Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = illumination radiation pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10233 KB  
Article
Development and Experimental Study of Supercritical Flow Payload for Extravehicular Mounting on TZ-6
by Liang Guo, Li Duan, Xuemei Zou, Yang Gao, Xiang Zhang, Yewang Su, Jia Wang, Di Wu and Qi Kang
Entropy 2024, 26(10), 847; https://doi.org/10.3390/e26100847 - 8 Oct 2024
Viewed by 1077
Abstract
This paper provides a detailed description of the development and experimental results of the supercritical flow experiment payload carried on the TZ-6 cargo spacecraft, as well as a systematic verification of the out-of-cabin deployment experiment. The technical and engineering indicators of the payload [...] Read more.
This paper provides a detailed description of the development and experimental results of the supercritical flow experiment payload carried on the TZ-6 cargo spacecraft, as well as a systematic verification of the out-of-cabin deployment experiment. The technical and engineering indicators of the payload deployment experiment are analyzed, and the functional modules of the payload are shown. The paper provides a detailed description of the design, installation location, size, weight, temperature, illumination, pressure, radiation, control, command reception, telemetry data, downlink data, and experimental procedures for the out-of-cabin payload in the extreme conditions of space. The paper presents the annular liquid surface state and temperature oscillation signals obtained from the space experiment and conducts ground matching experiments to verify the results, providing scientific references for the design and condition setting of space experiments and comparisons for the experimental results to obtain the flow field structure under supercritical conditions. The paper provides a specific summary and discussion of the space fluid science experiment project, providing useful references for future long-term in-orbit scientific research using cargo spacecraft. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

20 pages, 4991 KB  
Article
An Innovative Thermal Imaging Prototype for Precise Breast Cancer Detection: Integrating Compression Techniques and Classification Methods
by Khaled S. Ahmed, Fayroz F. Sherif, Mohamed S. Abdallah, Young-Im Cho and Shereen M. ElMetwally
Bioengineering 2024, 11(8), 764; https://doi.org/10.3390/bioengineering11080764 - 29 Jul 2024
Cited by 2 | Viewed by 4715
Abstract
Breast cancer detection at an early stage is crucial for improving patient survival rates. This work introduces an innovative thermal imaging prototype that incorporates compression techniques inspired by mammography equipment. The prototype offers a radiation-free and precise cancer diagnosis. By integrating compression and [...] Read more.
Breast cancer detection at an early stage is crucial for improving patient survival rates. This work introduces an innovative thermal imaging prototype that incorporates compression techniques inspired by mammography equipment. The prototype offers a radiation-free and precise cancer diagnosis. By integrating compression and illumination methods, thermal picture quality has increased, and the accuracy of classification has improved. Essential components of the suggested thermography device include an equipment body, plates, motors, pressure sensors, light sources, and a thermal camera. We created a 3D model of the gadget using the SolidWorks software 2020 package. Furthermore, the classification research employed both cancer and normal images from the experimental results to validate the efficacy of the suggested system. We employed preprocessing and segmentation methods on the obtained dataset. We successfully categorized the thermal pictures using various classifiers and examined their performance. The logistic regression model showed excellent performance, achieving an accuracy of 0.976, F1 score of 0.977, precision of 1.000, and recall of 0.995. This indicates a high level of accuracy in correctly classifying thermal abnormalities associated with breast cancer. The proposed prototype serves as a highly effective tool for conducting initial investigations into breast cancer detection, offering potential advancements in early-stage diagnosis, and improving patient survival rates. Full article
(This article belongs to the Special Issue Advances in Breast Cancer Imaging)
Show Figures

