Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = hydroxo–B12

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3317 KiB  
Article
Sn(IV)porphyrin-Anchored TiO2 Nanoparticles via Axial-Ligand Coordination for Enhancement of Visible Light-Activated Photocatalytic Degradation
by Nirmal Kumar Shee and Hee-Joon Kim
Inorganics 2023, 11(8), 336; https://doi.org/10.3390/inorganics11080336 - 15 Aug 2023
Cited by 14 | Viewed by 2656
Abstract
A visible-light-active photocatalyst, SnP/AA@TiO2, was fabricated by utilizing the coordination chemistry between the axial hydroxo-ligand in the (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)Sn(IV) complex (SnP) and adipic acid (AA) on the surface of TiO2 nanoparticles. The SnP center was strongly bonded to the [...] Read more.
A visible-light-active photocatalyst, SnP/AA@TiO2, was fabricated by utilizing the coordination chemistry between the axial hydroxo-ligand in the (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)Sn(IV) complex (SnP) and adipic acid (AA) on the surface of TiO2 nanoparticles. The SnP center was strongly bonded to the surface of the TiO2 nanoparticles via the adipic acid linkage in SnP/AA@TiO2, as confirmed by various instrumental techniques. SnP/AA@TiO2 exhibited remarkably enhanced photocatalytic activity toward the degradation of rhodamine B dye (RhB) in aqueous solution under visible-light irradiation. The RhB degradation efficiency of SnP/AA@TiO2 was 95% within 80 min, with a rate constant of 0.0366 min−1. The high degradation efficiency, low catalyst loading and high reusability make SnP-anchored photocatalysts more efficient than other photocatalysts, such as TiO2 and SnP@TiO2. Full article
(This article belongs to the Special Issue Nanocomposites for Photocatalysis)
Show Figures

Graphical abstract

17 pages, 3527 KiB  
Article
Synthesis, Structures and Chemical Reactivity of Dithiolato-Bridged Ni-Fe Complexes as Biomimetics for the Active Site of [NiFe]-Hydrogenases
by Li-Cheng Song, Shuai Chen, Xiao-Feng Han, Zhen-Qing Zhang, Yin-Peng Wang and Yi-Xiong Dong
Inorganics 2022, 10(7), 90; https://doi.org/10.3390/inorganics10070090 - 24 Jun 2022
Cited by 4 | Viewed by 2159
Abstract
To develop the structural and functional modeling chemistry of [NiFe]-H2ases, we have carried out a study regarding the synthesis, structural characterization and reactivity of a new series of [NiFe]-H2ase model complexes. Thus, treatment of diphosphine dppb-chelated Ni complex (dppb)NiCl [...] Read more.
To develop the structural and functional modeling chemistry of [NiFe]-H2ases, we have carried out a study regarding the synthesis, structural characterization and reactivity of a new series of [NiFe]-H2ase model complexes. Thus, treatment of diphosphine dppb-chelated Ni complex (dppb)NiCl2 (dppb = 1,2-(Ph2P)2C6H4) with (dppv)Fe(CO)2(pdt) (dppv = 1,2-(Ph2P)2C2H2, pdt = 1,3-propanedithiolate) and NaBF4 gave dicarbonyl complex [(dppb)Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([A](BF4)2). Further treatment of [A](BF4)2 with Me3NO and Bu4NCN or KSCN afforded t-cyanido and t-isothiocyanato complexes [(dppb)Ni(pdt)Fe(CO)(t-R)(dppv)]BF4 ([1]BF4, R = CN; [2]BF4, R = NCS), respectively. While azadiphosphine MeN(CH2PPh2)2-chelated t-hydride complex [MeN(CH2PPh2)2Ni(pdt)Fe(CO)(t-H)(dppv)]BF4 ([3]BF4) was prepared by treatment of dicarbonyl complex [MeN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([B](BF4)2) with Me3NO and 1.5 MPa of H2, treatment of dicarbonyl complex [B](BF4)2 with Me3NO (without H2) in pyridine resulted in formation of a novel monocarbonyl complex [MeN(CH2PPh2)2Ni(SCHCH2CH2S)Fe(CO)(dppv)]BF4 ([4]BF4) via the unexpected sp3 C-H bond activation reaction. Furthermore, azadiphosphine PhN(CH2PPh2)2-chelated µ-mercapto complex [PhN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-SH)(dppv)]BF4 ([5]BF4) was prepared by treatment of dicarbonyl complex [PhN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([C](BF4)2) with Me3NO and H2S gas, whereas treatment of azadiphosphine Ph2CHN(CH2PPh2)2-chelated dicarbonyl complex [Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppe)](BF4)2 ([D](BF4)2, dppe = 1,2-(Ph2P)2C2H4) with Me3NO⋅2H2O gave rise to µ-hydroxo complex [Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-OH)(dppe)]BF4 ([6]BF4). All the possible pathways for formation of the new model complexes are briefly discussed, and their structures were fully characterized by various spectroscopic techniques and for six of them by X-ray crystallography. Full article
(This article belongs to the Special Issue Inorganics: 10th Anniversary)
Show Figures

