Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = idiotype–anti-idiotype

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 604 KiB  
Review
Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae
by Lais Alves do-Nascimento, Nicolle Rakanidis Machado, Isabella Siuffi Bergamasco, João Vitor da Silva Borges, Fabio da Ressureição Sgnotto and Jefferson Russo Victor
COVID 2025, 5(8), 121; https://doi.org/10.3390/covid5080121 - 30 Jul 2025
Viewed by 609
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly known as long-COVID—can persist for months. Recent studies have identified the emergence of diverse autoantibodies in COVID-19, including those targeting nuclear antigens, phospholipids, type I interferons, cytokines, endothelial components, and G-protein-coupled receptors. These autoantibodies are more frequently detected in patients with moderate to severe disease and have been implicated in immune dysregulation, vascular injury, and persistent symptoms. This review examines the underlying immunological mechanisms driving autoantibody production during SARS-CoV-2 infection—including molecular mimicry, epitope spreading, and bystander activation—and discusses their functional roles in acute and post-acute disease. We further explore the relevance of autoantibodies in maternal–fetal immunity and comorbid conditions such as autoimmunity and cancer, and we summarize current and emerging therapeutic strategies. A comprehensive understanding of SARS-CoV-2-induced autoantibodies may improve risk stratification, inform clinical management, and guide the development of targeted immunomodulatory therapies. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
Show Figures

Figure 1

23 pages, 39698 KiB  
Article
Anti-C1q Autoantibody-Binding Engineered scFv C1q-Mimicking Fragment Enhances Disease Progression in Lupus-Prone MRL/lpr Mice
by Silviya Bradyanova, Nikolina Mihaylova, Nikola Ralchev, Alexandra Kapogianni, Ginka Cholakova, Kalina Nikolova-Ganeva, Ivanka Tsacheva and Andrey Tchorbanov
Int. J. Mol. Sci. 2025, 26(15), 7048; https://doi.org/10.3390/ijms26157048 - 22 Jul 2025
Viewed by 264
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment of C1q-mediated apoptotic clearance as part of human homeostasis. The capacity of C1q to bind early apoptotic cells could be decreased or even lost in the presence of anti-C1q antibodies. A monoclonal anti-idiotypic single-chain (scFv) antibody was selected from the phage library Griffin1” to recognize anti-C1q autoantibodies, purified from sera of lupus nephritis patients. Lupus-prone MRL/lpr mice were injected weekly with scFv A1 fragment-binding anti-C1q antibodies. The number of in vitro and ex vivo studies with collected cells, sera, and organs from the treated animals was performed. scFv treatment changed the percentage of different B-, T-, and NK-cell subpopulations as well as plasma cells and plasmablasts in the spleen and bone marrow. An increase in the levels of splenocyte proliferation, anti-C1q antibodies, and the number of plasma cells producing anti-dsDNA and anti-C1q antibodies were also observed in scFv-treated animals. High levels of proteinuria and hematuria combined with unstable levels of IL10 and IFNγ promote the development of severe lupus and shorten the survival of treated MRL/lpr mice. Therapy with the scFv A1 antibody resulted in BCR recognition on the surface of anti-C1q-specific B-cells and had a disease progression effect, enhancing lupus symptoms in the MRL/lpr mouse model of SLE. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 6639 KiB  
Article
Treatment of Advanced NSCLC Patients with an Anti-Idiotypic NeuGcGM3-Based Vaccine: Immune Correlates in Long-Term Survivors
by Zaima Mazorra, Haslen H. Cáceres-Lavernia, Elia Nenínger-Vinageras, Leslie M. Varona-Rodríguez, Carmen Elena Viada, Zuyen González, Nely Rodríguez-Zhurbenko, Anne-Christine Thierry, Gisela María Suarez-Formigo, Yendry Ventura-Carmenate, Petra Baumgaertner, Sara Trabanelli, Camila Jandus and Tania Crombet
Biomedicines 2025, 13(5), 1122; https://doi.org/10.3390/biomedicines13051122 - 6 May 2025
Viewed by 801
Abstract
Background: Racotumomab-alum is an anti-idiotype vaccine targeting the NeuGcGM3 tumor-associated ganglioside. Clinical trials in advanced cancer patients have demonstrated low toxicity, high immunogenicity and clinical benefit. The goal of this study was to identify circulating biomarkers of clinical outcome. Methods: Eighteen patients with [...] Read more.
Background: Racotumomab-alum is an anti-idiotype vaccine targeting the NeuGcGM3 tumor-associated ganglioside. Clinical trials in advanced cancer patients have demonstrated low toxicity, high immunogenicity and clinical benefit. The goal of this study was to identify circulating biomarkers of clinical outcome. Methods: Eighteen patients with stage IIIb/IV non-small-cell lung cancer (NSCLC) were injected with racotumomab-alum as switch maintenance therapy after first-line chemotherapy. Treatment was administered until severe performance status worsening or toxicity. The frequencies of innate and adaptive lymphocytes were assessed by flow cytometry. Circulating factors were measured using multi-analyte flow assay kits. Results: The median overall survival was 16.5 months. Twenty-seven percent of patients were classified as long-term survivors. Patients with lower baseline frequencies of CD4+Tregs and central memory (CM) CD8+T cells displayed longer survival rates. Furthermore, higher baseline frequencies of NKT cells and a high CD8+T/CD4+Treg ratio were associated with longer survival. Interestingly, patients with significantly lower levels of effector memory (EM) CD8+T cells survived longer. The levels of NKT cells and terminal effector memory (EMRA) CD8+T cells were higher in long-term survivors in comparison with short-term survivors in post-immune samples. As expected, the ratio of CD8+T/CD4+Tregs showed significantly higher values during treatment in patients with clinical benefits. Regarding serum factors, pro-tumorigenic cytokines significantly increased during treatment in poor survivors. Conclusions: In advanced NSCLC patients receiving racotumomab-alum vaccine, longer survival could be associated with a unique profile of circulating lymphocyte subsets at baseline and during treatment. Additionally, certain pro-tumor-related cytokines increased in short-term survivors. These results should be confirmed in larger randomized clinical trials. This clinical trial was registered in the Cuban Clinical Trials Register (RPCE00000279). Full article
Show Figures

