Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = hydraulic manifolds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 23553 KiB  
Article
Numerical Study of a Hydraulic Turbine Designed from Centrifugal Atomizers Theory Varying Its Inlet Parameters
by Daniel Calzada, Anderson Uribe, Julio Ronceros, Dante Vargas, Carlos Raymundo, Wilder Namay, Gianpierre Zapata and Gustavo Ronceros
Fluids 2025, 10(4), 80; https://doi.org/10.3390/fluids10040080 - 25 Mar 2025
Viewed by 621
Abstract
This study analyzes the feasibility of using pressure swirl atomizers at scale as energy generators. Likewise, the Ansys Fluent numerical simulation tool was used, configured based on the Volume of Fluid (VOF) multiphase model and six DOF motion for rigid bodies. In turn, [...] Read more.
This study analyzes the feasibility of using pressure swirl atomizers at scale as energy generators. Likewise, the Ansys Fluent numerical simulation tool was used, configured based on the Volume of Fluid (VOF) multiphase model and six DOF motion for rigid bodies. In turn, three configurations of feeding flow were tested: upper manifold, lower manifold, and dual manifold. The numerical results show that it is possible to produce mechanical energy with 29.4% and 32.9% efficiency (using the SST k-ω and k-ε turbulence model, respectively), while generating a uniform spray effect at the outlet of the atomizer, even though this has certain ovoid-type deformities. Likewise, it was found that the addition of an internal rotor to the swirl chamber caused the generation of a very low-pressure contour, leading to an increase in the mass flow consumption of the atomizer. Also, four cases were analyzed, considering a hydraulic supply of both manifolds: 250 kPa, 300 kPa, 350 kPa, and 400 kPa, in order to obtain the characteristic curve of the turbine depending on the mass flow obtained for each case. Finally, this research proves how viable the use of this type of technology is in the field of renewable energy generation and the impact on its performance under different configurations of hydraulic supply. Full article
Show Figures

Figure 1

34 pages, 14728 KiB  
Article
Physics-Based Modelling of Plate-Fin Heat Exchangers
by Mattia Grespan, Adriano Leonforte, Luigi Calò, Marco Cavazzuti and Diego Angeli
Energies 2025, 18(3), 495; https://doi.org/10.3390/en18030495 - 22 Jan 2025
Cited by 1 | Viewed by 867
Abstract
Aluminium plate-fin heat exchangers are widely used in automotive, aerospace, and other industrial applications. Extensive research has been conducted on these coolers, yet accurate predictive tools for their thermo-hydraulic performance are still lacking, due to the wide variety of geometric parameters and working [...] Read more.
Aluminium plate-fin heat exchangers are widely used in automotive, aerospace, and other industrial applications. Extensive research has been conducted on these coolers, yet accurate predictive tools for their thermo-hydraulic performance are still lacking, due to the wide variety of geometric parameters and working fluids involved. This work proposes an original approach based purely on physical principles and established models, combining detailed numerical models for the extended surfaces and manifolds, with global models aimed at accurately evaluating overall head losses and heat transfer rates in plate-fin heat exchangers. Extended surfaces are studied by means of computational models of unitary fin modules under fully developed flow conditions. Entrance effects are analysed through dedicated numerical models. Numerical results on extended surfaces are extended to whole heat exchangers by global models for heat transfer and head losses, based on the εNTU method and the Darcy–Weisbach equation, respectively. The proposed approach is presented and validated through the analysis of a case study comprising several heat exchangers featuring different geometries and working fluids. Numerically derived heat transfer rates and head losses are compared with experimental data showing maximum deviations of ±20% for most of the tested configurations, highlighting the strength of the proposed modelling methodology. Full article
Show Figures

