Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (141)

Search Parameters:
Keywords = immunodominant epitopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2353 KiB  
Article
High TCR Degeneracy Enhances Antiviral Efficacy of HTLV-1-Specific CTLs by Targeting Variant Viruses in HAM Patients
by Ryuji Kubota, Kousuke Hanada, Mineki Saito, Mika Dozono, Satoshi Nozuma and Hiroshi Takashima
Int. J. Mol. Sci. 2025, 26(14), 6602; https://doi.org/10.3390/ijms26146602 - 10 Jul 2025
Viewed by 335
Abstract
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which [...] Read more.
T-cell receptors (TCRs) exhibit degeneracy, enabling individual TCRs to recognize multiple altered peptide ligands (APLs) derived from a single cognate antigen. This characteristic has been involved in the pathogenesis of autoimmune diseases through cross-reactivity between microbial and self-antigens. Cytotoxic T lymphocytes (CTLs), which recognize peptide–MHC class I complexes via TCRs, play a critical role in the immune response against viral infections. However, the extent to which TCR degeneracy within a population of virus-specific CTLs contributes to effective viral control remains poorly understood. In this study, we investigated the magnitude and functional relevance of TCR degeneracy in CTLs targeting an immunodominant epitope of human T-cell leukemia virus type 1 (HTLV-1) in patients with HTLV-1-associated myelopathy (HAM). Using peripheral blood mononuclear cells (PBMCs) from these patients, we quantified TCR degeneracy at the population level by comparing CTL responses to a panel of APLs with responses to the cognate epitope. Our findings demonstrated that increased TCR degeneracy, particularly at the primary TCR contact residue at position 5 of the antigen, was inversely correlated with HTLV-1 proviral load (p = 0.038, R = −0.40), despite similar functional avidity across patient-derived CTLs. Viral sequencing further revealed that CTLs with high TCR degeneracy exerted stronger selective pressure on the virus, as indicated by a higher frequency of nonsynonymous substitutions within the epitope-encoding region in patients with highly degenerate TCR repertoires. Moreover, TCR degeneracy was positively correlated with the recognition rate of epitope variants (p = 0.018, R = 0.76), suggesting that CTLs with high TCR degeneracy exhibited enhanced recognition of naturally occurring epitope variants compared to those with low TCR degeneracy. Taken together, these results suggest that virus-specific CTLs with high TCR degeneracy possess superior antiviral capacity, characterized by broadened epitope recognition and more effective suppression of HTLV-1 infection. To our knowledge, this is the first study to systematically quantify TCR degeneracy in HTLV-1-specific CTLs and evaluate its contribution to viral control in HAM patients. These findings establish TCR degeneracy as a critical determinant of antiviral efficacy and provide a novel immunological insight into the mechanisms of viral suppression in chronic HTLV-1 infection. Full article
Show Figures

Figure 1

15 pages, 1516 KiB  
Article
B-Cell Epitope Mapping of the Treponema pallidum Tp0435 Immunodominant Lipoprotein for Peptide-Based Syphilis Diagnostics
by Jessica L. Keane, Mahashweta Bose, Barbara J. Molini, Kelika A. Konda, Silver K. Vargas, Michael Reyes Diaz, Carlos F. Caceres, Jeffrey D. Klausner, Rebecca S. Treger and Lorenzo Giacani
Diagnostics 2025, 15(11), 1443; https://doi.org/10.3390/diagnostics15111443 - 5 Jun 2025
Viewed by 769
Abstract
Background/Objectives: Syphilis, a chronic sexually transmitted disease caused by the spirochete Treponema pallidum subspecies pallidum (T. pallidum), is still endemic in low- and middle-income countries and has been resurgent for decades in many high-income nations despite being treatable. Improving our understanding of [...] Read more.
Background/Objectives: Syphilis, a chronic sexually transmitted disease caused by the spirochete Treponema pallidum subspecies pallidum (T. pallidum), is still endemic in low- and middle-income countries and has been resurgent for decades in many high-income nations despite being treatable. Improving our understanding of syphilis pathogenesis, immunology, and T. pallidum biology could result in novel measures to curtail syphilis spread, including new therapeutics, a preventive vaccine, and, most importantly, improved diagnostics. Methods: Using overlapping synthetic peptides spanning the length of the T. pallidum Tp0435 mature lipoprotein, an abundant antigen known to induce an immunodominant humoral response during both natural and experimental infection, we evaluated which Tp0435 linear epitopes are most significantly recognized by antibodies from an infected host. Specifically, we used sera from 63 patients with syphilis at different stages, sera from non-syphilis patients (n = 40), and sera longitudinally collected from 10 rabbits infected with either the Nichols or SS14 isolates of T. pallidum, which represent the model strains for the two known circulating clades of this pathogen, to further evaluate the use of this animal model for syphilis studies. Recognized amino acid sequences were then mapped to the experimentally determined Tp0435 structure. Results: Reactive epitopes in both serum groups mapped predominantly to the α-helix preceding Tp0435 soluble β-barrel and the loops of the barrel. Conclusions: In the current effort to improve current syphilis diagnostics, the peptides corresponding to these immunodominant epitopes could help develop epitope-based assays such as peptide-based ELISAs and lateral flow point-of-care tests to improve the performance of treponemal tests and expedite diagnosis in low-income settings, where the infection is still a significant concern for public health and access to facilities with laboratories equipped to perform complex procedures might be challenging. Full article
(This article belongs to the Special Issue Dermatology and Venereology: Diagnosis and Management)
Show Figures

