Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = hyperthermia treatment sequence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4113 KB  
Article
Effects of Fish Oil with Heat Treatment on Obesity, Inflammation, and Gut Microbiota in Ovariectomized Mice
by Rong Fan, Judy Kim, Young-Cheul Kim and Soonkyu Chung
Nutrients 2025, 17(3), 549; https://doi.org/10.3390/nu17030549 - 31 Jan 2025
Cited by 2 | Viewed by 1464
Abstract
Background/Objectives: Menopause induces substantial metabolic changes, including a reduction in metabolic rate and an elevated risk of developing metabolic diseases. Fish oil (FO) supplementation has been shown to ameliorate menopause-associated metabolic risks. Hyperthermia treatment (HT) has recently gained attention for its potential to [...] Read more.
Background/Objectives: Menopause induces substantial metabolic changes, including a reduction in metabolic rate and an elevated risk of developing metabolic diseases. Fish oil (FO) supplementation has been shown to ameliorate menopause-associated metabolic risks. Hyperthermia treatment (HT) has recently gained attention for its potential to improve metabolic and immune health. However, it remains to be determined whether HT can confer metabolic benefits comparable to those of FO supplementation or enhance the metabolic benefits of FO supplementation. This study aims to delineate the distinctive and collaborative effects of HT and FO supplementation in mitigating menopause-associated metabolic dysfunction. Methods: Female C57BL/6 ovariectomized (OVX) mice were randomly assigned to four groups (n = 12/group) to evaluate the individual and combined effects of FO supplementation (5% w/w) and HT treatment. For HT, whole-body heat exposure was conducted at 40–41 °C for 30 min, 5 days per week. After 12 weeks, animals were used to evaluate the changes in glucose and lipid metabolism, obesity outcome, and inflammatory markers. The gut microbiome analysis was conducted from cecal content by 16S rRNA sequencing. Acute inflammation was induced by lipopolysaccharide (LPS) injection to evaluate inflammatory responses. Results: HT alone distinctively reduced weight gain, lowered core body temperature, and attenuated insulin resistance comparable to FO supplement in OVX mice. The collaborative effect of FO and HT was not evident in metabolic parameters but more prominent in attenuating proinflammatory responses and microbiota modulation. Conclusions: Our findings suggest that the combined treatment of FO supplementation and HT may serve as an effective strategy to mitigate menopause-associated immune susceptibility and metabolic dysfunction. These benefits are likely mediated, at least in part, through the reduction in inflammation and modulation of the gut microbiota. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

44 pages, 2672 KB  
Review
Magnetic Nanoparticles: Advances in Synthesis, Sensing, and Theragnostic Applications
by Adeyemi O. Adeeyo, Mercy A. Alabi, Joshua A. Oyetade, Thabo T. I. Nkambule, Bhekie B. Mamba, Adewale O. Oladipo, Rachel Makungo and Titus A. M. Msagati
Magnetochemistry 2025, 11(2), 9; https://doi.org/10.3390/magnetochemistry11020009 - 26 Jan 2025
Cited by 5 | Viewed by 5723
Abstract
The synthesis of magnetic nanoparticles (MNPs) via the chemical, biological, and physical routes has been reported on along with advantages and attendant limitations. This study focuses on the sensing and emerging theragnostic applications of this category of nanoparticles (NPs) in clinical sciences by [...] Read more.
The synthesis of magnetic nanoparticles (MNPs) via the chemical, biological, and physical routes has been reported on along with advantages and attendant limitations. This study focuses on the sensing and emerging theragnostic applications of this category of nanoparticles (NPs) in clinical sciences by unveiling the unique performance of these NPs in the biological sensing of bacteria and nucleotide sequencing. Also, in terms of medicine and clinical science, this review analyzes the emerging theragnostic applications of NPs in drug delivery, bone tissue engineering, deep brain stimulation, therapeutic hyperthermia, tumor detection, magnetic imaging and cell tracking, lymph node visualization, blood purification, and COVID-19 detection. This review presents succinct surface functionalization and unique surface coating techniques to confer less toxicity and biocompatibility during synthesis, which are often identified as limitations in medical applications. This study also indicates that these surface improvement techniques are useful for refining the selective activity of MNPs during their use as sensors and biomarkers. In addition, this study unveils attendant limitations, especially toxicological impacts on biomolecules, and suggests that future research should pay attention to the mitigation of the biotoxicity of MNPs. Thus, this study presents a proficient approach for the synthesis of high-performance MNPs fit for proficient medicine in the detection of microorganisms, better diagnosis, and treatment in medicine. Full article
Show Figures