Figure 1

23 pages, 2129 KB  
Article
Ergonomics, Health, and Perceptions about Remote Domestic Workposts: Study in Areas of City of João Pessoa, Paraíba, Brazil
by Luiz Bueno Silva, Carmem Julianne Beserra Melo, Adriana Gomes Lisboa de Souza and Lucas Guedes de Oliveira
Int. J. Environ. Res. Public Health 2024, 21(7), 941; https://doi.org/10.3390/ijerph21070941 - 19 Jul 2024
Viewed by 3671
Abstract
Home office (HO) stands out as one of the most promising and popular forms of teleworking, especially after the COVID-19 pandemic. Therefore, many companies want to implement or maintain this working method, given its numerous advantages. However, there are adverse effects that are [...] Read more.
Home office (HO) stands out as one of the most promising and popular forms of teleworking, especially after the COVID-19 pandemic. Therefore, many companies want to implement or maintain this working method, given its numerous advantages. However, there are adverse effects that are mainly related to physical and mental health. This article presents ergonomic analyses of HOs in neighborhoods considered heat islands. Temperature levels, extreme low-frequency non-ionizing radiation (ELF-NIR), illuminance, physical layout characteristics, and physiological parameters of teleworkers were measured. The results reveal that 92% of these professionals work 6 to 8 h daily with an ambient temperature between 25 and 30 °C, illumination levels in the range 11.20–290 Lux, and ELF-NIR > 0.4 µT. The majority of teleworkers are overweight (BMI > 24.9), and some of them have blood pressure higher than average values (129 mmHg for systolic and 84 mmHg for diastolic) in addition to a reduction in the number of red blood cells and hematocrits. Symptoms such as burning sensation, dryness, tired eyes, redness, itching, and photophobia (light sensitivity) show a 68.95% similarity. These HOs do not meet the required ergonomic and health standards. Full article
Show Figures

Figure 1

19 pages, 3211 KB  
Article
Phototactic Behavioral Responses of Mesozooplankton in the Barents Sea as an Indicator of Anthropogenic Impact
by Victor Dyomin, Yuri Morgalev, Sergey Morgalev, Alexandra Davydova, Oksana Kondratova, Tamara Morgaleva and Igor Polovtsev
Water 2023, 15(22), 3901; https://doi.org/10.3390/w15223901 - 8 Nov 2023
Cited by 2 | Viewed by 1834
Abstract
The behavioral responses of autochthonous organisms have recently been used for a system to monitor the state of fresh and sea waters for bioindication. The advantage of using the behavioral responses of mesozooplankton is determined by the higher sensitivity of such responses compared [...] Read more.
The behavioral responses of autochthonous organisms have recently been used for a system to monitor the state of fresh and sea waters for bioindication. The advantage of using the behavioral responses of mesozooplankton is determined by the higher sensitivity of such responses compared with changes in the composition of biota or the death of organisms. Earlier, we developed and tested in laboratory conditions and in freshwater reservoirs a submersible digital holographic camera as part of a hydrobiological probe, which allows one to determine the dimensions, shape and recognition of plankters in situ, as well as define the concentration of plankters in the working volume and perform photostimulation with attractive radiation with different levels of illuminance. This paper presents the data obtained during the expedition to the Barents Sea. The variability with regard to the immersion depth of the phototropic response and the interspecific and intraspecific diversity was determined. It was shown that within the framework of natural variability in natural factors (temperature, salinity, hydrostatic pressure, oxygen content, illumination) there are no reliable changes in the indicator response, unlike changes in the concentration of plankton associated with tidal currents. The anthropogenic distortion of water quality was modeled by introducing a saturated salt solution dropwise. There were no significant changes in the intraspecific and interspecific diversity index during the external impact, and the rhythms of tidal changes in the concentration of plankters were suppressed. The fact of increased phototropic sensitivity in crustaceans with a size of less than 120 μm was found. It was established that the most essential marker of the alternating factor was the suppression of the phototropic response. The identified patterns of behavioral responses of autochthonous zooplankton make it possible to create a network of continuous control over the environmental health of water bodies subject to increased anthropogenic impact (oil production zones beyond the Arctic Circle, estuaries and deltas of rivers carrying industrial waste). Full article
Show Figures