Figure 1

18 pages, 2849 KiB  
Article
A Multiepitope Nanovaccine Candidate Adjuvanted with Porcine Ferritin Scaffold for African Swine Fever Virus
by Lidan Sun, Yuping Ding, Jingqi Niu, Yingjun Li and Zeliang Chen
Vaccines 2025, 13(6), 585; https://doi.org/10.3390/vaccines13060585 - 30 May 2025
Viewed by 551
Abstract
Background: African swine fever (ASF) is a highly contagious acute febrile disease with a near 100% mortality rate. There are currently no safe and effective vaccines for this disease. Cellular immunity plays an important role in the process of anti-viral, activating an [...] Read more.
Background: African swine fever (ASF) is a highly contagious acute febrile disease with a near 100% mortality rate. There are currently no safe and effective vaccines for this disease. Cellular immunity plays an important role in the process of anti-viral, activating an effective cellular immune response is a prerequisite for the effectiveness of the vaccine. Methods: To effectively activate cellular immune responses, 133 immunodominant T cell epitopes (TEPs) were identified and synthesized into ten recombinant multi-epitope proteins (MEPs). These MEPs were subsequently conjugated to porcine ferritin (pFTH1) to generate MEPs-pFTH1 nanoparticles. Animal experiments were conducted to evaluate their immunogenicity and biocompatibility. Results: Animal experiments demonstrated that both MEPs and MEPs-pFTH1 nanoparticles induced significant humoral and cellular immune responses. Compared to MEPs monomers, the MEPs-pFTH1 nanoparticles induced a 10- to 100-fold increase in IgG and IgG2a antibody titers (p < 0.05), as well as a significantly higher number of IFN-γ+ cells. Serum from pigs immunized with MEPs-pFTH1 nanoparticles can significantly inhibit ASFV replication. Conclusions: Our novel self-assembled porcine ferritin nanovaccine candidate can induce strong humoral and cellular immune responses in swine and mice that effectively inhibit ASFV replication. Therefore, the nanovaccine is a highly biocompatible and safe candidate vaccine for ASF that warrants further investigation, such as conducting animal challenge experiments to evaluate the effectiveness of the vaccine. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