Figure 1

18 pages, 7251 KiB  
Article
Assessment of the Effects of Single-Domain Anti-Idiotypic Distribution Enhancers on the Disposition of Trastuzumab and on the Efficacy of a PE24-Trastuzumab Immunotoxin
by Ping Chen, Yu Zhang, Brandon M. Bordeau and Joseph P. Balthasar
Cancers 2025, 17(9), 1468; https://doi.org/10.3390/cancers17091468 - 27 Apr 2025
Viewed by 478
Abstract
Background/Objectives: Antibody-based therapies often exhibit limited distribution within solid tumors due to the “binding-site barrier” (BSB). Our group has developed and validated the use of anti-idiotypic distribution enhancers (AIDEs), which transiently block antibody binding, improving intra-tumoral distribution and efficacy. This study evaluated 1HE [...] Read more.
Background/Objectives: Antibody-based therapies often exhibit limited distribution within solid tumors due to the “binding-site barrier” (BSB). Our group has developed and validated the use of anti-idiotypic distribution enhancers (AIDEs), which transiently block antibody binding, improving intra-tumoral distribution and efficacy. This study evaluated 1HE and LG1, model anti-trastuzumab AIDEs, in combination with trastuzumab–PE24, a highly potent immunotoxin. Methods: The effects of 1HE on the whole-body disposition of radiolabeled trastuzumab were assessed in NCI-N87 tumor-bearing mice. Mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling was employed to explore how AIDE binding kinetics influence antibody intra-tumoral distribution and immunotoxin potency. Trastuzumab–PE24 was developed by site-specific conjugation, enabled by self-splicing split intein, with cytotoxicity tested on various cell lines in vitro. The impact of 1HE and LG1 coadministration on trastuzumab–PE24 efficacy was evaluated in NCI-N87 xenograft-bearing mice. Results: 1HE coadministration decreased trastuzumab tumor maximum concentration, reducing tumor terminal slope by 8% and overall tumor exposure by 2.6%, without negatively affecting selectivity. Modeling predicted the optimal AIDE dissociation rate constant for trastuzumab–PE24 to be between 0.015 and 0.3 h−1. The coadministration of trastuzumab–PE24 with 1HE and LG1 improved anti-tumor efficacy and extended median survival to 60 days (p = 0.0002). Conclusions: AIDE coadministration led to minimal negative impacts on overall tumor exposure, consistent with model simulations. AIDE coadministration improved the efficacy of trastuzumab–PE24 in NCI-N87 xenografts. Modeling further predicted that repeated AIDE administration with trastuzumab–PE24 could induce complete tumor regression. These findings highlight the advantages of the AIDE strategy, particularly when coadministered with highly potent immunotoxins. Full article
(This article belongs to the Special Issue Development of Biomarkers and Antineoplastic Drugs in Solid Tumors)
Show Figures