Figure 1

13 pages, 1852 KiB  
Article
Biological Activity of Pseudovitamin B12 on Cobalamin-Dependent Methylmalonyl-CoA Mutase and Methionine Synthase in Mammalian Cultured COS-7 Cells
by Tomohiro Bito, Mariko Bito, Tomomi Hirooka, Naho Okamoto, Naoki Harada, Ryoichi Yamaji, Yoshihisa Nakano, Hiroshi Inui and Fumio Watanabe
Molecules 2020, 25(14), 3268; https://doi.org/10.3390/molecules25143268 - 17 Jul 2020
Cited by 14 | Viewed by 4198
Abstract
Adenyl cobamide (commonly known as pseudovitamin B12) is synthesized by intestinal bacteria or ingested from edible cyanobacteria. The effect of pseudovitamin B12 on the activities of cobalamin-dependent enzymes in mammalian cells has not been studied well. This study was conducted [...] Read more.
Adenyl cobamide (commonly known as pseudovitamin B12) is synthesized by intestinal bacteria or ingested from edible cyanobacteria. The effect of pseudovitamin B12 on the activities of cobalamin-dependent enzymes in mammalian cells has not been studied well. This study was conducted to investigate the effects of pseudovitamin B12 on the activities of the mammalian vitamin B12-dependent enzymes methionine synthase and methylmalonyl-CoA mutase in cultured mammalian COS-7 cells to determine whether pseudovitamin B12 functions as an inhibitor or a cofactor of these enzymes. Although the hydoroxo form of pseudovitamin B12 functions as a coenzyme for methionine synthase in cultured cells, pseudovitamin B12 does not activate the translation of methionine synthase, unlike the hydroxo form of vitamin B12 does. In the second enzymatic reaction, the adenosyl form of pseudovitamin B12 did not function as a coenzyme or an inhibitor of methylmalonyl-CoA mutase. Experiments on the cellular uptake were conducted with human transcobalamin II and suggested that treatment with a substantial amount of pseudovitamin B12 might inhibit transcobalamin II-mediated absorption of a physiological trace concentration of vitamin B12 present in the medium. Full article
Show Figures

Figure 1

14 pages, 1325 KiB  
Article
Cyano-B12 or Whey Powder with Endogenous Hydroxo-B12 for Supplementation in B12 Deficient Lactovegetarians
by Sadanand Naik, Namita Mahalle, Eva Greibe, Marie S. Ostenfeld, Christian W. Heegaard, Ebba Nexo and Sergey N. Fedosov
Nutrients 2019, 11(10), 2382; https://doi.org/10.3390/nu11102382 - 6 Oct 2019
Cited by 9 | Viewed by 6836
Abstract
Lactovegetarians (n = 35) with low vitamin B12 (B12) status were intervened for eight weeks capsules containing cyano-B12 (CN-B12), (2 × 2.8 µg/day), or equivalent doses of endogenous B12 (mainly hydroxo-B12 (HO-B12)) in whey powder. Blood samples were examined at baseline, every [...] Read more.
Lactovegetarians (n = 35) with low vitamin B12 (B12) status were intervened for eight weeks capsules containing cyano-B12 (CN-B12), (2 × 2.8 µg/day), or equivalent doses of endogenous B12 (mainly hydroxo-B12 (HO-B12)) in whey powder. Blood samples were examined at baseline, every second week during the intervention, and two weeks post-intervention. The groups did not differ at baseline in [global median (min/max)] plasma B12 [112(61/185)] pmol/L, holotranscobalamin [20(4/99)] pmol/L, folate [13(11/16)], the metabolites total homocysteine [18(9/52)] µmol/L and methylmalonic acid [0.90(0.28/2.5)] µmol/L, and the combined indicator of B12 status (4cB12) [−1.7(−3.0/−0.33)]. Both supplements caused significant effects, though none of the biomarkers returned to normal values. Total plasma B12 showed a higher increase in the capsule group compared to the whey powder group (p = 0.02). However, the increase of plasma holotranscobalamin (p = 0.06) and the lowering of the metabolites (p > 0.07) were alike in both groups. Thereby, the high total plasma B12 in the capsule group was not mirrored in enhanced B12 metabolism, possibly because the B12 surplus was mainly accumulated on an “inert” carrier haptocorrin, considered to be of marginal importance for tissue delivery of B12. In conclusion, we demonstrate that administration of whey powder (HO-B12) or capsules (CN-B12) equivalent to 5.6 µg of B12 daily for eight weeks similarly improves B12 status but does not normalize it. We document that the results for plasma B12 should be interpreted with caution following administration of CN-B12, since the change is disproportionately high compared to the responses of complementary biomarkers. Full article
Show Figures

