Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = hyperthermia-induced seizures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8257 KiB  
Article
Ultrastructural Analysis of the Large Neuronal Perikarya in an Injured Dentate Nucleus Using an Experimental Model of Hyperthermia-Induced Convulsions: The First Qualitative and Quantitative Study
by Joanna Maria Łotowska, Marta Borowska, Milena Żochowska-Sobaniec, Krzysztof Sendrowski and Maria Elżbieta Sobaniec-Łotowska
J. Clin. Med. 2024, 13(18), 5501; https://doi.org/10.3390/jcm13185501 - 18 Sep 2024
Viewed by 1326
Abstract
Background: Febrile seizures are a common form of convulsions in childhood, with poorly known cellular mechanisms. The objective of this pioneering study was to provide qualitative and quantitative ultrastructural research on the large neuronal perikarya in the cerebellar dentate nucleus (DN), using [...] Read more.
Background: Febrile seizures are a common form of convulsions in childhood, with poorly known cellular mechanisms. The objective of this pioneering study was to provide qualitative and quantitative ultrastructural research on the large neuronal perikarya in the cerebellar dentate nucleus (DN), using an experimental model of hyperthermia-induced seizures (HSs), comparable to febrile seizures in children. Methods: The study used young male Wistar rats, divided into experimental and control groups. The HSs were evoked by a hyperthermic water bath at 45 °C for 4 min for four consecutive days. Specimens (1 mm3) collected from the DN were routinely processed for transmission electron microscopy studies. Results: The ultrastructure of the large neurons in the DN affected by hyperthermic stress showed variously pronounced lesions in the perikarya, including total cell disintegration. The most pronounced neuronal lesions exhibited specific morphological signs of aponecrosis, i.e., dark cell degeneration (‘dark neurons’). In close vicinity to the ‘dark neurons’, the aponecrotic bodies were found. The findings of this qualitative ultrastructural study correspond with the results of the morphometric analysis of the neuronal perikarya. Conclusions: Our results may constitute interesting comparative material for similar submicroscopic observations on large DN neurons in HS morphogenesis and, in the future, may help to find potential treatment targets to prevent febrile seizures or reduce recurrent seizures in children. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

14 pages, 2318 KiB  
Article
Maternal Caffeine Consumption during Gestation and Lactation Abolishes Cortical Oxidative Stress and Restores Na+/K+-ATPase Activity in Neonates Exposed to Hyperthermia-Induced Seizures
by María Crespo, David Agustín León-Navarro and Mairena Martín
Biomedicines 2023, 11(12), 3292; https://doi.org/10.3390/biomedicines11123292 - 12 Dec 2023
Viewed by 1612
Abstract
Caffeine is a psychoactive substance that is widely consumed by individuals of various demographics, including pregnant women. It can readily cross the blood–brain and placental barriers, easily reaching the fetal brain. In addition, caffeine has also shown antioxidant properties, as its consumption reduces [...] Read more.
Caffeine is a psychoactive substance that is widely consumed by individuals of various demographics, including pregnant women. It can readily cross the blood–brain and placental barriers, easily reaching the fetal brain. In addition, caffeine has also shown antioxidant properties, as its consumption reduces oxidative stress in various pathologies, including epilepsy. Febrile seizures (FS) are among the most common convulsive disorders in infants and young children. Here, we used an animal model of FS to learn whether maternal caffeine (1 g/L) intake consumption during gestation and lactation could exert beneficial effects on the rat cortex. Neonatal development was analyzed by measuring pinna opening, eye opening, righting reflex on the surface, and geotaxis reflex. Five and twenty days after HIS, the rats were euthanized, and plasma membranes and cytosolic fractions were isolated from their cortex brain. The enzymatic activities of glutathione reductase, glutathione S-transferase, Na+/K+-ATPase, and Mg2+-ATPase, as well as the levels of thiobarbituric acid reacting substances, were quantified. Results showed that maternal caffeine intake eliminates oxidative stress and normalizes Na+/K+-ATPase activity disrupted by HIS and also affects some parameters relating to the neurodevelopment of neonates. As FS in infants has been related to epilepsy in adults, the antioxidant properties of caffeine could prevent potential damage from hyperthermia. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Novel Therapies for Brain Injury)
Show Figures