Figure 1

25 pages, 13044 KB  
Article
Experimental Validation of Realistic Measurement Setup for Quantitative UWB-Guided Hyperthermia Temperature Monitoring
by Alexandra Prokhorova and Marko Helbig
Sensors 2024, 24(18), 5902; https://doi.org/10.3390/s24185902 - 11 Sep 2024
Cited by 3 | Viewed by 1532
Abstract
Hyperthermia induces slight temperature increase of 4–8 °C inside the tumor, making it more responsive to radiation and drugs, thereby improving the outcome of the oncological treatment. To verify the level of heat in the tumor and to avoid damage of the healthy [...] Read more.
Hyperthermia induces slight temperature increase of 4–8 °C inside the tumor, making it more responsive to radiation and drugs, thereby improving the outcome of the oncological treatment. To verify the level of heat in the tumor and to avoid damage of the healthy tissue, methods for non-invasive temperature monitoring are needed. Temperature estimation by means of microwave imaging is of great interest among the scientific community. In this paper, we present the results of experiments based on ultra-wideband (UWB) M-sequence technology. Our temperature estimation approach uses temperature dependency of tissue dielectric properties and relation of UWB images to the reflection coefficient on the boundary between tissue types. The realistic measurement setup for neck cancer hyperthermia considers three antenna arrangements. Data are processed with Delay and Sum beamforming and Truncated Singular Value Decomposition. Two types of experiments are presented in this paper. In the first experiment, relative permittivity of subsequently replaced tumor mimicking material is estimated, and in the second experiment, real temperature change in the tumor imitate is monitored. The results showed that the presented approach allows for qualitative as well as quantitative permittivity and temperature estimation. The frequency range for temperature estimation, preferable antenna configurations, and limitations of the method are indicated. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

20 pages, 9902 KB  
Review
Breast Tomographic Ultrasound: The Spectrum from Current Dense Breast Cancer Screenings to Future Theranostic Treatments
by Peter J. Littrup, Mohammad Mehrmohammadi and Nebojsa Duric
Tomography 2024, 10(4), 554-573; https://doi.org/10.3390/tomography10040044 - 15 Apr 2024
Cited by 10 | Viewed by 3024
Abstract
This review provides unique insights to the scientific scope and clinical visions of the inventors and pioneers of the SoftVue breast tomographic ultrasound (BTUS). Their >20-year collaboration produced extensive basic research and technology developments, culminating in SoftVue, which recently received the Food and [...] Read more.
This review provides unique insights to the scientific scope and clinical visions of the inventors and pioneers of the SoftVue breast tomographic ultrasound (BTUS). Their >20-year collaboration produced extensive basic research and technology developments, culminating in SoftVue, which recently received the Food and Drug Administration’s approval as an adjunct to breast cancer screening in women with dense breasts. SoftVue’s multi-center trial confirmed the diagnostic goals of the tissue characterization and localization of quantitative acoustic tissue differences in 2D and 3D coronal image sequences. SoftVue mass characterizations are also reviewed within the standard cancer risk categories of the Breast Imaging Reporting and Data System. As a quantitative diagnostic modality, SoftVue can also function as a cost-effective platform for artificial intelligence-assisted breast cancer identification. Finally, SoftVue’s quantitative acoustic maps facilitate noninvasive temperature monitoring and a unique form of time-reversed, focused US in a single theranostic device that actually focuses acoustic energy better within the highly scattering breast tissues, allowing for localized hyperthermia, drug delivery, and/or ablation. Women also prefer the comfort of SoftVue over mammograms and will continue to seek out less-invasive breast care, from diagnosis to treatment. Full article
Show Figures

Figure 1

22 pages, 2954 KB  
Perspective
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms
by Jana Gaburjakova and Marta Gaburjakova
Int. J. Mol. Sci. 2023, 24(6), 5409; https://doi.org/10.3390/ijms24065409 - 12 Mar 2023
Cited by 10 | Viewed by 4314
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. [...] Read more.
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease)
Show Figures