Figure 1

17 pages, 8422 KiB  
Article
Improving the Design of a Multi-Gear Pump Switchgear Using CFD Analysis
by Olga Zharkevich, Tatyana Nikonova, Łukasz Gierz, Olga Reshetnikova, Alexandra Berg, Łukasz Warguła, Andrey Berg, Bartosz Wieczorek, Wiktor Łykowski and Oxana Nurzhanova
Appl. Sci. 2024, 14(13), 5394; https://doi.org/10.3390/app14135394 - 21 Jun 2024
Cited by 6 | Viewed by 1461
Abstract
Gear pumps are hydraulic machines capable of transferring energy and performing work in pumping fluid. This study presents an analysis of the hydrodynamic model of an external multiple gear pump in order to analyze the fluid flow in combinations of single and different [...] Read more.
Gear pumps are hydraulic machines capable of transferring energy and performing work in pumping fluid. This study presents an analysis of the hydrodynamic model of an external multiple gear pump in order to analyze the fluid flow in combinations of single and different viscosities at the same and different pressures and speeds. Solidworks Flow Simulation 2016 was used to analyze fluid flow. When the radius of the rounding on the collector inner surface is increased from 3 to 15 mm, the pressure drop decreases by 13%. When the radius of the manifold is 3 mm, cavitations are observed. With a liquid distribution system with four input ports and one outlet port in the top cover, the gear pump can handle liquids of viscosity classes 5 to 10. The speed should not exceed 1200 rpm if the liquid has a kinematic viscosity of 10 cSt. The pressure drop and velocity distribution of the liquid in the pressure and suction lines are the same. When the speed changes from 400 to 1200 rpm, the pressure drop increases five times, and the velocity increases three times. At a constant speed of 1000 rpm and an inlet pressure of 10 MPa but with different viscosities, the pressure drop decreases 8 times, and the speed increases 1.5 times. When the inlet pressure is 6 to 24 MPa, with constant speed and the same viscosity, the pressure drop and fluid velocity practically do not change. The dependence of pressure drop on the number of revolutions and radius of the rounding of the inner surface of the collector is statistically significant. Full article
(This article belongs to the Special Issue Advanced and Intelligent Manufacturing)
Show Figures

Figure 1

17 pages, 15497 KiB  
Article
Novel Aluminum Alloy Tailored for Additive Manufacturing: Structural Characterization and Qualification Perspectives
by Maurizio Arena, Bharat Mehta, Tommaso Tirelli, Paolo Ambrogiani, Martina Castaldo, Sven Bengtsson and Lars Nyborg
Appl. Sci. 2024, 14(11), 4647; https://doi.org/10.3390/app14114647 - 28 May 2024
Viewed by 2197
Abstract
The recent advances achieved in additive manufacturing (AM) technology demonstrate the potential to realize customized metal components, ensuring weight reduction opportunities. These benefits make AM attractive for high-cost aerospace applications, especially where high geometric complexity is required. In the context of an EU [...] Read more.
The recent advances achieved in additive manufacturing (AM) technology demonstrate the potential to realize customized metal components, ensuring weight reduction opportunities. These benefits make AM attractive for high-cost aerospace applications, especially where high geometric complexity is required. In the context of an EU research scenario, the H2020 MANUELA (Additive Manufacturing Using Metal Pilot Line) project promotes the development of new technologies for design optimization by enabling the application of novel materials in AM. This paper illustrates recent advances in a new aluminum alloy (Al-HS1) with high strength emphasizing all of the characterization steps at the coupon level. This material has been employed in the re-engineering of a conventional hydraulic manifold using a powder bed fusion-laser beam (PBF-LB) process. Both the simulations and structural tests allowed for proving its compliance and technological maturity with industrial standards and applicable airworthiness requirements. Full article
(This article belongs to the Special Issue Additive Manufacturing Technology and Applications for Aerospace)
Show Figures