Figure 1

15 pages, 7664 KiB  
Article
Febrile Seizures Cause a Rapid Depletion of Calcium-Permeable AMPA Receptors at the Synapses of Principal Neurons in the Entorhinal Cortex and Hippocampus of the Rat
by Tatyana Y. Postnikova, Alexandra V. Griflyuk, Arseniy S. Zhigulin, Elena B. Soboleva, Oleg I. Barygin, Dmitry V. Amakhin and Aleksey V. Zaitsev
Int. J. Mol. Sci. 2023, 24(16), 12621; https://doi.org/10.3390/ijms241612621 - 9 Aug 2023
Cited by 7 | Viewed by 1722
Abstract
Febrile seizures (FSs) are a relatively common early-life condition that can cause CNS developmental disorders, but the specific mechanisms of action of FS are poorly understood. In this work, we used hyperthermia-induced FS in 10-day-old rats. We demonstrated that the efficiency of glutamatergic [...] Read more.
Febrile seizures (FSs) are a relatively common early-life condition that can cause CNS developmental disorders, but the specific mechanisms of action of FS are poorly understood. In this work, we used hyperthermia-induced FS in 10-day-old rats. We demonstrated that the efficiency of glutamatergic synaptic transmission decreased rapidly after FS by recording local field potentials. This effect was transient, and after two days there were no differences between control and post-FS groups. During early ontogeny, the proportion of calcium-permeable (CP)-AMPA receptors in the synapses of the principal cortical and hippocampal neurons is high. Therefore, rapid internalization of CP-AMPA receptors may be one of the mechanisms underlying this phenomenon. Using the whole-cell patch-clamp method and the selective CP-AMPA receptor blocker IEM-1460, we tested whether the proportion of CP-AMPA receptors changed. We have demonstrated that FS rapidly reduces synaptic CP-AMPA receptors in both the hippocampus and the entorhinal cortex. This process was accompanied by a sharp decrease in the calcium permeability of the membrane of principal neurons, which we revealed in experiments with kainate-induced cobalt uptake. Our experiments show that FSs cause rapid changes in the function of the glutamatergic system, which may have compensatory effects that prevent excessive excitotoxicity and neuronal death. Full article
Show Figures

Figure 1

15 pages, 3177 KiB  
Article
Na+/K+- and Mg2+-ATPases and Their Interaction with AMPA, NMDA and D2 Dopamine Receptors in an Animal Model of Febrile Seizures
by María Crespo, David Agustín León-Navarro and Mairena Martín
Int. J. Mol. Sci. 2022, 23(23), 14638; https://doi.org/10.3390/ijms232314638 - 24 Nov 2022
Cited by 8 | Viewed by 2191
Abstract
Febrile seizures (FS) are one of the most common seizure disorders in childhood which are classified into short and prolonged, depending on their duration. Short FS are usually considered as benign. However, epidemiological studies have shown an association between prolonged FS and temporal [...] Read more.
Febrile seizures (FS) are one of the most common seizure disorders in childhood which are classified into short and prolonged, depending on their duration. Short FS are usually considered as benign. However, epidemiological studies have shown an association between prolonged FS and temporal lobe epilepsy. The development of animal models of FS has been very useful to investigate the mechanisms and the consequences of FS. One of the most used, the “hair dryer model”, has revealed that prolonged FS may lead to temporal lobe epilepsy by altering neuronal function. Several pieces of evidence suggest that Na+/ K+-ATPase and Mg2+-ATPase may play a role in this epileptogenic process. In this work, we found that hyperthermia-induced seizures (HIS) significantly increased the activity of Na+/ K+-ATPase and Mg2+-ATPase five and twenty days after hyperthermic insult, respectively. These effects were diminished in response to AMPA, D2 dopamine A1 and A2A receptors activation, respectively. Furthermore, HIS also significantly increased the protein level of the AMPA subunit GluR1. Altogether, the increased Na+/ K+-ATPase and Mg2+-ATPase agree well with the presence of protective mechanisms. However, the reduction in ATPase activities in the presence of NMDA and AMPA suggest an increased propensity for epileptic events in adults. Full article
(This article belongs to the Special Issue Advances in Neurodevelopmental Disorders (NDDs) Research)
Show Figures