13 pages, 2348 KiB  
Article
Strategy for the Construction of SARS-CoV-2 S and N Recombinant Proteins and Their Immunogenicity Evaluation
by Paulo Henrique Guilherme Borges, Barbara Gregio, Helena Tiemi Suzukawa, Gislaine Silva-Rodrigues, Emanuella de Castro Andreassa, Isabela Madeira de Castro, Guilherme Bartolomeu-Gonçalves, Emerson José Venancio, Phileno Pinge-Filho, Viviane Monteiro Góes, Celso Vataru Nakamura, Eliandro Reis Tavares, Tatiana de Arruda Campos Brasil de Souza, Sueli Fumie Yamada-Ogatta and Lucy Megumi Yamauchi
BioTech 2025, 14(2), 38; https://doi.org/10.3390/biotech14020038 - 23 May 2025
Viewed by 1181
Abstract
This study reports the construction, expression, and purification of synthetic SARS-CoV-2 spike (S) and nucleoprotein (N) containing immunodominant epitopes. The pET28aS_epit construct included epitopes 287–317, 402, 507, 524–598, and 601–640, while the pET28aN_epit construct included residues 42–62, 153–172, and 355–401. Commercial sequences of [...] Read more.
This study reports the construction, expression, and purification of synthetic SARS-CoV-2 spike (S) and nucleoprotein (N) containing immunodominant epitopes. The pET28aS_epit construct included epitopes 287–317, 402, 507, 524–598, and 601–640, while the pET28aN_epit construct included residues 42–62, 153–172, and 355–401. Commercial sequences of both proteins were used as controls. The four constructs were expressed using the Escherichia coli BL21(DE3) star strain at 37 °C. The results show that the S protein constructs were insoluble, unlike the N protein constructs. Both recombinant proteins induced immune responses in mice and were recognized by antibodies present in sera from COVID-19-positive and/or SARS-CoV-2-vaccinated humans. No significant differences in immune recognition were observed between our constructs and the commercially available proteins. In conclusion, S_epit and N_epit could be promising starting points for the development of new strategies based on immunological reactions for the control of SARS-CoV-2 infections. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

21 pages, 4074 KiB  
Article
A Structural In Silico Analysis of Novel Epitopes from Toxoplasma gondii Proteins for the Serodiagnosis of Toxoplasmosis
by Angelis del Valle Benitez Betancourt, Tamires Lopes Silva, Débora Karolla de Freitas Oliveira, Nilson Nicolau-Junior, João Luis Garcia, Ricardo Toshio Fujiwara, Tiago Wilson Patriarca Mineo and José Roberto Mineo
Int. J. Mol. Sci. 2025, 26(10), 4689; https://doi.org/10.3390/ijms26104689 - 14 May 2025
Viewed by 453
Abstract
Toxoplasmosis is a widely spread zoonosis worldwide, considered one of the most important parasitic infections that affect global public health, and usually, it is not correctly diagnosed. Serological tests for the diagnosis of Toxoplasma gondii infection have limitations in differentiating acute from chronic [...] Read more.
Toxoplasmosis is a widely spread zoonosis worldwide, considered one of the most important parasitic infections that affect global public health, and usually, it is not correctly diagnosed. Serological tests for the diagnosis of Toxoplasma gondii infection have limitations in differentiating acute from chronic infection, which is important to determine the appropriate clinical management and treatment, mainly in pregnant women and immunocompromised individuals infected by this parasite. The present study aimed to characterize immunogenic epitopes from T. gondii immunodominant antigens, as SAG1(SRS29B), SAG2A (SRS34A), GRA1, GRA2, GRA3, GRA5, GRA6, GRA7, MAG1, BSR4, and CCp5A, by investigating if these parasite components might emerge as alternatives to improve the diagnosis of toxoplasmosis. A detailed comparative in silico analysis was used for this purpose. Once the protein sequences were retrieved from the ToxoDB database, different parameters were calculated, including physicochemical characteristics, accessibility values, and antigenicity. Multiple sequence alignment, 3D structures modeling, and the validation of 3D structures were also performed among all 11 peptides. Considering the results from the combination of all parameters analyzed, it can be hypothesized that the linear epitopes from SAG1, GRA3, and BSR4 proteins were found to be stable and hydrophilic, with a significant antigenicity score, and accessibility on the protein surface. Also, these three selected peptides were able to detect anti-T. gondii antibodies in serum samples from pigs infected by tachyzoites, when compared with control serum samples, obtained from the same naïve animals and tested by ELISA, demonstrating remarkable difference in terms of reactivity. Taken together, as our study addresses a critical challenge in the serodiagnosis of toxoplasmosis, particularly in gestational and congenital infections, where false-positive and false-negative results often arise from the use of native or recombinant antigens of T. gondii, our findings highlight the potential of synthetic peptides derived from novel epitopes of this parasite as alternative tools for the development of more accurate immunodiagnostic assays for toxoplasmosis. Full article
(This article belongs to the Special Issue Parasite Biology and Host-Parasite Interactions: 2nd Edition)
Show Figures