Figure 1

18 pages, 7652 KiB  
Article
A Hydraulic Online Monitoring System for Forestry Harvesters Based on LabVIEW
by Haoxian Qin, Jingwei Xu, Jianli Wang, Qingqing Huang, Yuewei Ma and Jinhao Liu
Forests 2023, 14(10), 2100; https://doi.org/10.3390/f14102100 - 20 Oct 2023
Cited by 1 | Viewed by 2716
Abstract
The hydraulic system is a key component of intelligent forestry harvesters. In the testing of a forestry harvester, researchers need to analyze the operating efficiency and energy consumption of the forestry harvester based on the pressure and flow rate data in the hydraulic [...] Read more.
The hydraulic system is a key component of intelligent forestry harvesters. In the testing of a forestry harvester, researchers need to analyze the operating efficiency and energy consumption of the forestry harvester based on the pressure and flow rate data in the hydraulic system of the forestry harvester and formulate energy-efficient control strategies. In order to enable researchers to monitor and extract the parameters of the hydraulic system of an intelligent forestry harvester in real time, this paper designs a hydraulic online monitoring system for forestry harvesters based on the LabVIEW 2019 software platform. This system realizes the following functions by reading the CAN (controller area network, a serial communication protocol for multi-host localized networks) bus of the harvester: (1) it collects and stores hydraulic system pressure, flow, and other data and displays the value curve in the system interface in real time, and (2) it monitors the control signals received by the hydraulic system and displays the control signal status and value received by the system interface in real time. This paper used this system to carry out on-site testing of an actual machine, and compared and analyzed the online monitoring data of the hydraulic system and the theoretical pressure data of the main hydraulic valve manifold. The average value of the relative error between the two was 1.65%, and the maximum value of the relative error was 2.75%. The results show that the designed system has good accuracy and stability, and can effectively realize online monitoring of the working status of the hydraulic system of forestry harvesters during their operation. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

23 pages, 7996 KiB  
Article
A Coupled Seepage–Deformation Model for Simulating the Effect of Fracture Seepage on Rock Slope Stability Using the Numerical Manifold Method
by Xiaolei Qu, Yunkai Zhang, Youran Chen, Youyang Chen, Chengzhi Qi, Elena Pasternak and Arcady Dyskin
Water 2023, 15(6), 1163; https://doi.org/10.3390/w15061163 - 17 Mar 2023
Cited by 6 | Viewed by 2676
Abstract
Modeling seepage problems in rock fractures is an interesting research approach to evaluating rock slope instability that is attracting increasing attention. In the present study, a coupled seepage–deformation model based on the numerical manifold method (NMM) is proposed, and the flow of groundwater [...] Read more.
Modeling seepage problems in rock fractures is an interesting research approach to evaluating rock slope instability that is attracting increasing attention. In the present study, a coupled seepage–deformation model based on the numerical manifold method (NMM) is proposed, and the flow of groundwater in a fracture network coupled with the effects of seepage pressure and rock deformation are discussed. A global equilibrium equation of the system and a local factor of safety (FoS) of arbitrary rock fractures are derived based on the principle of minimum energy, and a series of verification examples are calculated. The simulation results show the robustness and effectiveness of the proposed numerical model. Finally, a rock slope collapse accident caused by seepage effects is simulated by the proposed method, and the failure process of the slope is reproduced. The simulation results show that excessive hydraulic pressure caused the vertical fractures to open and augmented the rock mass deformation, eventually leading to the failure of the slope. The proposed method possesses the potential to simulate larger-scale engineering problems. Full article
(This article belongs to the Special Issue Effects of Groundwater and Surface Water on the Natural Geo-Hazards)
Show Figures