Figure 1

18 pages, 3049 KiB  
Review
Camptothein-Based Anti-Cancer Therapies and Strategies to Improve Their Therapeutic Index
by Jue Gong, Wenqiu Zhang and Joseph P. Balthasar
Cancers 2025, 17(6), 1032; https://doi.org/10.3390/cancers17061032 - 20 Mar 2025
Cited by 1 | Viewed by 1784
Abstract
Camptothecin and its derivatives (CPTs) are potent antineoplastic agents that exert their effects by inhibiting DNA topoisomerase I, leading to apoptosis during cell proliferation. Since their discovery in the 1960s, CPTs have faced challenges such as low water solubility, pH-dependent lactone ring instability, [...] Read more.
Camptothecin and its derivatives (CPTs) are potent antineoplastic agents that exert their effects by inhibiting DNA topoisomerase I, leading to apoptosis during cell proliferation. Since their discovery in the 1960s, CPTs have faced challenges such as low water solubility, pH-dependent lactone ring instability, and severe off-target toxicities. Despite extensive research, only two CPTs, irinotecan and topotecan, have received health authority approval. Ongoing clinical trials continue to explore the use of CPTs in combination with targeted therapies and immunotherapies to expand their clinical use. Drug delivery systems, including liposomes and antibody–drug conjugates (ADCs), have significantly enhanced the therapeutic index of CPTs. Liposomal irinotecan (Onivyde®, Ipsen, Paris, France) and two ADCs delivering CPT payloads, trastuzumab deruxtecan (Enhertu®, Daiichi Sankyo, Tokyo, Japan) and sacituzumab govitecan (Trodelvy®, Gilead Sciences, Inc., Foster City, CA, USA), have demonstrated substantial efficacy and safety. There is promise that novel strategies such as inverse targeting and co-dosing with anti-idiotypic distribution enhancers may expand the utility of CPT ADCs. This review highlights CPT therapies in clinical use and discusses approaches to further enhance their therapeutic selectivity. Full article
(This article belongs to the Special Issue Advances in Drug Delivery for Cancer Therapy)
Show Figures

Figure 1

10 pages, 1177 KiB  
Article
Sequential SARS-CoV-2 mRNA Vaccination Induces Anti-Idiotype (Anti-ACE2) Antibodies in K18 Human ACE2 Transgenic Mice
by Craig P. Collins, Christian Herzog, Logan V. Vick, Ryan Nielsen, Yanping Izak Harville, Dan L. Longo, John M. Arthur and William J. Murphy
Vaccines 2025, 13(3), 224; https://doi.org/10.3390/vaccines13030224 - 24 Feb 2025
Cited by 1 | Viewed by 1170
Abstract
Background/Objectives: Novel mRNA vaccines have been successfully utilized to curtail the SARS-CoV-2 pandemic. However, the immunology underlying CoV2 vaccinations, particularly with repeated boosting, has not been properly characterized due to limitations in the preclinical modeling of SARS-CoV-2 infection/vaccinations as well as constantly changing [...] Read more.
Background/Objectives: Novel mRNA vaccines have been successfully utilized to curtail the SARS-CoV-2 pandemic. However, the immunology underlying CoV2 vaccinations, particularly with repeated boosting, has not been properly characterized due to limitations in the preclinical modeling of SARS-CoV-2 infection/vaccinations as well as constantly changing vaccine formulations. The immunoregulatory aspects involved in such vaccine approaches remain unclear. Antibodies, due to inherent immunogenicity by VDJ gene rearrangement, have the potential to induce antibodies directed towards them called anti-idiotype antibodies, which can play a downregulatory role in responses. The paratope of some of these anti-idiotype antibodies can also act as a mirror to the original antigen, which, in the case of SARS-CoV-2 vaccines, would be to the spike protein and, therefore, also be capable of binding its target, ACE2, potentially causing adverse effects. Methods: To investigate if sequential SARS-CoV-2 mRNA vaccination can induce anti-idiotype antibody responses, K18 hACE2 transgenic mice were serially vaccinated with a SARS-CoV-2 mRNA construct to determine the kinetics of anti-spike and anti-ACE2 responses via custom-made ELISAs. Results: While sequential vaccination produced robust anti-spike responses, anti-ACE2 levels were also detected and gradually amplified with each boost. These anti-ACE2 antibodies persisted for 3 months after the final vaccination and showed evidence of hACE2 binding, as levels were lower in K18 mice in comparison to the wild type. Conclusions: These data would suggest that sequential SARS-CoV-2 mRNA vaccination has the potential to induce anti-ACE2 antibodies in mice, with each boost amplifying the amount of antibody. Full article
(This article belongs to the Special Issue Analysis of Vaccine-Induced Adaptive Immune Responses)
Show Figures