Figure 1

26 pages, 3756 KiB  
Review
Immune Reactivity to Raw and Processed Foods and Their Possible Contributions to Autoimmunity
by Aristo Vojdani, Elroy Vojdani, Carina Benzvi and Aaron Lerner
Foods 2025, 14(8), 1357; https://doi.org/10.3390/foods14081357 - 15 Apr 2025
Viewed by 1842
Abstract
It is now known that diet or food is one of the environmental factors that can induce or contribute to autoimmunity. In a healthy person with a normal functioning immune system, food substances encounter no resistance and are allowed passage through the immune [...] Read more.
It is now known that diet or food is one of the environmental factors that can induce or contribute to autoimmunity. In a healthy person with a normal functioning immune system, food substances encounter no resistance and are allowed passage through the immune barriers without triggering immune reactivity. However, clinicians are becoming increasingly aware that modern food-processing methods can increase or decrease the immune reactivity of foods, including allergic reactions. Immune reactions to undigested food antigens could result in the production of IgE antibodies, which are involved in immediate immune reactivity, and in IgG and IgA antibodies, which are involved in delayed immune reactivity. Currently, measurements of these antibodies are generally only performed against antigens derived from raw foods. However, testing for food reactivity based only on raw food consumption is inaccurate because people eat both raw and cooked foods. Even home-cooked foods undergo different kinds of preparation or processing. Food processing can change the structure of raw food materials into secondary, tertiary, and quaternary structures that can have different reactive properties. This can affect the body’s normal oral tolerance of food, causing the immune system to mistakenly identify food as a harmful foreign substance and react to it immunologically, leading to food immune reactivity. This abnormal reaction to food molecules can lead to the production of antibodies against not just target food antigens but also the body’s own tissues, which can have significant implications in autoimmunity induction due to cross-reactivity and the other mechanisms discussed here. We hope that this present review will stimulate further research on the role of modified food antigens in the induction of autoimmunity based on some or all of the key points discussed in this review. Full article
(This article belongs to the Special Issue Food Allergen Detection, Identification and Regulation)
Show Figures

Graphical abstract

23 pages, 6254 KiB  
Article
Computational Immunogenetic Analysis of Botulinum Toxin A Immunogenicity and HLA Gene Haplotypes: New Insights
by Eqram Rahman, Parinitha Rao, Munim Ahmed, William Richard Webb and Jean D. A. Carruthers
Toxins 2025, 17(4), 182; https://doi.org/10.3390/toxins17040182 - 6 Apr 2025
Cited by 1 | Viewed by 1906
Abstract
Botulinum toxin A (BoNT-A) is widely used in both therapeutic and aesthetic settings; however, the formation of neutralizing antibodies (NAbs) remains a critical concern, leading to treatment failure. Immunogenic responses are known to vary between individuals due to HLA polymorphisms. Although some claim [...] Read more.
Botulinum toxin A (BoNT-A) is widely used in both therapeutic and aesthetic settings; however, the formation of neutralizing antibodies (NAbs) remains a critical concern, leading to treatment failure. Immunogenic responses are known to vary between individuals due to HLA polymorphisms. Although some claim that neurotoxin-associated proteins (NAPs) shield BoNT-A from immune detection or are themselves immunogenic, there is limited molecular evidence supporting either view. This study applies computational immunogenetics to explore BoNT-A immunogenicity, focusing on HLA binding and the influence of accessory proteins. Epitope mapping, molecular docking, and HLA binding predictions were used to evaluate interactions between BoNT-A epitopes and selected class II HLA alleles (HLA-DQA1*01:02, HLA-DQA1*03:03, HLA-DQB1*06:04, HLA-DQB1*03:01, and HLA-DRB1*15:01). To assess the potential immunomodulatory role of NAPs, molecular dynamics (MD) simulations, solvent-accessible surface area (SASA) analysis, and electrostatic potential mapping were also conducted. Key epitopes—L11, N25, and C10—showed strong binding affinities to HLA-DQA1*01:02, HLA-DQB1*06:04, and HLA-DQA1*03:03, indicating a potential immunodominant role. NAPs did not obstruct these epitopes but slightly increased their exposure and appeared to stabilize the toxin structure. Electrostatic mapping and binding free energy calculations suggested no significant immunogenic shift in the presence of NAPs. BoNT-A immunogenicity appears to be influenced by HLA allele variability, reinforcing the value of patient-specific genetic profiling. The presumed immunogenic role of NAPs remains unsubstantiated at the molecular level, underscoring the need for evidence-based evaluation over commercial rhetoric. While these findings provide valuable molecular insight, it is important to acknowledge that they are derived entirely from in silico analyses. As such, experimental validation remains essential to confirm the immunological relevance of these predicted interactions. Nonetheless, this computational framework offers a rational basis for guiding future clinical research and the development of HLA-informed BoNT-A therapies. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