Figure 1

16 pages, 4112 KB  
Article
Atmospheric Density Inversion Based on Swarm-C Satellite Accelerometer
by Lirong Yin, Lei Wang, Jiawei Tian, Zhengtong Yin, Mingzhe Liu and Wenfeng Zheng
Appl. Sci. 2023, 13(6), 3610; https://doi.org/10.3390/app13063610 - 11 Mar 2023
Cited by 30 | Viewed by 4127
Abstract
We used the Swarm-C accelerometer data to invert the orbital atmospheric density in this study. First, the Swarm-C satellite mission data were obtained from the ESA’s public data platform, and preliminary data error correction was performed. This paper refers to the calibration method [...] Read more.
We used the Swarm-C accelerometer data to invert the orbital atmospheric density in this study. First, the Swarm-C satellite mission data were obtained from the ESA’s public data platform, and preliminary data error correction was performed. This paper refers to the calibration method of GRACE-A satellite accelerometer data. It adds linear temperature correction on the original basis. Moreover, this study’s accelerometer data correction results were compared with the data correction results published by the ESA. In order to explore the influence of light radiation on the accelerometer, we established a geometric model of Swarm-C to simulate the physical shape of the satellite surface. The light radiation pressure model and the shadow area judgment model were established, the change in the light radiation acceleration during the transition process of the satellite from the umbra area to the penumbra area and then to the shadowless area was studied, and the state transition during the transition process was analyzed. Finally, the atmospheric drag coefficient was calculated based on the Sentman model. Atmospheric density inversion calculations were performed using the above data. We show the spatial distribution of atmospheric density at a fixed latitude, testing our results during geomagnetic storms. We compared the density results with existing research data, demonstrating the effectiveness of our approach. Full article
(This article belongs to the Special Issue Geospatial AI in Earth Observation, Remote Sensing and GIScience)
Show Figures

Figure 1

11 pages, 4534 KB  
Article
Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration
by Meng Liu, Jia-Xiang Gao, Wei-Min Wang and Yu-Tong Li
Appl. Sci. 2022, 12(6), 2924; https://doi.org/10.3390/app12062924 - 13 Mar 2022
Cited by 3 | Viewed by 2932
Abstract
Laser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in which a [...] Read more.
Laser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in which a circularly-polarized (CP) laser pulse illuminates a CH2 thin foil followed by a large-scale near-critical-density (NCD) plasma. In the laser-foil interaction, a longitudinal charge-separated electric field is excited to accelerate ions together with the heating of electrons. The heating can be alleviated by the continuous replenishment of cold electrons of the NCD plasma as the laser pulse and the pre-accelerated ions enter into the NCD plasma. With the relativistically transparent propagation of the pulse in the NCD plasma, the accelerating field with large amplitude is persistent, and its propagating speed becomes relatively low, which further accelerates the pre-accelerated ions. Our particle-in-cell (PIC) simulation shows that the SRPA scheme works efficiently with the laser intensity ranging from 6.85×1021 W cm2 to 4.38×1023 W cm2, e.g., a well-collimated quasi-monoenergetic proton beam with peak energy ∼1.2 GeV can be generated by a 2.74 × 1022 W cm2 pulse, and the energy conversion efficiency from the laser pulse to the proton beam is about 16%. The QED effects have slight influence on this SRPA scheme. Full article
(This article belongs to the Special Issue Progress on Laser Plasma Interaction)
Show Figures