Graphical abstract

37 pages, 2578 KiB  
Review
Tackling Infectious Diseases in the Caribbean and South America: Epidemiological Insights, Antibiotic Resistance, Associated Infectious Diseases in Immunological Disorders, Global Infection Response, and Experimental Anti-Idiotypic Vaccine Candidates Against Microorganisms of Public Health Importance
by Angel Justiz-Vaillant, Sachin Soodeen, Darren Gopaul, Rodolfo Arozarena-Fundora, Reinand Thompson, Chandrashekhar Unakal and Patrick E. Akpaka
Microorganisms 2025, 13(2), 282; https://doi.org/10.3390/microorganisms13020282 - 27 Jan 2025
Cited by 2 | Viewed by 2714
Abstract
This paper explores various aspects of microbiology and immunology, with a particular focus on the epidemiology and molecular characterisation of infectious diseases in the Caribbean and South America. Key areas of investigation include tuberculosis (TB), experimental vaccines, and bloodborne pathogens. A retrospective study [...] Read more.
This paper explores various aspects of microbiology and immunology, with a particular focus on the epidemiology and molecular characterisation of infectious diseases in the Caribbean and South America. Key areas of investigation include tuberculosis (TB), experimental vaccines, and bloodborne pathogens. A retrospective study conducted in Jamaica highlights the significance of early HIV screening, timely diagnosis, and inte-grated care. The paper also examines the challenges posed by nosocomial infections, particularly those caused by antibiotic-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), emphasising the critical importance of infection control measures. Additionally, it explores the regional microbiome, the global response to infectious diseases, and immune responses in patients with immunodeficiency disorders such as severe combined immunodeficiency (SCID) and chronic granulomatous disease (CGD), underscoring their heightened susceptibility to a wide range of infections. Full article
(This article belongs to the Special Issue Latest Review Papers in Medical Microbiology 2024)
Show Figures

Figure 1

18 pages, 2554 KiB  
Article
Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus
by Shreya Mukhopadhyay, Ioannis Manolaridis, Christopher Warren, Aimin Tang, Gregory O’Donnell, Bin Luo, Ryan P. Staupe, Kalpit A. Vora and Zhifeng Chen
Vaccines 2025, 13(1), 35; https://doi.org/10.3390/vaccines13010035 - 2 Jan 2025
Cited by 1 | Viewed by 1985
Abstract
Background/Objectives: The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and [...] Read more.
Background/Objectives: The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner. RB1, a monoclonal antibody (mAb) that binds to site IV of the RSV fusion (RSV F) protein, is a potent and broadly neutralizing against RSV A and B viruses. It is the precursor for MK1654 (clesrovimab), which successfully completed a Phase III clinical trial. Methods: In this study, we isolated two anti-IDs, 1A6 and 1D4, targeting RB1 CDR regions, demonstrating that 1A6 competes fully with RSV F in binding to RB1. Results: We resolved the RB1-1A6 and RB1-1D4 Fab-Fab complex structures and proved that 1A6 mimics the RSV F site IV better than 1D4. In an immunogenicity study, mice primed with RSV F and boosted with 1A6 Fab showed a site IV-specific antibody response with a concurrent increase in RSV virus neutralization. Conclusions: These results suggest that anti-IDs could be potentially used as booster vaccines for specific epitopes. Full article
(This article belongs to the Special Issue Immune Response After Respiratory Infection or Vaccination)
Show Figures