Figure 1

22 pages, 4657 KB  
Article
The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells
by Azzaya Sengedorj, Michael Hader, Lukas Heger, Benjamin Frey, Diana Dudziak, Rainer Fietkau, Oliver J. Ott, Stephan Scheidegger, Sergio Mingo Barba, Udo S. Gaipl and Michael Rückert
Cancers 2022, 14(9), 2050; https://doi.org/10.3390/cancers14092050 - 19 Apr 2022
Cited by 24 | Viewed by 4779
Abstract
Hyperthermia (HT) is an accepted treatment for recurrent breast cancer which locally heats the tumor to 39–44 °C, and it is a very potent sensitizer for radiotherapy (RT) and chemotherapy. However, currently little is known about how HT with a distinct temperature, and [...] Read more.
Hyperthermia (HT) is an accepted treatment for recurrent breast cancer which locally heats the tumor to 39–44 °C, and it is a very potent sensitizer for radiotherapy (RT) and chemotherapy. However, currently little is known about how HT with a distinct temperature, and particularly, how the sequence of HT and RT changes the immune phenotype of breast cancer cells. Therefore, human MDA-MB-231 and MCF-7 breast cancer cells were treated with HT of different temperatures (39, 41 and 44 °C), alone and in combination with RT (2 × 5 Gy) in different sequences, with either RT or HT first, followed by the other. Tumor cell death forms and the expression of immune checkpoint molecules (ICMs) were analyzed by multicolor flow cytometry. Human monocyte-derived dendritic cells (moDCs) were differentiated and co-cultured with the treated cancer cells. In both cell lines, RT was the main stressor for cell death induction, with apoptosis being the prominent cell death form in MCF-7 cells and both apoptosis and necrosis in MDA-MB-231 cells. Here, the sequence of the combined treatments, either RT or HT, did not have a significant impact on the final outcome. The expression of all of the three examined immune suppressive ICMs, namely PD-L1, PD-L2 and HVEM, was significantly increased on MCF-7 cells 120 h after the treatment of RT with HT of any temperature. Of special interest for MDA-MB-231 cells is that only combinations of RT with HT of both 41 and 44 °C induced a significantly increased expression of PD-L2 at all examined time points (24, 48, 72, and 120 h). Generally, high dynamics of ICM expression can be observed after combined RT and HT treatments. There was no significant difference between the different sequences of treatments (either HT + RT or RT + HT) in case of the upregulation of ICMs. Furthermore, the co-culture of moDCs with tumor cells of any treatment had no impact on the expression of activation markers. We conclude that the sequence of HT and RT does not strongly affect the immune phenotype of breast cancer cells. However, when HT is combined with RT, it results in an increased expression of distinct immune suppressive ICMs that should be considered by including immune checkpoint inhibitors in multimodal tumor treatments with RT and HT. Further, combined RT and HT affects the immune system in the effector phase rather than in the priming phase. Full article
Show Figures

Graphical abstract

57 pages, 2143 KB  
Review
Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment
by Adela Ademaj, Danai P. Veltsista, Pirus Ghadjar, Dietmar Marder, Eva Oberacker, Oliver J. Ott, Peter Wust, Emsad Puric, Roger A. Hälg, Susanne Rogers, Stephan Bodis, Rainer Fietkau, Hans Crezee and Oliver Riesterer
Cancers 2022, 14(3), 625; https://doi.org/10.3390/cancers14030625 - 26 Jan 2022
Cited by 30 | Viewed by 6402
Abstract
Hyperthermia (HT) is a cancer treatment modality which targets malignant tissues by heating to 40–43 °C. In addition to its direct antitumor effects, HT potently sensitizes the tumor to radiotherapy (RT) and chemotherapy (CT), thereby enabling complete eradication of some tumor entities as [...] Read more.
Hyperthermia (HT) is a cancer treatment modality which targets malignant tissues by heating to 40–43 °C. In addition to its direct antitumor effects, HT potently sensitizes the tumor to radiotherapy (RT) and chemotherapy (CT), thereby enabling complete eradication of some tumor entities as shown in randomized clinical trials. Despite the proven efficacy of HT in combination with classic cancer treatments, there are limited international standards for the delivery of HT in the clinical setting. Consequently, there is a large variability in reported data on thermometric parameters, including the temperature obtained from multiple reference points, heating duration, thermal dose, time interval, and sequence between HT and other treatment modalities. Evidence from some clinical trials indicates that thermal dose, which correlates with heating time and temperature achieved, could be used as a predictive marker for treatment efficacy in future studies. Similarly, other thermometric parameters when chosen optimally are associated with increased antitumor efficacy. This review summarizes the existing clinical evidence for the prognostic and predictive role of the most important thermometric parameters to guide the combined treatment of RT and CT with HT. In conclusion, we call for the standardization of thermometric parameters and stress the importance for their validation in future prospective clinical studies. Full article
Show Figures