12 pages, 1727 KiB  
Article
Tethered Antigenic Suppression Shields the Hemagglutinin Head Domain and Refocuses the Antibody Response to the Stalk Domain
by Donguk Kim, Kathryn Loeffler, Yixin Hu, Ammar Arsiwala, Steven Frey, Shruthi Murali, Vivek Hariharan, Alberto Moreno and Ravi S. Kane
Chemistry 2025, 7(1), 12; https://doi.org/10.3390/chemistry7010012 - 21 Jan 2025
Viewed by 1110
Abstract
Influenza has been a global health concern for the past century. Current seasonal influenza vaccines primarily elicit an antibody response that targets the immunodominant head domain of the viral glycoprotein hemagglutinin (HA), which consistently mutates due to selective pressure. To circumvent this problem, [...] Read more.
Influenza has been a global health concern for the past century. Current seasonal influenza vaccines primarily elicit an antibody response that targets the immunodominant head domain of the viral glycoprotein hemagglutinin (HA), which consistently mutates due to selective pressure. To circumvent this problem, we introduce a “tethered antigenic suppression” strategy to shield the HA head domain and refocus the immune response towards the conserved but immunosubdominant stalk domain of HA. Specifically, we tethered an antibody fragment (Fab) that recognizes the Sb antigenic site in the HA head domain to the HA protein with a linker. We immunized separate groups of female mice with the Fab-tethered HA or regular HA and characterized the elicited antibody response. We demonstrate that shielding the HA head domain with a tethered Fab suppresses the antibody titers towards all five key antigenic sites in the HA head domain while eliciting a robust anti-stalk antibody response. Our work highlights the potential of tethered antigenic suppression as a strategy to refocus the antibody response towards conserved epitopes on protein antigens. Full article
Show Figures

Graphical abstract

14 pages, 3363 KiB  
Article
Activation-Induced Marker Assay to Identify and Isolate HCV-Specific T Cells for Single-Cell RNA-Seq Analysis
by Mohamed Eisa, Nicol Flores, Omar Khedr, Elsa Gomez-Escobar, Nathalie Bédard, Nourtan F. Abdeltawab, Julie Bruneau, Arash Grakoui and Naglaa H. Shoukry
Viruses 2024, 16(10), 1623; https://doi.org/10.3390/v16101623 - 17 Oct 2024
Cited by 2 | Viewed by 2932
Abstract
Identification and isolation of antigen-specific T cells for downstream transcriptomic analysis is key for various immunological studies. Traditional methods using major histocompatibility complex (MHC) multimers are limited by the number of predefined immunodominant epitopes and MHC matching of the study subjects. Activation-induced markers [...] Read more.
Identification and isolation of antigen-specific T cells for downstream transcriptomic analysis is key for various immunological studies. Traditional methods using major histocompatibility complex (MHC) multimers are limited by the number of predefined immunodominant epitopes and MHC matching of the study subjects. Activation-induced markers (AIM) enable highly sensitive detection of rare antigen-specific T cells irrespective of the availability of MHC multimers. Herein, we have developed an AIM assay for the detection, sorting and subsequent single-cell RNA sequencing (scRNA-seq) analysis of hepatitis C virus (HCV)-specific T cells. We examined different combinations of the activation markers CD69, CD40L, OX40, and 4-1BB at 6, 9, 18 and 24 h post stimulation with HCV peptide pools. AIM+ CD4 T cells exhibited upregulation of CD69 and CD40L as early as 6 h post-stimulation, while OX40 and 4-1BB expression was delayed until 18 h. AIM+ CD8 T cells were characterized by the coexpression of CD69 and 4-1BB at 18 h, while the expression of CD40L and OX40 remained low throughout the stimulation period. AIM+ CD4 and CD8 T cells were successfully sorted and processed for scRNA-seq analysis examining gene expression and T cell receptor (TCR) usage. scRNA-seq analysis from this one subject revealed that AIM+ CD4 T (CD69+ CD40L+) cells predominantly represented Tfh, Th1, and Th17 profiles, whereas AIM+ CD8 T (CD69+ 4-1BB+) cells primarily exhibited effector and effector memory profiles. TCR analysis identified 1023 and 160 unique clonotypes within AIM+ CD4 and CD8 T cells, respectively. In conclusion, this approach offers highly sensitive detection of HCV-specific T cells that can be applied for cohort studies, thus facilitating the identification of specific gene signatures associated with infection outcome and vaccination. Full article
(This article belongs to the Special Issue Hepatitis Viral Infections, Pathogenesis and Therapeutics)
Show Figures