Figure 1

13 pages, 4383 KiB  
Article
Design of a Test Section for the Experimental Investigation of the WCLL Manifold Hydraulic Features
by Aldo Collaku, Pietro Arena, Alessandro Del Nevo, Ranieri Marinari and Laura Savoldi
Energies 2023, 16(5), 2246; https://doi.org/10.3390/en16052246 - 26 Feb 2023
Cited by 5 | Viewed by 1645
Abstract
A scaled-down test section representative of an Outboard Segment manifold of the Water-Cooled Lithium Lead Breeding Blanket for the European DEMO has been designed for installation and test in a high- mass flow branch of the W-HYDRA facility, under construction at the premises [...] Read more.
A scaled-down test section representative of an Outboard Segment manifold of the Water-Cooled Lithium Lead Breeding Blanket for the European DEMO has been designed for installation and test in a high- mass flow branch of the W-HYDRA facility, under construction at the premises of ENEA Brasimone Research Center. The test section should confirm the flow repartition recently computed in the different breeding units on the full-scale manifold, validating at the same time the computational tools used for the design and analysis. The detailed objectives and requirements of the test section, as well as the scaling rationale and procedure adopted for its design, are presented in the paper. The final design of the test section is discussed. The preliminary analyses of the developed design are also presented and show that it is compliant with the initial objectives. Full article
Show Figures

Figure 1

18 pages, 6615 KiB  
Article
Design and Qualification of an Additively Manufactured Manifold for Aircraft Landing Gears Applications
by Maurizio Arena, Paolo Ambrogiani, Vincenzo Raiola, Francesco Bocchetto, Tommaso Tirelli and Martina Castaldo
Aerospace 2023, 10(1), 69; https://doi.org/10.3390/aerospace10010069 - 10 Jan 2023
Cited by 15 | Viewed by 5662
Abstract
The continuous pursuit of reducing weight and optimizing manufacturing processes is increasingly demanded in transportation vehicles, particularly in the aerospace field. In this context, additive manufacturing (AM) represents a well-known technique suitable for re-engineering traditional systems, minimizing the product’s weight/volume and print time. [...] Read more.
The continuous pursuit of reducing weight and optimizing manufacturing processes is increasingly demanded in transportation vehicles, particularly in the aerospace field. In this context, additive manufacturing (AM) represents a well-known technique suitable for re-engineering traditional systems, minimizing the product’s weight/volume and print time. The present research activity allowed for the exploration of the feasibility to replicate a conventional hydraulic manifold already certified for defence application with a lightweight and more compact issue through typical stringent aeronautical qualification steps. Computational modelling with lab test efforts made it possible to assess the compliance of the device with airworthiness certification requirements, giving a special focus to the fulfilment of structural requirements. In particular, the fatigue life characterization is still a crucial point to be well investigated in aeronautical components dfAM (designed for additive manufacturing) to demonstrate the maturity of the technology in the certification scenario. The new AM-driven design offers a more than 40 per cent weight reduction. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing for Aerospace Applications)
Show Figures

Figure 1

14 pages, 2045 KiB  
Article
Gas Condensate Wells: Challenges of Sampling, Testing and Production Optimization
by Alexander V. Muravyev
Energies 2022, 15(15), 5419; https://doi.org/10.3390/en15155419 - 27 Jul 2022
Cited by 3 | Viewed by 3891
Abstract
The main problem of fluid sampling during well testing of reservoirs with near-critical fluids (gas condensate and volatile oil) is due to the fact that even a small pressure drawdown usually leads to the formation of a two-phase mixture in the bottom hole [...] Read more.
The main problem of fluid sampling during well testing of reservoirs with near-critical fluids (gas condensate and volatile oil) is due to the fact that even a small pressure drawdown usually leads to the formation of a two-phase mixture in the bottom hole area, and it is almost impossible to take representative samples with downhole samplers or a formation tester. Sampling via test-separator and the current non-separation methods are also imperfect. An alternative method—MIKS (Multiphase IsoKinetic Sampling)—of gas condensate well testing was proposed, which is based on emulsifying a multiphase flow to particles of about 1–10 μm. Thereby MIKS would eliminate the problem of particle slippage in a homogeneous flow and enables high-quality sampling directly from the flowmeter line. The initial formation fluid is characterized by the maximum value of the condensate-gas ratio (CGR). Therefore, first, the well effluent would be adjusted to the mode with the maximum CGR using a choke manifold and a multiphase flow meter. Then the flow mixture is transferred to a by-pass line with an emulsifier to achieve an isokinetic flow. Thereafter, pressure samples can be taken into pressurized sampling bottles, in which thermodynamic conditions are preset according to the flow line. The efficiency of sampling and recombining procedures allows for conducting a study of reservoir samples in the field laboratory directly on the rig and obtaining a complete PVT report even before the completion of drilling and abandonment of the well. An additional economic effect is achieved by reducing the costs of transporting and samples storage. Well test equipment setup becomes much more compact and less weight; the costs of drilling time are reduced, which is viably important for well testing on the Arctic conditions. Another major problem in the development of gas condensate reservoirs is avoiding the condensate banking around producing wells. Optimization of condensate production can be achieved by maintaining the well operation mode at maximum CGR level by means of multiphase flowmeters. The formed condensate bank can be destroyed by a combination of methods—hydraulic fracturing, followed by cycling process—purging the formation with dried gas and/or injection of methanol into the formation. Methanol can be obtained from synthesis gas as a by-product in the utilization of associated gas also at the field. The specified set of measures will allow to revive the GC wells that are losing productivity, as well as to extend the period of high productivity of new wells. Full article
Show Figures