Figure 1

13 pages, 1155 KiB  
Article
Comparative Bioavailability of Synthetic B12 and Dietary Vitamin B12 Present in Cow and Buffalo Milk: A Prospective Study in Lactovegetarian Indians
by Namita Mahalle, Vijayshri Bhide, Eva Greibe, Christian W. Heegaard, Ebba Nexo, Sergey N. Fedosov and Sadanand Naik
Nutrients 2019, 11(2), 304; https://doi.org/10.3390/nu11020304 - 1 Feb 2019
Cited by 7 | Viewed by 6126
Abstract
We assessed improvements in the vitamin B12 status of Indian lactovegetarians receiving four weeks supplementation with natural B12 in milk versus cyano-B12 in capsules. Three groups (n = 22, 23, 22) received daily oral doses of cyano-B12 (2 × 0.76 µg) or [...] Read more.
We assessed improvements in the vitamin B12 status of Indian lactovegetarians receiving four weeks supplementation with natural B12 in milk versus cyano-B12 in capsules. Three groups (n = 22, 23, 22) received daily oral doses of cyano-B12 (2 × 0.76 µg) or milk (2 × 200 mL) from a cow or buffalo (amounting to B12 ≈ 2 × 0.76 µg). Their blood was examined at baseline and each following week. The baselines (median (min/max)) indicated a low B12 status: plasma B12 (116(51/314)) pmol/L, holotranscobalamin (holoTC) (30(7/119)) pmol/L, total homocysteine (Hcy) (24(10/118)) µmol/L, methylmalonic acid (MMA) (0.58(0.15/2.2)) µmol/L and combined B12 index (cB12) (−1.32 − (−3.12/+0.29)). Shifts from the baselines (B12, holoTC, cB12) and ratios to the baselines (Hcy, MMA) were analyzed over time. The cyano-B12 treatment gave more total B12 in plasma at week one (+29 pmol/L, p = 0.004) but showed no further increase. Other biomarkers changed more comparably between the three groups (p ≥ 0.05): holoTC showed a transient spike that leveled off, Hcy finally decreased to 0.8 × baseline, while MMA showed marginal changes. The combined indexes improved comparably (p = 0.6) in all groups (+0.2(−0.3/+0.9), p ≤ 0.002). In conclusion, the tested formulations similarly improved B12 status, but did not normalize it. Full article
Show Figures