Figure 1

21 pages, 7974 KB  
Article
A Robust Infrared Transducer of an Ultra-Large-Scale Array
by Defang Li, Jinying Zhang, Qingfeng Shi, Xichen Yuan, Zhuo Li, Xin Wang, Suhui Yang and Yan Hao
Sensors 2020, 20(23), 6807; https://doi.org/10.3390/s20236807 - 28 Nov 2020
Cited by 11 | Viewed by 2750
Abstract
A robust micro-electro-mechanical systems (MEMS) infrared thin film transducer of an ultra-large-scale array was proposed and fabricated on a 4-inch silicon wafer. The silicon substrate and micro cavities were introduced. This novel transducer had excellent mechanical stability, time response, and state-of-the-art pixel scale. [...] Read more.
A robust micro-electro-mechanical systems (MEMS) infrared thin film transducer of an ultra-large-scale array was proposed and fabricated on a 4-inch silicon wafer. The silicon substrate and micro cavities were introduced. This novel transducer had excellent mechanical stability, time response, and state-of-the-art pixel scale. It could bear a load of 1700 g and its load pressure was improved by more than 5.24 times and time constant decreased by 50.7% compared to the traditional soft infrared thin film transducer. The array scale of its pixels exceeded 2k × 2k. The simulation and measured results of the transient temperature and radiation intensity were well consistent. Illuminated by a 532 nm laser with a frequency of 50 Hz and 50% duty cycle, the thermal decay time of the proposed transducer was 6.0 ms. A knife-edge image was utilized for spatial resolution test and the full width at half maximum (FWHM) of the proposed transducer was 24% smaller than the traditional soft one. High-resolution infrared images were generated using the proposed robust transducer. These results proved that the robust transducer was promising in infrared image generation. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 4515 KB  
Article
Comparison of Selected Costs in Greenhouse Cucumber Production with LED and HPS Supplemental Assimilation Lighting
by Katarzyna Kowalczyk, Dawid Olewnicki, Małgorzata Mirgos and Janina Gajc-Wolska
Agronomy 2020, 10(9), 1342; https://doi.org/10.3390/agronomy10091342 - 7 Sep 2020
Cited by 22 | Viewed by 6309
Abstract
The amount of energy used in agricultural production, processing and distribution is constantly increasing. During the winter months in the greenhouse production industry, the supplemental lighting required to keep up production levels results in high expenditure. Current technology uses broadband high-pressure sodium (HPS) [...] Read more.
The amount of energy used in agricultural production, processing and distribution is constantly increasing. During the winter months in the greenhouse production industry, the supplemental lighting required to keep up production levels results in high expenditure. Current technology uses broadband high-pressure sodium (HPS) lamps, which is not the most efficient light source for crop production. Recent breakthroughs in the development of light source technologies have led to new opportunities for the use of sustainable and highly efficient light sources in the form of LEDs (light-emitting diodes) for greenhouse lighting. The aim of the study was to evaluate the efficiency of using photosynthetically active radiation (PAR) light for cucumber yielding, production processes and its influence on the variable costs in the cultivation of cucumbers using three different types of lighting. The research was carried out using three individual greenhouse growing area compartments, whereby the plants contained within were lit using three combinations: 1. HPS standard illumination from top HPS sodium lamps—control, 2. HPS-LED—HPS toplighting and LED interlighting, and 3. LED-LED—100% LED lighting, both toplighting and interlighting with LED. The research was conducted in two independent winter crop cycles. The results of the research conducted indicate that the efficiency of light use was the highest in the LED-LED combination and the lowest in HPS, and the use of supplemental lamp lighting in the LED-LED combination (interlighting and toplighting) gives the most favorable surplus of all the variable costs over the value of production to be obtained. Despite the highest absolute level of variable costs in this type of supplemental lighting, the production value was higher by as much as 32.55% in relation to the HPS combination, which also translated into a gross margin that was higher by about ¾. However, it is worth pointing out that, in the HPS-LED combination, the share of lighting and heating costs in the total value of production was the lowest. It is also a combination currently recommended in the literature as being the most beneficial in greenhouse production. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 1270 KB  
Article
Advances in Imaging Diagnostics for Spray and Particle Research in High-Speed Flows
by Julien Manin and William D. Bachalo
Appl. Sci. 2020, 10(4), 1450; https://doi.org/10.3390/app10041450 - 21 Feb 2020
Cited by 4 | Viewed by 3119
Abstract
Measurements of high-pressure sprays and particle fields in high-speed flows have been very challenging for the existing instrumentation. Deformed drops or solid particles significantly limit the range of experimental methods that can be applied for detailed, quantitative measurements. We developed advanced microscope imaging [...] Read more.
Measurements of high-pressure sprays and particle fields in high-speed flows have been very challenging for the existing instrumentation. Deformed drops or solid particles significantly limit the range of experimental methods that can be applied for detailed, quantitative measurements. We developed advanced microscope imaging equipment and diagnostic methods to characterize fast-moving droplets or particles. We designed illumination systems based on high-power light-emitting diode (LED) and incoherent laser devices capable of short, intense light pulses. We compared their characteristics and performance separately, as well as their interaction within a complete line-of-sight microscope imaging system. The optical design of the microscope setup was optimized via ray tracing simulations showing high energy losses for LED illumination compared to laser radiation, as confirmed experimentally. The energy transmission measurements provided guidance about the pulse energy density necessary to maximize camera response and signal-to-noise ratio. Characterization testing supported that both illumination systems are valid options for microscopy applications, with an advantage to LED for image quality and resolution performance, but a strong limitation to distance, where the multi-beam laser system demonstrated its superiority. Full article
(This article belongs to the Special Issue Progress in Spray Science and Technology)
Show Figures