Figure 1

17 pages, 1421 KiB  
Article
Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis
by Davide Astolfi, Ravi Pandit, Ludovico Terzi and Andrea Lombardi
Energies 2022, 15(15), 5343; https://doi.org/10.3390/en15155343 - 22 Jul 2022
Cited by 23 | Viewed by 3074
Abstract
This work is devoted to the formulation of innovative SCADA-based methods for wind turbine performance analysis and interpretation. The work is organized as an academia–industry collaboration: three test cases are analyzed, two with hydraulic pitch control (Vestas V90 and V100) and one with [...] Read more.
This work is devoted to the formulation of innovative SCADA-based methods for wind turbine performance analysis and interpretation. The work is organized as an academia–industry collaboration: three test cases are analyzed, two with hydraulic pitch control (Vestas V90 and V100) and one with electric pitch control (Senvion MM92). The investigation is based on the method of bins, on a polynomial regression applied to operation curves that have never been analyzed in detail in the literature before, and on correlation and causality analysis. A key point is the analysis of measurement channels related to the blade pitch control and to the rotor: pitch manifold pressure, pitch piston traveled distance and tower vibrations for the hydraulic pitch wind turbines, and blade pitch current for the electric pitch wind turbines. The main result of this study is that cases of noticeable under-performance are observed for the hydraulic pitch wind turbines, which are associated with pitch pressure decrease in time for one case and to suspected rotor unbalance for another case. On the other way round, the behavior of the rotational speed and blade pitch curves is homogeneous and stable for the wind turbines electrically controlled. Summarizing, the evidence collected in this work identifies the hydraulic pitch as a sensible component of the wind turbine that should be monitored cautiously because it is likely associated with performance decline with age. Full article
Show Figures

Figure 1

21 pages, 36330 KiB  
Article
Intelligent Design Optimization System for Additively Manufactured Flow Channels Based on Fluid–Structure Interaction
by Haonan Ji, Bin Zou, Yongsheng Ma, Carlos F. Lange, Jikai Liu and Lei Li
Micromachines 2022, 13(1), 100; https://doi.org/10.3390/mi13010100 - 8 Jan 2022
Cited by 5 | Viewed by 2942
Abstract
Based on expert system theory and fluid–structure interaction (FSI), this paper suggests an intelligent design optimization system to derive the optimal shape of both the fluid and solid domain of flow channels. A parametric modeling scheme of flow channels is developed by design [...] Read more.
Based on expert system theory and fluid–structure interaction (FSI), this paper suggests an intelligent design optimization system to derive the optimal shape of both the fluid and solid domain of flow channels. A parametric modeling scheme of flow channels is developed by design for additive manufacturing (DfAM). By changing design parameters, a series of flow channel models can be obtained. According to the design characteristics, the system can intelligently allocate suitable computational models to compute the flow field of a specific model. The pressure-based normal stress is abstracted from the results and transmitted to the solid region by the fluid–structure (FS) interface to analyze the strength of the structure. The design space is obtained by investigating the simulation results with the metamodeling method, which is further applied for pursuing design objectives under constraints. Finally, the improved design is derived by gradient-based optimization. This system can improve the accuracy of the FSI simulation and the efficiency of the optimization process. The design optimization of a flow channel in a simplified hydraulic manifold is applied as the case study to validate the feasibility of the proposed system. Full article
(This article belongs to the Special Issue Intelligent Additive/Subtractive Manufacturing)
Show Figures