Figure 1

11 pages, 2713 KiB  
Article
Synchrotron Diffraction Study of the Crystal Structure of Ca(UO2)6(SO4)2O2(OH)6·12H2O, a Natural Phase Related to Uranopilite
by Sergey V. Krivovichev, Nicolas Meisser, Joel Brugger, Dmitry V. Chernyshov and Vladislav V. Gurzhiy
Minerals 2018, 8(12), 569; https://doi.org/10.3390/min8120569 - 4 Dec 2018
Cited by 1 | Viewed by 3534
Abstract
The crystal structure of a novel natural uranyl sulfate, Ca(UO2)6(SO4)2O2(OH)6·12H2O (CaUS), has been determined using data collected under ambient conditions at the Swiss–Norwegian beamline BM01 of the European Synchrotron [...] Read more.
The crystal structure of a novel natural uranyl sulfate, Ca(UO2)6(SO4)2O2(OH)6·12H2O (CaUS), has been determined using data collected under ambient conditions at the Swiss–Norwegian beamline BM01 of the European Synchrotron Research Facility (ESRF). The compound is monoclinic, P21/c, a = 11.931(2), b = 14.246(6), c = 20.873(4) Å, β = 102.768(15), V = 3460.1(18) Å3, and R1 = 0.172 for 3805 unique observed reflections. The crystal structure contains six symmetrically independent U6+ atoms forming (UO7) pentagonal bipyramids that share OO edges to form hexamers oriented parallel to the (010) plane and extended along [1–20]. The hexamers are linked via (SO4) groups to form [(UO2)6(SO4)2O2(OH)6(H2O)4]2− chains running along the c-axis. The adjacent chains are arranged into sheets parallel to (010). The Ca2+ ions are coordinated by seven O atoms, and are located in between the sheets, providing their linkage into a three-dimensional structure. The crystal structure of CaUS is closely related to that of uranopilite, (UO2)6(SO4)O2(OH)6·14H2O, which is also based upon uranyl sulfate chains consisting of hexameric units formed by the polymerization of six (UO7) pentagonal bipyramids. However, in uranopilite, each (SO4) tetrahedron shares its four O atoms with (UO7) bipyramids, whereas in CaUS, each sulfate group is linked to three uranyl ions only, and has one O atom (O16) linked to the Ca2+ cation. The chains are also different in the U:S ratio, which is equal to 6:1 for uranopilite and 3:1 for CaUS. The information-based structural complexity parameters for CaUS were calculated taking into account H atoms show that the crystal structure of this phase should be described as very complex, possessing 6.304 bits/atom and 1991.995 bits/cell. The high structural complexity of CaUS can be explained by the high topological complexity of the uranyl sulfate chain based upon uranyl hydroxo/oxo hexamers and the high hydration character of the phase. Full article
(This article belongs to the Special Issue Actinide Mineralogy and Crystallography)
Show Figures

Figure 1

13 pages, 1302 KiB  
Article
Nutritional 1C Imbalance, B12 Tissue Accumulation, and Pregnancy Outcomes: An Experimental Study in Rats
by Ole Nymark, Ebba Nexo and Eva Greibe
Nutrients 2018, 10(11), 1579; https://doi.org/10.3390/nu10111579 - 26 Oct 2018
Cited by 2 | Viewed by 12924
Abstract
Vitamin B12 deficiency during pregnancy has been associated with poor fetal outcome. Here we investigate the influence of a one-carbon (1C) imbalanced diet (low B12, high folate, high methionine) on maternal B12 status, fetal outcome, B12 distribution, and on the 24-h distribution of [...] Read more.
Vitamin B12 deficiency during pregnancy has been associated with poor fetal outcome. Here we investigate the influence of a one-carbon (1C) imbalanced diet (low B12, high folate, high methionine) on maternal B12 status, fetal outcome, B12 distribution, and on the 24-h distribution of synthetic cyano-B12 (CN-B12) and natural hydroxo-B12 (HO-B12). Female Wistar rats were mated while on a 1C balanced (n = 12) or imbalanced diet starting two weeks (n = 10) or four weeks (n = 9) prior to pregnancy and continuing throughout pregnancy. At gestation day 18 (out of 21), all rats received an oral dose of labeled CN-B12 or HO-B12. After 24 h, the rats were sacrificed. Fetuses were inspected, and maternal tissues and fetuses were measured for endogenous and labeled B12. Pregnancy caused a redistribution of B12 from the kidneys to the liver and fetal compartment (uterus, placenta, fetuses). The 1C imbalanced diet reduced maternal kidney B12 and gave rise to lower-weight fetuses with visual malformations. In contrast, fetal B12 did not reflect fetal outcome. This suggests that maternal B12 is more important for fetal outcome than fetal B12. The 24-h distribution of labeled B12 in the rats on the 1C imbalanced diet showed a higher fetal accumulation of CN-B12 than HO-B12, while the opposite was seen in the maternal tissues. Full article
Show Figures