Figure 1

12 pages, 17277 KB  
Article
An FEP Microfluidic Reactor for Photochemical Reactions
by Tomasz Szymborski, Paweł Jankowski, Dominika Ogończyk and Piotr Garstecki
Micromachines 2018, 9(4), 156; https://doi.org/10.3390/mi9040156 - 30 Mar 2018
Cited by 6 | Viewed by 7226
Abstract
Organic syntheses based on photochemical reactions play an important role in the medical, pharmaceutical, and polymeric chemistry. For years, photochemistry was performed using high-pressure mercury lamps and immersion-wells. However, due to excellent yield, control of temperature, selectivity, low consumption of reagents and safety, [...] Read more.
Organic syntheses based on photochemical reactions play an important role in the medical, pharmaceutical, and polymeric chemistry. For years, photochemistry was performed using high-pressure mercury lamps and immersion-wells. However, due to excellent yield, control of temperature, selectivity, low consumption of reagents and safety, the microreactors made of fluorinated ethylene propylene (FEP) tubings have recently been used more frequently. Fluoropolymers are the material of choice for many types of syntheses due to their chemical compatibility and low surface energy. The use of tubing restricts the freedom in designing 2D and 3D geometries of the sections of the microreactors, mixing sections, etc., that are easily achievable in the format of a planar chip. A chip microreactor made of FEP is impracticable to develop due to its high chemical inertness and high melting temperature, both of which make it difficult (or impossible) to bond two plates of polymer. Here, we demonstrate a ‘click’ system, where the two plates of FEP are joined together mechanically using a tenon and a mortise. The concept was presented by us previously for a preparation polytetrafluoroethylene (PTFE) microreactor (Szymborski et al. Sensors Actuators, B Chem. 2017, doi:10.1016/j.snb.2017.09.035). Here, we use the same strategy for FEP plates, test the use of the chips in photochemistry and also describe a custom-designed non-transparent polyethylene (PE) mask-holder with a circular opening to guide and focus the ultraviolet (UV) illumination. The solutions that we describe offer tight microreactor chips, preventing any leakage either of the liquid reagents or of UV light outside the reactor. This allows for conducting photochemical synthesis without a fume hood and without special protection against UV radiation. Full article
(This article belongs to the Special Issue Integrated Microfluidics for Chemical Synthesis and Analysis)
Show Figures

Graphical abstract

Back to TopTop