Figure 1

20 pages, 9512 KiB  
Article
Application of CFD to the Design of Manifolds Employed in the Thermodynamic Method to Obtain Efficiency in a Hydraulic Turbine
by Erick O. Castañeda Magadán, Gustavo Urquiza Beltrán, Laura L. Castro Gómez and Juan C. García Castrejón
Energies 2021, 14(24), 8359; https://doi.org/10.3390/en14248359 - 11 Dec 2021
Cited by 1 | Viewed by 2450
Abstract
This study presents the design and implementation of different types of manifolds (sampling system) to measure water flow properties (velocity, pressure, and temperature) through the high- and low-pressure section of a Francis-type low head hydraulic turbine (LHT of 52 m) to calculate it [...] Read more.
This study presents the design and implementation of different types of manifolds (sampling system) to measure water flow properties (velocity, pressure, and temperature) through the high- and low-pressure section of a Francis-type low head hydraulic turbine (LHT of 52 m) to calculate it is efficiency using the Thermodynamic Method (TM). The design of the proposed manifolds meets the criteria established in the “International Electrotechnical Commission—60041” Standard for the application of the TM in the turbine. The design of manifolds was coupled to the turbine and tested by the Computational Fluid Dynamics (CFD) application, under the same experimental conditions that were carried out in a power plant, without the need for on-site measurements. CFD analyses were performed at different operating conditions of volumetric flow (between values of 89.67 m3/s and 35.68 m3/s) at the inlet of turbine. The mechanical power obtained and the efficiency calculated from the numerical simulations were compared with the experimental measurements by employing the Gibson Method (GM) on the same LTH. The design and testing of manifolds for high- and low-pressure sections in a low head turbine allows for the constant calculation of efficiency, avoiding breaks in the generation of electrical energy, as opposed to other methods, for example, the GM. However, the simulated (TM) and experimental (GM) efficiency curves are similar; therefore, it is proposed that the design of the manifolds is applied in different geometries of low-head turbines. Full article
(This article belongs to the Special Issue Advanced Technologies in Hydropower Flow Systems)
Show Figures

Figure 1

14 pages, 4785 KiB  
Article
Laser Fluorescence and Extinction Methods for Measuring the Flow and Composition of Milk in a Milking Machine
by Vladimir V. Kirsanov, Alexey V. Shkirin, Dmitriy Yu. Pavkin, Dmitry N. Ignatenko, Georgy L. Danielyan, Artyom R. Khakimov and Nikolai F. Bunkin
Photonics 2021, 8(9), 390; https://doi.org/10.3390/photonics8090390 - 14 Sep 2021
Cited by 5 | Viewed by 2993
Abstract
Automation of milking systems is linked to accurate measurement of fluctuations in milk flow during milking. To assess the fluctuations of the milk flow, the formation and movement of milk portions in the milking machine-milk pipeline system was studied. By considering the movement [...] Read more.
Automation of milking systems is linked to accurate measurement of fluctuations in milk flow during milking. To assess the fluctuations of the milk flow, the formation and movement of milk portions in the milking machine-milk pipeline system was studied. By considering the movement of a milk plug along the milk pipeline, a hydraulic model of the formation of a critical volume of milk in the milking machine manifold was compiled. In practice, the most expedient way of determining milk flow parameters may be to measure the laser fluorescent and extinction responses of moving air-milk mixture. We have implemented a new laser sensing method for measuring the flow rate and composition of milk on the basis of counting the optical response pulses received from moving dispersed components by a CCD array or a randomized fiber optic bundle. Using the developed laser sensors, the theoretical model of milk flow was tested. Full article
Show Figures

