10.3390/molecules29174191 - 4 Sep 2024
Cited by 1 | Viewed by 1267
Abstract
Understanding the thermal aging kinetics of animal oils is of vital importance in the storage and applications of animal oils. In this work, we use four different techniques, including UV-Vis spectrometry, viscometry, impedance spectroscopy, and acid–base titration, to study the thermal aging kinetics [...] Read more.
Understanding the thermal aging kinetics of animal oils is of vital importance in the storage and applications of animal oils. In this work, we use four different techniques, including UV-Vis spectrometry, viscometry, impedance spectroscopy, and acid–base titration, to study the thermal aging kinetics of tallow, chicken oil, lard, and sheep oil in the temperature range from 120 °C to 180 °C. The evolutions of the UV-Vis absorbance, dynamic viscosity, electric impedance, and acid titration are discussed with the defect kinetics. The evolutions of the color centers, defects for dynamic viscosity, and electric dipoles follow second-order, first-order, and zero-order kinetics, respectively. The temperature dependence of rate constants for the evolutions of the UV-Vis absorbance, dynamic viscosity, electric impedance, and acid titration satisfies the Arrhenius equation with the same activation energy for individual animal oils. The activation energies are ~43.1, ~23.8, ~39.1, and ~37.5 kJ/mol for tallow, chicken oil, lard, and sheep oil, respectively. The thermal aging kinetics of the animal oils are attributed to the oxidation of triglycerides. Full article
(This article belongs to the Collection Advances in Food Chemistry)
Show Figures

Graphical abstract

20 pages, 2071 KiB  
Review
Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Applications for Metabolomics
by Darcy Cochran and Robert Powers
Biomedicines 2024, 12(8), 1786; https://doi.org/10.3390/biomedicines12081786 - 6 Aug 2024
Cited by 4 | Viewed by 2854
Abstract
Metabolomics is an interdisciplinary field that aims to study all metabolites < 1500 Da that are ubiquitously found within all organisms. Metabolomics is experiencing exponential growth and commonly relies on high-resolution mass spectrometry (HRMS). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is [...] Read more.
Metabolomics is an interdisciplinary field that aims to study all metabolites < 1500 Da that are ubiquitously found within all organisms. Metabolomics is experiencing exponential growth and commonly relies on high-resolution mass spectrometry (HRMS). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is a form of HRMS that is particularly well suited for metabolomics research due to its exceptionally high resolution (105–106) and sensitivity with a mass accuracy in parts per billion (ppb). In this regard, FT-ICR-MS can provide valuable insights into the metabolomics analysis of complex biological systems due to unique capabilities such as the easy separation of isobaric and isomeric species, isotopic fine structure analysis, spatial resolution of metabolites in cells and tissues, and a high confidence (<1 ppm mass error) in metabolite identification. Alternatively, the large and complex data sets, long acquisition times, high cost, and limited access mainly through national mass spectrometry facilities may impede the routine adoption of FT-ICR-MS by metabolomics researchers. This review examines recent applications of FT-ICR-MS metabolomics in the search for clinical and non-human biomarkers; for the analysis of food, beverage, and environmental samples; and for the high-resolution imaging of tissues and other biological samples. We provide recent examples of metabolomics studies that highlight the advantages of FT-ICR-MS for the detailed and reliable characterization of the metabolome. Additionally, we offer some practical considerations for implementing FT-ICR-MS into a research program by providing a list of FT-ICR-MS facilities and by identifying different high-throughput interfaces, varieties of sample types, analysis methods (e.g., van Krevelen diagrams, Kendrick mass defect plot, etc.), and sample preparation and handling protocols used in FT-ICR-MS experiments. Overall, FT-ICR-MS holds great promise as a vital research tool for advancing metabolomics investigations. Full article
(This article belongs to the Collection OMICs and Complex Diseases)
Show Figures

Figure 1

29 pages, 7238 KiB  
Article
Unveiling the Bioactive Efficacy of Cupressus sempervirens ‘Stricta’ Essential Oil: Composition, In Vitro Activities, and In Silico Analyses
by Eman Fikry, Raha Orfali, Nora Tawfeek, Shagufta Perveen, Safina Ghafar, Maher M. El-Domiaty and Azza M. El-Shafae
Pharmaceuticals 2024, 17(8), 1019; https://doi.org/10.3390/ph17081019 - 2 Aug 2024
Cited by 1 | Viewed by 2666
Abstract
Prior studies have extensively investigated the essential oil derived from the Mediterranean cypress, Cupressus sempervirens. However, the ‘Stricta’ variety, known for its ornamental value, has received less attention in terms of its oil composition and potential health benefits. The objective of this [...] Read more.
Prior studies have extensively investigated the essential oil derived from the Mediterranean cypress, Cupressus sempervirens. However, the ‘Stricta’ variety, known for its ornamental value, has received less attention in terms of its oil composition and potential health benefits. The objective of this research was to comprehensively analyze the chemical components and medicinal properties of the essential oil extracted from C. sempervirens ‘Stricta’ (CSSLEO) grown in Egypt. Utilizing gas chromatography–mass spectrometry (GC–MS), the investigation identified 22 compounds within CSSLEO, with α-pinene and δ-3-carene being predominant, accounting for 96.01% of the oil. In vitro assays evaluated CSSLEO’s cytotoxic effects on cancer cell lines, revealing notable anticancer potential. Additionally, the oil displayed antidiabetic properties by impeding crucial enzymes involved in glucose metabolism. Complementary in silico network pharmacology and molecular docking studies provided insights into the possible interactions between CSSLEO’s key compounds and essential proteins and pathways in cancer treatment. The results underscored CSSLEO’s intricate composition and its promising applications in cancer prevention and diabetes management. The conclusions drawn from this research underscore the need for further investigation to validate CSSLEO’s clinical effectiveness and to gain a deeper understanding of its therapeutic mechanisms, with a view to harnessing its potential in oncology and endocrinology. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products)
Show Figures

Figure 1

Back to TopTop