Figure 1

16 pages, 4442 KiB  
Article
Prolonged Febrile Seizures Impair Synaptic Plasticity and Alter Developmental Pattern of Glial Fibrillary Acidic Protein (GFAP)-Immunoreactive Astrocytes in the Hippocampus of Young Rats
by Alexandra V. Griflyuk, Tatyana Y. Postnikova and Aleksey V. Zaitsev
Int. J. Mol. Sci. 2022, 23(20), 12224; https://doi.org/10.3390/ijms232012224 - 13 Oct 2022
Cited by 8 | Viewed by 2433
Abstract
Prolonged neonatal febrile seizures (FSs) often lead to cognitive decline and increased risk of psychopathology in adulthood. However, the neurobiological mechanisms underlying the long-term adverse effects of FSs remain unclear. In this study, we exposed rat pups to hyperthermia and induced FSs lasting [...] Read more.
Prolonged neonatal febrile seizures (FSs) often lead to cognitive decline and increased risk of psychopathology in adulthood. However, the neurobiological mechanisms underlying the long-term adverse effects of FSs remain unclear. In this study, we exposed rat pups to hyperthermia and induced FSs lasting at least 15 min. We investigated the short-term (one day) and delayed (11–13 and 41–45 days) effects of FSs on some parameters of morphological and functional maturation in the hippocampus. We noticed that FSs altered the developmental pattern of glial fibrillary acidic protein (GFAP) immunoreactivity. In rats aged 21–23 days, GFAP-positive astrocytes covered a smaller area, and their morphological characteristics resembled those of rats at 11 days of age. In post-FS rats, the magnitude of long-term synaptic potentiation was reduced compared to control animals of the same age. Applying the gliotransmitter D-serine, an agonist of the glycine site of NMDA receptors, restored LTP to control values. A decrease in LTP amplitude was correlated with impaired spatial learning and memory in the Barnes maze task in post-FS rats. Our data suggest that impaired neuron–glia interactions may be an essential mechanism of the adverse effects of FS on the developing brain. Full article
Show Figures

Figure 1

15 pages, 5056 KiB  
Article
Influence of Topiramate on the Synaptic Endings of the Temporal Lobe Neocortex in an Experimental Model of Hyperthermia-Induced Seizures: An Ultrastructural Study
by Piotr Sobaniec, Joanna Maria Lotowska, Maria Elzbieta Sobaniec-Lotowska and Milena Zochowska-Sobaniec
Brain Sci. 2021, 11(11), 1433; https://doi.org/10.3390/brainsci11111433 - 28 Oct 2021
Cited by 4 | Viewed by 2490
Abstract
The objective of this pioneering study was to assess potentially neuroprotective properties of topiramate (TPM), a broad spectrum and newer-generation antiepileptic used against damage to synaptic endings of the temporal lobe neocortex in experimental hyperthermia-induced seizures (HS). TPM (80 mg/kg b.m.) was administered [...] Read more.
The objective of this pioneering study was to assess potentially neuroprotective properties of topiramate (TPM), a broad spectrum and newer-generation antiepileptic used against damage to synaptic endings of the temporal lobe neocortex in experimental hyperthermia-induced seizures (HS). TPM (80 mg/kg b.m.) was administered in young male Wistar rats with an intragastric tube before and immediately after HS. Specimens (1 mm3) collected from the neocortex, fixed via transcardial perfusion with paraformaldehyde and glutaraldehyde solution, were routinely processed for transmission-electron microscopic study, i.e., for descriptive and morphometric analysis. The ultrastructure of neocortical neuropil components affected by hyperthermic stress showed distinct swelling of pre and post-synaptic axodendritic and axospinal endings, including total disintegration. Mitochondria were markedly damaged in synaptic structures. Axoplasm of presynaptic boutons contained a decreased number of synaptic vesicles. Synaptic junctions showed active zone-shortening. Preventive administration of TPM before HS induction demonstrated neuroprotective effects against synaptic damage in approximately 1/4 of these structures. Interestingly, beneficial effects on synapsis morphology were more common in perivascular zones close to well-preserved capillaries. They were demonstrated by smaller swelling of both presynaptic and postsynaptic parts, well-preserved mitochondria, an increased number and regular distribution of synaptic vesicles within axoplasm, and a significantly increased synaptic active zones. However, topiramate used directly after HS was ineffective in the prevention of hyperthermia-evoked synaptic injury. Our findings support the hypothesis that topiramate applied before HS can protect some neocortical synapses via the vascular factor by enhancing blood–brain barrier components and improving the blood supply of gray matter in the temporal lobe, which may be significant in febrile seizure-prevention in children. Full article
(This article belongs to the Special Issue Brain Evolution, Development, and Diseases)
Show Figures