Figure 1

19 pages, 852 KiB  
Article
Autoantibodies Targeting G-Protein-Coupled Receptors and RAS-Related Molecules in Post-Acute COVID Vaccination Syndrome: A Retrospective Case Series Study
by Mauro Mantovani, Paolo Bellavite, Serafino Fazio, Giuseppe Di Fede, Marco Tomasi, Daniele Belli and Elisabetta Zanolin
Biomedicines 2024, 12(12), 2852; https://doi.org/10.3390/biomedicines12122852 - 15 Dec 2024
Cited by 1 | Viewed by 18644
Abstract
Background/Objectives: While post-acute COVID-19 syndrome is well known and extensively studied, the post-acute COVID vaccination syndrome (PACVS) is a more recent nosological entity that is poorly defined at the immunopathological level, although it shares many symptoms with the sequelae of viral infections. [...] Read more.
Background/Objectives: While post-acute COVID-19 syndrome is well known and extensively studied, the post-acute COVID vaccination syndrome (PACVS) is a more recent nosological entity that is poorly defined at the immunopathological level, although it shares many symptoms with the sequelae of viral infections. Methods: This single-center retrospective study reports a case series of 17 subjects vaccinated with mRNA or adenoviral vector vaccines who were healthy before vaccination and had never been infected with SARS-CoV-2 but who presented with symptoms similar to PACVS for a median time of 20 months (min 4, max 32). The medical records of all patients referred to our outpatient clinic over a one-year period were retrospectively analyzed. Results: In this group, serological tests showed that, in addition to positivity for anti-spike protein antibodies, a high percentage of subjects were positive for antibodies against G protein-coupled receptors and molecules involved in the response to SARS-CoV-2. In a panel of 16 autoantibodies tested, a few were positively associated with some of the symptoms reported by patients: anti-ATR1 with lymphadenopathy and/or tonsillitis; anti-ACE2 with skin symptoms such as ecchymosis, skin oedema, and rash; anti-MAS1 with widespread burning sensation; and anti-STAB1 with skin oedema and rash. Anti-ADRA2A were negatively associated with memory loss and/or mental fog. ACE2 correlated with the serum levels of anti-S antibodies, supporting the hypothesis of an anti-idiotype mechanism in the immunopathogenesis of PACVS. Conclusions: This exploratory analysis suggests that the levels of autoantibodies directed against ACE2, and probably also MAS1 and STAB1, may serve as biomarkers for PACVS. Full article
Show Figures

Graphical abstract

9 pages, 1116 KiB  
Perspective
The Immunologic Downsides Associated with the Powerful Translation of Current COVID-19 Vaccine mRNA Can Be Overcome by Mucosal Vaccines
by Maurizio Federico
Vaccines 2024, 12(11), 1281; https://doi.org/10.3390/vaccines12111281 - 14 Nov 2024
Cited by 2 | Viewed by 38877
Abstract
The action of mRNA-based vaccines requires the expression of the antigen in cells targeted by lipid nanoparticle–mRNA complexes. When the vaccine antigen is not fully retained by the producer cells, its local and systemic diffusion can have consequences depending on both the levels [...] Read more.
The action of mRNA-based vaccines requires the expression of the antigen in cells targeted by lipid nanoparticle–mRNA complexes. When the vaccine antigen is not fully retained by the producer cells, its local and systemic diffusion can have consequences depending on both the levels of antigen expression and its biological activity. A peculiarity of mRNA-based COVID-19 vaccines is the extraordinarily high amounts of the Spike antigen expressed by the target cells. In addition, vaccine Spike can be shed and bind to ACE-2 cell receptors, thereby inducing responses of pathogenetic significance including the release of soluble factors which, in turn, can dysregulate key immunologic processes. Moreover, the circulatory immune responses triggered by the vaccine Spike is quite powerful, and can lead to effective anti-Spike antibody cross-binding, as well as to the emergence of both auto- and anti-idiotype antibodies. In this paper, the immunologic downsides of the strong efficiency of the translation of the mRNA associated with COVID-19 vaccines are discussed together with the arguments supporting the idea that most of them can be avoided with the advent of next-generation, mucosal COVID-19 vaccines. Full article
Show Figures