Figure 1

24 pages, 3749 KB  
Article
Modulated Electro-Hyperthermia Induces a Prominent Local Stress Response and Growth Inhibition in Mouse Breast Cancer Isografts
by Csaba András Schvarcz, Lea Danics, Tibor Krenács, Pedro Viana, Rita Béres, Tamás Vancsik, Ákos Nagy, Attila Gyenesei, József Kun, Marko Fonović, Robert Vidmar, Zoltán Benyó, Tamás Kaucsár and Péter Hamar
Cancers 2021, 13(7), 1744; https://doi.org/10.3390/cancers13071744 - 6 Apr 2021
Cited by 21 | Viewed by 4680
Abstract
Modulated electro-hyperthermia (mEHT) is a selective cancer treatment used in human oncology complementing other therapies. During mEHT, a focused electromagnetic field (EMF) is generated within the tumor inducing cell death by thermal and nonthermal effects. Here we investigated molecular changes elicited by mEHT [...] Read more.
Modulated electro-hyperthermia (mEHT) is a selective cancer treatment used in human oncology complementing other therapies. During mEHT, a focused electromagnetic field (EMF) is generated within the tumor inducing cell death by thermal and nonthermal effects. Here we investigated molecular changes elicited by mEHT using multiplex methods in an aggressive, therapy-resistant triple negative breast cancer (TNBC) model. 4T1/4T07 isografts inoculated orthotopically into female BALB/c mice were treated with mEHT three to five times. mEHT induced the upregulation of the stress-related Hsp70 and cleaved caspase-3 proteins, resulting in effective inhibition of tumor growth and proliferation. Several acute stress response proteins, including protease inhibitors, coagulation and heat shock factors, and complement family members, were among the most upregulated treatment-related genes/proteins as revealed by next-generation sequencing (NGS), Nanostring and mass spectrometry (MS). pathway analysis demonstrated that several of these proteins belong to the response to stimulus pathway. Cell culture treatments confirmed that the source of these proteins was the tumor cells. The heat-shock factor inhibitor KRIBB11 reduced mEHT-induced complement factor 4 (C4) mRNA increase. In conclusion, mEHT monotherapy induced tumor growth inhibition and a complex stress response. Inhibition of this stress response is likely to enhance the effectiveness of mEHT and other cancer treatments. Full article
(This article belongs to the Special Issue Regional Hyperthermia as Treatment of Solid Tumors)
Show Figures

Graphical abstract

17 pages, 2313 KB  
Article
Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital hot Water Networks
by Stefania Paduano, Isabella Marchesi, Maria Elisabetta Casali, Federica Valeriani, Giuseppina Frezza, Elena Vecchi, Luca Sircana, Vincenzo Romano Spica, Paola Borella and Annalisa Bargellini
Int. J. Environ. Res. Public Health 2020, 17(6), 2158; https://doi.org/10.3390/ijerph17062158 - 24 Mar 2020
Cited by 21 | Viewed by 4003
Abstract
Many disinfection treatments can be adopted for controlling opportunistic pathogens in hospital water networks in order to reduce infection risk for immunocompromised patients. Each method has limits and strengths and it could determine modifications on bacterial community. The aim of our investigation was [...] Read more.
Many disinfection treatments can be adopted for controlling opportunistic pathogens in hospital water networks in order to reduce infection risk for immunocompromised patients. Each method has limits and strengths and it could determine modifications on bacterial community. The aim of our investigation was to study under real-life conditions the microbial community associated with different chemical (monochloramine, hydrogen peroxide, chlorine dioxide) and non-chemical (hyperthermia) treatments, continuously applied since many years in four hot water networks of the same hospital. Municipal cold water, untreated secondary, and treated hot water were analysed for microbiome characterization by 16S amplicon sequencing. Cold waters had a common microbial profile at genera level. The hot water bacterial profiles differed according to treatment. Our results confirm the effectiveness of disinfection strategies in our hospital for controlling potential pathogens such as Legionella, as the investigated genera containing opportunistic pathogens were absent or had relative abundances ≤1%, except for non-tuberculous mycobacteria, Sphingomonas, Ochrobactrum and Brevundimonas. Monitoring the microbial complexity of healthcare water networks through 16S amplicon sequencing is an innovative and effective approach useful for Public Health purpose in order to verify possible modifications of microbiota associated with disinfection treatments. Full article
Show Figures