Figure 1

22 pages, 9620 KiB  
Article
Early Life Febrile Seizures Impair Hippocampal Synaptic Plasticity in Young Rats
by Tatyana Y. Postnikova, Alexandra V. Griflyuk, Dmitry V. Amakhin, Anna A. Kovalenko, Elena B. Soboleva, Olga E. Zubareva and Aleksey V. Zaitsev
Int. J. Mol. Sci. 2021, 22(15), 8218; https://doi.org/10.3390/ijms22158218 - 30 Jul 2021
Cited by 29 | Viewed by 3528
Abstract
Febrile seizures (FSs) in early life are significant risk factors of neurological disorders and cognitive impairment in later life. However, existing data about the impact of FSs on the developing brain are conflicting. We aimed to investigate morphological and functional changes in the [...] Read more.
Febrile seizures (FSs) in early life are significant risk factors of neurological disorders and cognitive impairment in later life. However, existing data about the impact of FSs on the developing brain are conflicting. We aimed to investigate morphological and functional changes in the hippocampus of young rats exposed to hyperthermia-induced seizures at postnatal day 10. We found that FSs led to a slight morphological disturbance. The cell numbers decreased by 10% in the CA1 and hilus but did not reduce in the CA3 or dentate gyrus areas. In contrast, functional impairments were robust. Long-term potentiation (LTP) in CA3-CA1 synapses was strongly reduced, which we attribute to the insufficient activity of N-methyl-D-aspartate receptors (NMDARs). Using whole-cell recordings, we found higher desensitization of NMDAR currents in the FS group. Since the desensitization of NMDARs depends on subunit composition, we analyzed NMDAR current decays and gene expression of subunits, which revealed no differences between control and FS rats. We suggest that an increased desensitization is due to insufficient activation of the glycine site of NMDARs, as the application of D-serine, the glycine site agonist, allows the restoration of LTP to a control value. Our results reveal a new molecular mechanism of FS impact on the developing brain. Full article
Show Figures

Figure 1

19 pages, 14821 KiB  
Article
Dravet Syndrome—The Polish Family’s Perspective Study
by Justyna Paprocka, Anita Lewandowska, Piotr Zieliński, Bartłomiej Kurczab, Ewa Emich-Widera and Tomasz Mazurczak
J. Clin. Med. 2021, 10(9), 1903; https://doi.org/10.3390/jcm10091903 - 28 Apr 2021
Cited by 9 | Viewed by 3521
Abstract
Aim: The aim of the paper is to study the prevalence of Dravet Syndrome (DS) in the Polish population and indicate different factors other than seizures reducing the quality of life in such patients. Method: A survey was conducted among caregivers of patients [...] Read more.
Aim: The aim of the paper is to study the prevalence of Dravet Syndrome (DS) in the Polish population and indicate different factors other than seizures reducing the quality of life in such patients. Method: A survey was conducted among caregivers of patients with DS by the members of the Polish support group of the Association for People with Severe Refractory Epilepsy DRAVET.PL. It included their experience of the diagnosis, seizures, and treatment-related adverse effects. The caregivers also completed the PedsQL survey, which showed the most important problems. The survey received 55 responses from caregivers of patients with DS (aged 2–25 years). Results: Prior to the diagnosis of DS, 85% of patients presented with status epilepticus lasting more than 30 min, and the frequency of seizures (mostly tonic-clonic or hemiconvulsions) ranged from 2 per week to hundreds per day. After the diagnosis of DS, patients remained on polytherapy (drugs recommended in DS). Before diagnosis, some of them had been on sodium channel blockers. Most patients experienced many adverse effects, including aggression and loss of appetite. The frequency of adverse effects was related to the number of drugs used in this therapy, which had an impact on the results of the PedsQL form, particularly in terms of the physical and social spheres. Intensive care unit stays due to severe status epilepticus also had an influence on the results of the PedsQL form. Conclusions: Families must be counseled on non-pharmacologic strategies to reduce seizure risk, including avoidance of triggers that commonly induce seizures (including hyperthermia, flashing lights and patterns, sleep abnormalities). In addition to addressing seizures, holistic care for a patient with Dravet syndrome must involve a multidisciplinary team that includes specialists in physical, occupational and speech therapy, neuropsychology, social work. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

Back to TopTop