Figure 1

22 pages, 1548 KiB  
Review
Chondroitin Sulfate Proteoglycan 4 (CSPG4) as an Emerging Target for Immunotherapy to Treat Melanoma
by Xinyi Chen, Shabana Habib, Madalina Alexandru, Jitesh Chauhan, Theodore Evan, Joanna M. Troka, Avigail Rahimi, Benjamina Esapa, Thomas J. Tull, Wen Zhe Ng, Amanda Fitzpatrick, Yin Wu, Jenny L. C. Geh, Hawys Lloyd-Hughes, Lais C. G. F. Palhares, Rebecca Adams, Heather J. Bax, Sean Whittaker, Joanna Jacków-Malinowska and Sophia N. Karagiannis
Cancers 2024, 16(19), 3260; https://doi.org/10.3390/cancers16193260 - 25 Sep 2024
Cited by 3 | Viewed by 4240
Abstract
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of [...] Read more.
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of immunotherapies directly focused on melanoma cells. This is partly due to few available targets, especially those expressed on the cancer cell surface. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface molecule overexpressed in human melanoma, with restricted distribution and low expression in non-malignant tissues and involved in several cancer-promoting and dissemination pathways. Here, we summarize the current understanding of the expression and functional significance of CSPG4 in health and melanoma, and we outline immunotherapeutic strategies. These include monoclonal antibodies, antibody–drug conjugates (ADCs), chimeric-antigen receptor (CAR) T cells, and other strategies such as anti-idiotypic and mimotope vaccines to raise immune responses against CSPG4-expressing melanomas. Several showed promising functions in preclinical models of melanoma, yet few have reached clinical testing, and none are approved for therapeutic use. Obstacles preventing that progress include limited knowledge of CSPG4 function in human cancer and a lack of in vivo models that adequately represent patient immune responses and human melanoma biology. Despite several challenges, immunotherapy directed to CSPG4-expressing melanoma harbors significant potential to transform the treatment landscape. Full article
(This article belongs to the Collection The Development of Anti-cancer Agents)
Show Figures

Figure 1

13 pages, 3319 KiB  
Article
Anti-HIV Humoral Response Induced by Different Anti-Idiotype Antibody Formats: An In Silico and In Vivo Approach
by Valeria Caputo, Ilaria Negri, Louiza Moudoud, Martina Libera, Luigi Bonizzi, Massimo Clementi and Roberta Antonia Diotti
Int. J. Mol. Sci. 2024, 25(11), 5737; https://doi.org/10.3390/ijms25115737 - 24 May 2024
Viewed by 1408
Abstract
Despite advancements in vaccinology, there is currently no effective anti-HIV vaccine. One strategy under investigation is based on the identification of epitopes recognized by broadly neutralizing antibodies to include in vaccine preparation. Taking into account the benefits of anti-idiotype molecules and the diverse [...] Read more.
Despite advancements in vaccinology, there is currently no effective anti-HIV vaccine. One strategy under investigation is based on the identification of epitopes recognized by broadly neutralizing antibodies to include in vaccine preparation. Taking into account the benefits of anti-idiotype molecules and the diverse biological attributes of different antibody formats, our aim was to identify the most immunogenic antibody format. This format could serve as a foundational element for the development of an oligo-polyclonal anti-idiotype vaccine against HIV-1. For our investigation, we anchored our study on an established b12 anti-idiotype, referred to as P1, and proposed four distinct formats: two single chains and two minibodies, both in two different orientations. For a deeper characterization of these molecules, we used immunoinformatic tools and tested them on rabbits. Our studies have revealed that a particular minibody conformation, MbVHVL, emerges as the most promising candidate. It demonstrates a significant binding affinity with b12 and elicits a humoral anti-HIV-1 response in rabbits similar to the Fab format. This study marks the first instance where the minibody format has been shown to provoke a humoral response against a pathogen. Furthermore, this format presents biological advantages over the Fab format, including bivalency and being encoded by a monocistronic gene, making it better suited for the development of RNA-based vaccines. Full article
(This article belongs to the Special Issue Advanced Research on HIV Virus and Infection)
Show Figures