Figure 1

9 pages, 767 KiB  
Article
Differences in Tissue Distribution of Cyano–B12 and Hydroxo–B12 One Week after Oral Intake: An Experimental Study in Male Wistar Rats
by Eva Greibe, Ole Nymark, Sergey N. Fedosov, Christian W. Heegaard and Ebba Nexo
Nutrients 2018, 10(10), 1487; https://doi.org/10.3390/nu10101487 - 12 Oct 2018
Cited by 3 | Viewed by 3263
Abstract
Foods contain natural vitamin B12 forms, such as hydroxo–B12 (HO–B12), whereas vitamin pills contain the synthetic cyano–B12 (CN–B12). Recent studies in rats showed different tissue distributions of CN–B12 and HO–B12 24 h after oral administration. Here, we investigate whether these differences are sustained [...] Read more.
Foods contain natural vitamin B12 forms, such as hydroxo–B12 (HO–B12), whereas vitamin pills contain the synthetic cyano–B12 (CN–B12). Recent studies in rats showed different tissue distributions of CN–B12 and HO–B12 24 h after oral administration. Here, we investigate whether these differences are sustained or leveled out with time in both B12-deplete and -replete rats, thereby assessing if the two forms are equally good at maintaining a normal B12 status. Male Wistar rats were fed diets with low (n = 16) or high (n = 12) B12 content for 17 days. At day 10, the rats received a single oral dose of [57Co]-labeled CN–B12 or HO–B12 (n = 6 and n = 8, respectively, in each diet group). The rats were sacrificed on day 17 and endogenous B12 and [57Co]–B12 were measured in liver, kidney, and plasma. We found that the low-B12 diet introduced a B12-deplete state as judged from medians of endogenous B12 compared to rats on a (high-B12 diet): Plasma (565 (1410) pmol/L), liver (28.2 (33.2) pmol/g), and kidneys (123 (1300) pmol/g). One week after oral administration, the labeled B12 was distributed as follows: HO–B12 > CN–B12 (liver) and CN–B12 > HO–B12 (kidneys, plasma). The tissue/plasma ratios showed different equilibriums for labeled CN–B12 and HO–B12 in the B12-deplete and -replete groups. The equilibrium of endogenous B12 resembled [57Co]CN–B12 in replete rats but differed from both [57Co]CN–B12 and [57Co]HO–B12 in deplete rats. The data suggest long-term differences in tissue utilization of the two B12 forms and warrant further studies concerning the possible benefits of consuming HO–B12 instead of CN–B12 in oral B12 replacement. Full article
Show Figures

Figure 1

12 pages, 1996 KiB  
Article
Dietary Intake of Vitamin B12 is Better for Restoring a Low B12 Status Than a Daily High-Dose Vitamin Pill: An Experimental Study in Rats
by Eva Greibe, Ole Nymark, Sergey N. Fedosov, Christian W. Heegaard and Ebba Nexo
Nutrients 2018, 10(8), 1096; https://doi.org/10.3390/nu10081096 - 15 Aug 2018
Cited by 9 | Viewed by 5783
Abstract
Vitamin B12 (B12) is present in foods of animal origin, and vegans are encouraged to take supplements with synthetic B12 in order to ensure a sufficient uptake. Recent rat studies suggest that natural (hydroxo-B12, HO-B12) and synthetic (cyano-B12, CN-B12) B12 behave differently in [...] Read more.
Vitamin B12 (B12) is present in foods of animal origin, and vegans are encouraged to take supplements with synthetic B12 in order to ensure a sufficient uptake. Recent rat studies suggest that natural (hydroxo-B12, HO-B12) and synthetic (cyano-B12, CN-B12) B12 behave differently in the body. Here, we test if a daily vitamin pill matches dietary B12 in ability to restore a low B12 status in rats. B12-depleted male Wistar rats (n = 60) were divided into five groups (n = 12 in each) and subjected to two weeks intervention with various schemes of B12 supplementation. Two “dietary” groups received a low-B12 chow that was fortified with either HO-B12 or CN-B12 providing a continuous supply. Two “pill” groups received a single daily dose of CN-B12, where the vitamin content either matched or exceeded by factor four the provisions for the “dietary” groups. A control group received the low-B12 chow without B12 fortification. B12 was measured in plasma and tissues. Dietary B12 provides 35% more B12 to the tissues than an equivalent single daily dose (p < 0.0001). Natural B12 delivers 25% more B12 to the liver than synthetic B12 (p = 0.0007). A fourfold increase in B12, supplemented as a single daily dose, does not provide any extra B12 to the tissues (p = 0.45). We conclude that dietary B12 is better at rescuing a low B12 status than a daily vitamin pill. Full article
Show Figures

Figure 1

Back to TopTop