Figure 1

18 pages, 4266 KB  
Article
Radiosensitization by Hyperthermia: The Effects of Temperature, Sequence, and Time Interval in Cervical Cell Lines
by Xionge Mei, Rosemarie ten Cate, Caspar M. van Leeuwen, Hans M. Rodermond, Lidewij de Leeuw, Dionysia Dimitrakopoulou, Lukas J. A. Stalpers, Johannes Crezee, H. Petra Kok, Nicolaas A. P. Franken and Arlene L. Oei
Cancers 2020, 12(3), 582; https://doi.org/10.3390/cancers12030582 - 3 Mar 2020
Cited by 33 | Viewed by 4681
Abstract
Cervical cancers are almost exclusively caused by an infection with the human papillomavirus (HPV). When patients suffering from cervical cancer have contraindications for chemoradiotherapy, radiotherapy combined with hyperthermia is a good treatment option. Radiation-induced DNA breaks can be repaired by nonhomologous end-joining (NHEJ) [...] Read more.
Cervical cancers are almost exclusively caused by an infection with the human papillomavirus (HPV). When patients suffering from cervical cancer have contraindications for chemoradiotherapy, radiotherapy combined with hyperthermia is a good treatment option. Radiation-induced DNA breaks can be repaired by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Hyperthermia can temporarily inactivate homologous recombination. Therefore, combining radiotherapy with hyperthermia can result in the persistence of more fatal radiation-induced DNA breaks. However, there is no consensus on the optimal sequence of radiotherapy and hyperthermia and the optimal time interval between these modalities. Moreover, the temperature of hyperthermia and HPV-type may also be important in radiosensitization by hyperthermia. In this study we thoroughly investigated the impact of different temperatures (37–42 °C), and the sequence of and time interval (0 up to 4 h) between ionizing radiation and hyperthermia on HPV16+: SiHa, Caski; HPV18+: HeLa, C4I; and HPV: C33A, HT3 cervical cancer cell lines. Our results demonstrate that a short time interval between treatments caused more unrepaired DNA damages and more cell kill, especially at higher temperatures. Although hyperthermia before ionizing radiation may result in slightly more DNA damage, the sequence between hyperthermia and ionizing radiation yielded similar effects on cell survival. Full article
(This article belongs to the Special Issue Hyperthermia-based Anticancer Treatments)
Show Figures

Graphical abstract

20 pages, 1913 KB  
Review
Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia
by Pernille B. Elming, Brita S. Sørensen, Arlene L. Oei, Nicolaas A.P. Franken, Johannes Crezee, Jens Overgaard and Michael R. Horsman
Cancers 2019, 11(1), 60; https://doi.org/10.3390/cancers11010060 - 9 Jan 2019
Cited by 185 | Viewed by 10333
Abstract
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been [...] Read more.
Regions of low oxygenation (hypoxia) are a characteristic feature of solid tumors, and cells existing in these regions are a major factor influencing radiation resistance as well as playing a significant role in malignant progression. Consequently, numerous pre-clinical and clinical attempts have been made to try and overcome this hypoxia. These approaches involve improving oxygen availability, radio-sensitizing or killing the hypoxic cells, or utilizing high LET (linear energy transfer) radiation leading to a lower OER (oxygen enhancement ratio). Interestingly, hyperthermia (heat treatments of 39–45 °C) induces many of these effects. Specifically, it increases blood flow thereby improving tissue oxygenation, radio-sensitizes via DNA repair inhibition, and can kill cells either directly or indirectly by causing vascular damage. Combining hyperthermia with low LET radiation can even result in anti-tumor effects equivalent to those seen with high LET. The various mechanisms depend on the time and sequence between radiation and hyperthermia, the heating temperature, and the time of heating. We will discuss the role these factors play in influencing the interaction between hyperthermia and radiation, and summarize the randomized clinical trials showing a benefit of such a combination as well as suggest the potential future clinical application of this combination. Full article
(This article belongs to the Special Issue New Developments in Radiotherapy)
Show Figures

Figure 1

Back to TopTop