Graphical abstract

23 pages, 6419 KiB  
Article
Adjuvant Use of the Invariant-Natural-Killer-T-Cell Agonist α-Galactosylceramide Leads to Vaccine-Associated Enhanced Respiratory Disease in Influenza-Vaccinated Pigs
by Bianca L. Artiaga, Daniel Madden, Taeyong Kwon, Chester McDowell, Cassidy Keating, Velmurugan Balaraman, Darling Melany de Carvahlo Madrid, Laurie Touchard, Jamie Henningson, Philip Meade, Florian Krammer, Igor Morozov, Juergen A. Richt and John P. Driver
Vaccines 2024, 12(9), 1068; https://doi.org/10.3390/vaccines12091068 - 18 Sep 2024
Viewed by 1843
Abstract
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This [...] Read more.
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This includes harnessing iNKT-cell-mediated immune responses to adjuvant whole inactivated influenza virus (WIV) vaccines. An important concern with WIV vaccines is that under certain circumstances, they are capable of triggering vaccine-associated enhanced respiratory disease (VAERD). This immunopathological phenomenon can arise after immunization with an oil-in-water (OIW) adjuvanted WIV vaccine, followed by infection with a hemagglutinin and neuraminidase mismatched challenge virus. This elicits antibodies (Abs) that bind immunodominant epitopes in the HA2 region of the heterologous virus, which purportedly causes enhanced virus fusion activity to the host cell and increased infection. Here, we show that αGC can induce severe VAERD in pigs. However, instead of stimulating high concentrations of HA2 Abs, αGC elicits high concentrations of interferon (IFN)-γ-secreting cells both in the lungs and systemically. Additionally, we found that VAERD mediated by iNKT cells results in distinct cytokine profiles and altered adaptation of the challenge virus following infection compared to an OIW adjuvant. Overall, these results provide a cautionary note about considering the formulation of WIV vaccines with iNKT-cell agonists as a potential strategy to modulate antigen-specific immunity. Full article
(This article belongs to the Special Issue Immunity to Influenza Viruses and Vaccines)
Show Figures

Figure 1

18 pages, 1915 KiB  
Article
Dynamics of IgM and IgG Antibody Response Profile against Linear B-Cell Epitopes from Exoerythrocytic (CelTOS and TRAP) and Erythrocytic (CyRPA) Phases of Plasmodium vivax: Follow-Up Study
by Cinthia Magalhães Rodolphi, Isabela Ferreira Soares, Ada da Silva Matos, Rodrigo Nunes Rodrigues-da-Silva, Marcelo Urbano Ferreira, Lilian Rose Pratt-Riccio, Paulo Renato Rivas Totino, Kézia Katiani Gorza Scopel and Josué da Costa Lima-Junior
Antibodies 2024, 13(3), 69; https://doi.org/10.3390/antib13030069 - 15 Aug 2024
Cited by 1 | Viewed by 2438
Abstract
Malaria is a serious health problem worldwide affecting mainly children and socially vulnerable people. The biological particularities of P. vivax, such as the ability to generate dormant liver stages, the rapid maturation of gametocytes, and the emergence of drug resistance, have contributed [...] Read more.
Malaria is a serious health problem worldwide affecting mainly children and socially vulnerable people. The biological particularities of P. vivax, such as the ability to generate dormant liver stages, the rapid maturation of gametocytes, and the emergence of drug resistance, have contributed to difficulties in disease control. In this context, developing an effective vaccine has been considered a fundamental tool for the efficient control and/or elimination of vivax malaria. Although recombinant proteins have been the main strategy used in designing vaccine prototypes, synthetic immunogenic peptides have emerged as a viable alternative for this purpose. Considering, therefore, that in the Brazilian endemic population, little is known about the profile of the humoral immune response directed to synthetic peptides that represent different P. vivax proteins, the present work aimed to map the epitope-specific antibodies’ profiles to synthetic peptides representing the linear portions of the ookinete and sporozoite cell passage protein (CelTOS), thrombospondin-related adhesive protein (TRAP), and cysteine-rich protective antigen (CyRPA) proteins in the acute (AC) and convalescent phases (Conv30 and Conv180 after infection) of vivax malaria. The results showed that the studied subjects responded to all proteins for at least six months following infection. For IgM, a few individuals (3–21%) were positive during the acute phase of the disease; the highest frequencies were observed for IgG (28–57%). Regarding the subclasses, IgG2 and IgG3 stood out as the most prevalent for all peptides. During the follow-up, the stability of IgG was observed for all peptides. Only one significant positive correlation was observed between IgM and exposure time. We conclude that for all the peptides, the immunodominant epitopes are recognized in the exposed population, with similar frequency and magnitude. However, if the antibodies detected in this study are potential protectors, this needs to be investigated. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Graphical abstract