Figure 1

15 pages, 3612 KiB  
Article
Development Workflow for Manifolds and Fluid Components Based on Laser Powder Bed Fusion
by Nicolas Rolinck, Matthias Schmitt, Matthias Schneck, Georg Schlick and Johannes Schilp
Appl. Sci. 2021, 11(16), 7335; https://doi.org/10.3390/app11167335 - 9 Aug 2021
Cited by 9 | Viewed by 2867
Abstract
Through its unique characteristics, additive manufacturing yields great potential for designing fluid components with increased performance characteristics. These potentials in advanced design, functional structure, and manufacturing are not easily realized. Therefore, the present study proposes a holistic development methodology for fluid components with [...] Read more.
Through its unique characteristics, additive manufacturing yields great potential for designing fluid components with increased performance characteristics. These potentials in advanced design, functional structure, and manufacturing are not easily realized. Therefore, the present study proposes a holistic development methodology for fluid components with a specific focus on hydraulic manifolds. The methodology aims to lead the designer from the specification of the task, through a step-by-step embodied design, to a technical and economic evaluation of the optimized, first-time manufactured part. A case study applies the proposed methodology to a part of a rail-vehicle braking application. Through its application, a significant reduction in weight, size, as well as significant contributions to the company’s AM strategy can be assigned to the part. At the same time, increased direct manufacturing costs are identified. Based on the increased performance characteristics of the resulting design and the holistic foundation of the subsequent economic decisions, a satisfying efficiency can be allocated to the proposed methodology. Full article
(This article belongs to the Special Issue Design for Additive Manufacturing: Methods and Tools)
Show Figures

Figure 1

12 pages, 894 KiB  
Proceeding Paper
Adaptive Backstepping Sliding Mode Control for Direct Driven Hydraulics
by Shuzhong Zhang, Tianyi Chen and Fuquan Dai
Proceedings 2020, 64(1), 1; https://doi.org/10.3390/IeCAT2020-08496 - 20 Nov 2020
Cited by 1 | Viewed by 1421
Abstract
Due to the advantages of high energy efficiency and environmental friendliness, the electro-hydraulic actuator (EHA) plays a vital role in fluid power control. One variant of EHA, double pump direct driven hydraulics (DDH), is proposed, which consists of double fixed-displacement pumps, a servo [...] Read more.
Due to the advantages of high energy efficiency and environmental friendliness, the electro-hydraulic actuator (EHA) plays a vital role in fluid power control. One variant of EHA, double pump direct driven hydraulics (DDH), is proposed, which consists of double fixed-displacement pumps, a servo motor, an asymmetric cylinder and auxiliary components. This paper proposes an adaptive backstepping sliding mode control (ABSMC) strategy for DDH to eliminate the adverse effect produced by parametric uncertainty, nonlinear characteristics and the uncertain external disturbance. Based on theoretical analysis, the nonlinear system model is built and transformed. Furthermore, by defining the sliding manifold and selecting a proper Lyapunov function, the nesting problems (of the designed variable and adaptive law) caused by uncertain coefficients are solved. Moreover, the adaptive backstepping control and the sliding mode control are combined to boost system robustness. At the same time, the controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. Simulations of the DDH are performed with the proposed control strategy and proportional–integral–differential (PID), respectively. The results show that the proposed control strategy can achieve better position tracking and stronger robustness under parameter changing compared with PID. Full article
Show Figures

Figure 1

Back to TopTop