Figure 1

16 pages, 4250 KiB  
Article
Anti-Idiotypic VHHs and VHH-CAR-T Cells to Tackle Multiple Myeloma: Different Applications Call for Different Antigen-Binding Moieties
by Heleen Hanssens, Fien Meeus, Emma L. Gesquiere, Janik Puttemans, Yannick De Vlaeminck, Kim De Veirman, Karine Breckpot and Nick Devoogdt
Int. J. Mol. Sci. 2024, 25(11), 5634; https://doi.org/10.3390/ijms25115634 - 22 May 2024
Cited by 3 | Viewed by 2723
Abstract
CAR-T cell therapy is at the forefront of next-generation multiple myeloma (MM) management, with two B-cell maturation antigen (BCMA)-targeted products recently approved. However, these products are incapable of breaking the infamous pattern of patient relapse. Two contributing factors are the use of BCMA [...] Read more.
CAR-T cell therapy is at the forefront of next-generation multiple myeloma (MM) management, with two B-cell maturation antigen (BCMA)-targeted products recently approved. However, these products are incapable of breaking the infamous pattern of patient relapse. Two contributing factors are the use of BCMA as a target molecule and the artificial scFv format that is responsible for antigen recognition. Tackling both points of improvement in the present study, we used previously characterized VHHs that specifically target the idiotype of murine 5T33 MM cells. This idiotype represents one of the most promising yet challenging MM target antigens, as it is highly cancer- but also patient-specific. These VHHs were incorporated into VHH-based CAR modules, the format of which has advantages compared to scFv-based CARs. This allowed a side-by-side comparison of the influence of the targeting domain on T cell activation. Surprisingly, VHHs previously selected as lead compounds for targeted MM radiotherapy are not the best (CAR-) T cell activators. Moreover, the majority of the evaluated VHHs are incapable of inducing any T cell activation. As such, we highlight the importance of specific VHH selection, depending on its intended use, and thereby raise an important shortcoming of current common CAR development approaches. Full article
Show Figures

Graphical abstract

34 pages, 4010 KiB  
Review
Cellular and Molecular Immunity to Influenza Viruses and Vaccines
by Jane Kasten-Jolly and David A. Lawrence
Vaccines 2024, 12(4), 389; https://doi.org/10.3390/vaccines12040389 - 7 Apr 2024
Cited by 5 | Viewed by 4404
Abstract
Immune responses to influenza (flu) antigens reflect memory of prior infections or vaccinations, which might influence immunity to new flu antigens. Memory of past antigens has been termed “original antigenic sin” or, more recently, “immune imprinting” and “seniority”. We have researched a comparison [...] Read more.
Immune responses to influenza (flu) antigens reflect memory of prior infections or vaccinations, which might influence immunity to new flu antigens. Memory of past antigens has been termed “original antigenic sin” or, more recently, “immune imprinting” and “seniority”. We have researched a comparison between the immune response to live flu infections and inactivated flu vaccinations. A brief history of antibody generation theories is presented, culminating in new findings about the immune-network theory and suggesting that a network of clones exists between anti-idiotypic antibodies and T cell receptors. Findings regarding the 2009 pandemic flu strain and immune responses to it are presented, including memory B cells and conserved regions within the hemagglutinin protein. The importance of CD4+ memory T cells and cytotoxic CD8+ T cells responding to both infections and vaccinations are discussed and compared. Innate immune cells, like natural killer (NK) cells and macrophages, are discussed regarding their roles in adaptive immune responses. Antigen presentation via macroautophagy processes is described. New vaccines in development are mentioned along with the results of some clinical trials. The manuscript concludes with how repeated vaccinations are impacting the immune system and a sketch of what might be behind the imprinting phenomenon, including future research directions. Full article
Show Figures

Figure 1

23 pages, 4262 KiB  
Article
Anti-Idiotypic Nanobodies Mimicking an Epitope of the Needle Protein of the Chlamydial Type III Secretion System for Targeted Immune Stimulation
by Ekaterina A. Koroleva, Oksana S. Goryainova, Tatiana I. Ivanova, Marina V. Rutovskaya, Naylia A. Zigangirova and Sergei V. Tillib
Int. J. Mol. Sci. 2024, 25(4), 2047; https://doi.org/10.3390/ijms25042047 - 7 Feb 2024
Cited by 1 | Viewed by 1858
Abstract
The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an [...] Read more.
The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation. Full article
(This article belongs to the Special Issue Advances in Single Domain-Based Antibodies)
Show Figures

Figure 1

Back to TopTop