16 pages, 1877 KiB  
Article
The Altered Neonatal CD8+ T Cell Immunodominance Hierarchy during Influenza Virus Infection Impacts Peptide Vaccination
by Luke Heil, Samantha Jewell, J. Louise Lines and Beth A. Garvy
Viruses 2024, 16(8), 1271; https://doi.org/10.3390/v16081271 - 9 Aug 2024
Viewed by 1280
Abstract
Neonates are more susceptible to influenza virus infection than adults, resulting in increased morbidity and mortality and delayed clearance of the virus. Generating effective CD8+ T cell responses may be important for improving vaccination outcomes in vulnerable populations, but neonatal T cells [...] Read more.
Neonates are more susceptible to influenza virus infection than adults, resulting in increased morbidity and mortality and delayed clearance of the virus. Generating effective CD8+ T cell responses may be important for improving vaccination outcomes in vulnerable populations, but neonatal T cells frequently respond differently than adult cells. We sought to understand CD8+ T cell specificity and immunodominance during neonatal influenza infection and how any differences from the adult hierarchy might impact peptide vaccine effectiveness. Neonatal C57BL/6 mice displayed an altered CD8+ T cell immunodominance hierarchy during influenza infection, preferentially responding to an epitope in the influenza protein PA rather than the co-dominant adult response to NP and PA. Heterosubtypic infections in mice first infected as pups also displayed altered immunodominance and reduced protection compared to mice first infected as adults. Adoptive transfer of influenza-infected bone-marrow-derived dendritic cells promoted an NP-specific CD8+ T cell response in influenza-virus-infected pups and increased viral clearance. Finally, pups responded to PA (224–233), but not NP (366–374) during peptide vaccination. PA (224–233)-vaccinated mice were not protected during viral challenge. Epitope usage should be considered when designing vaccines that target T cells when the intended patient population includes infants and adults. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

16 pages, 1311 KiB  
Article
Hybrid Predictive Machine Learning Model for the Prediction of Immunodominant Peptides of Respiratory Syncytial Virus
by Syed Nisar Hussain Bukhari and Kingsley A. Ogudo
Bioengineering 2024, 11(8), 791; https://doi.org/10.3390/bioengineering11080791 - 5 Aug 2024
Viewed by 2001
Abstract
Respiratory syncytial virus (RSV) is a common respiratory pathogen that infects the human lungs and respiratory tract, often causing symptoms similar to the common cold. Vaccination is the most effective strategy for managing viral outbreaks. Currently, extensive efforts are focused on developing a [...] Read more.
Respiratory syncytial virus (RSV) is a common respiratory pathogen that infects the human lungs and respiratory tract, often causing symptoms similar to the common cold. Vaccination is the most effective strategy for managing viral outbreaks. Currently, extensive efforts are focused on developing a vaccine for RSV. Traditional vaccine design typically involves using an attenuated form of the pathogen to elicit an immune response. In contrast, peptide-based vaccines (PBVs) aim to identify and chemically synthesize specific immunodominant peptides (IPs), known as T-cell epitopes (TCEs), to induce a targeted immune response. Despite their potential for enhancing vaccine safety and immunogenicity, PBVs have received comparatively less attention. Identifying IPs for PBV design through conventional wet-lab experiments is challenging, costly, and time-consuming. Machine learning (ML) techniques offer a promising alternative, accurately predicting TCEs and significantly reducing the time and cost of vaccine development. This study proposes the development and evaluation of eight hybrid ML predictive models created through the permutations and combinations of two classification methods, two feature weighting techniques, and two feature selection algorithms, all aimed at predicting the TCEs of RSV. The models were trained using the experimentally determined TCEs and non-TCE sequences acquired from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) repository. The hybrid model composed of the XGBoost (XGB) classifier, chi-squared (ChST) weighting technique, and backward search (BST) as the optimal feature selection algorithm (ChST−BST–XGB) was identified as the best model, achieving an accuracy, sensitivity, specificity, F1 score, AUC, precision, and MCC of 97.10%, 0.98, 0.97, 0.98, 0.99, 0.99, and 0.96, respectively. Additionally, K-fold cross-validation (KFCV) was performed to ensure the model’s reliability and an average accuracy of 97.21% was recorded for the ChST−BST–XGB model. The results indicate that the hybrid XGBoost model consistently outperforms other hybrid approaches. The epitopes predicted by the proposed model may serve as promising vaccine candidates for RSV, subject to in vitro and in vivo scientific assessments. This model can assist the scientific community in expediting the screening of active TCE candidates for RSV, ultimately saving time and resources in vaccine development. Full article
(This article belongs to the Special Issue Machine Learning Technology in Predictive Healthcare)
Show Figures

Figure 1

20 pages, 2887 KiB  
Article
Enhanced Assessment of Cross-Reactive Antigenic Determinants within the Spike Protein
by Guilherme C. Lechuga, Jairo R. Temerozo, Paloma Napoleão-Pêgo, João P. R. S. Carvalho, Larissa R. Gomes, Dumith Chequer Bou-Habib, Carlos M. Morel, David W. Provance, Thiago M. L. Souza and Salvatore G. De-Simone
Int. J. Mol. Sci. 2024, 25(15), 8180; https://doi.org/10.3390/ijms25158180 - 26 Jul 2024
Cited by 2 | Viewed by 1879
Abstract
Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes [...] Read more.
Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics. Full article
(This article belongs to the Special Issue Research in Structure and Function of Proteins)
Show Figures

Graphical abstract

14 pages, 3102 KiB  
Article
Identification of Two Linear Epitopes on MGF_110-13L Protein of African Swine Fever Virus with Monoclonal Antibodies
by Shu-Jian Zhang, Bei Niu, Shi-Meng Liu, Yuan-Mao Zhu, Dong-Ming Zhao, Zhi-Gao Bu and Rong-Hong Hua
Animals 2024, 14(13), 1951; https://doi.org/10.3390/ani14131951 - 1 Jul 2024
Cited by 3 | Viewed by 1529
Abstract
African swine fever caused by African swine fever virus (ASFV) is an acute, highly contagious swine disease with high mortality. To facilitate effective vaccine development and find more serodiagnostic targets, fully exploring the ASFV antigenic proteins is urgently needed. In this study, the [...] Read more.
African swine fever caused by African swine fever virus (ASFV) is an acute, highly contagious swine disease with high mortality. To facilitate effective vaccine development and find more serodiagnostic targets, fully exploring the ASFV antigenic proteins is urgently needed. In this study, the MGF_110-13L was identified as an immunodominant antigen among the seven transmembrane proteins. The main outer-membrane domain of MGF_110-13L was expressed and purified. Two monoclonal antibodies (mAbs; 8C3, and 10E4) against MGF_110-13L were generated. The epitopes of two mAbs were preliminary mapped with the peptide fusion proteins after probing with mAbs by enzyme-linked immunosorbent assay (ELISA) and Western blot. And the two target epitopes were fine-mapped using further truncated peptide fusion protein strategy. Finally, the core sequences of mAbs 8C3 and 10E4 were identified as 48WDCQDGICKNKITESRFIDS67, and 122GDHQQLSIKQ131, respectively. The peptides of epitopes were synthesized and probed with ASFV antibody positive pig sera by a dot blot assay, and the results showed that epitope 10E4 was an antigenic epitope. The epitope 10E4 peptide was further evaluated as a potential antigen for detecting ASFV antibodies. To our knowledge, this is the first report of antigenic epitope information on the antigenic MGF_110-13L protein of ASFV. Full article
Show Figures

Figure 1

Back to TopTop