Laser Fluorescence and Extinction Methods for Measuring the Flow and Composition of Milk in a Milking Machine
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Píchal, M. Optical Methods in Dynamics of Fluids and Solids. Proceedings of an International Symposium. In Proceedings of the Institute of Thermomechanics Czechoslovak Academy of Sciences, Liblice Castle, Czechoslovakia, 17–21 September 1984; Pichal, M., Ed.; Springer: Berlin, Germany, 1985. [Google Scholar] [CrossRef]
- Cha, S.S.; Trolinger, J.D. Optical Diagnostics in Fluid and Thermal Flow. In Proceedings of the SPIE, International Symposium on Optics, Imaging, and Instrumentation, San Diego, CA, USA, 11–16 July 1993; Cha, S.S., Trolinger, J.D., Eds.; 1993; Volume 2005. [Google Scholar]
- Fuller, G.G. Optical Rheometry of Complex Fluids; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Palberg, T.; Ballauff, M. Optical Methods and Physics of Colloidal Dispersions. In Proceedings of the International Workshop on Optical Methods and the Physics of Colloidal Dispersions, Held in Memory of Prof. Dr. Klaus Schätzel, Mainz, Germany, 30 September 1996; Steinkopff: Heidelberg, Germany, 1997. [Google Scholar] [CrossRef]
- Xu, R. Particle Characterization: Light Scattering Methods; Kluwer Academic Publishers: New York, NY, USA, 2002. [Google Scholar]
- Chaikov, L.L.; Kovalenko, K.V.; Krivokhizha, S.V.; Kudryavtseva, A.D.; Tareeva, M.V.; Tcherniega, N.V.; Shevchenko, M.A. Structure of Water Microemulsion Particles: Study by Optical Methods. Phys. Wave Phenom. 2019, 27, 87–90. [Google Scholar] [CrossRef]
- Kirichenko, M.N.; Chaikov, L.L.; Shkirin, A.V.; Krasovskii, V.I.; Bulychev, N.A.; Kazaryan, M.A.; Krivokhizha, S.V.; Milovich, F.O.; Chirikov, S.N. General Features of Size Distributions and Internal Structure of Particles in Aqueous Nanosuspensions. Phys. Wave Phenom. 2020, 28, 140–144. [Google Scholar] [CrossRef]
- Chirikov, S.N.; Shkirin, A.V. Determination of the Disperse Composition of a PbO Suspension Containing Aggregates of Particles of Lamellar Shape by the Laser-Polarimetry Method. Opt. Spectrosc. 2018, 124, 575–584. [Google Scholar] [CrossRef]
- Shcherbakov, I.A. Priority Results in Physics Obtained in 2019 (From the Annual Report of the Academician Secretary of the Physical Sciences Division of the Russian Academy of Sciences). Dokl. Phys. 2020, 65, 195–224. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science+Business Media: New York, NY, USA, 2006. [Google Scholar]
- Gudkov, S.V.; Simakin, A.V.; Bunkin, N.F.; Shafeev, G.A.; Astashev, M.E.; Glinushkin, A.P.; Grinberg, M.A.; Vodeneev, V.A. Development and application of photoconversion fluoropolymer films for greenhouses located at high or polar latitudes. J. Photochem. Photobiol. B Biol. 2020, 213, 112056. [Google Scholar] [CrossRef] [PubMed]
- Bunkin, N.F.; Shkirin, A.V.; Kozlov, V.A.; Ninham, B.W.; Uspenskaya, E.V.; Gudkov, S.V. Near-surface structure of Nafion in deuterated water. J. Chem. Phys. 2018, 149, 164901. [Google Scholar] [CrossRef] [PubMed]
- Di Sante, R. Laser extinction technique for measurements of carbon particles concentration during combustion. Opt. Lasers Eng. 2013, 51, 783–789. [Google Scholar] [CrossRef]
- Li, X.C.; Zhao, J.M.; Wang, C.C.; Liu, L.H. Improved transmission method for measuring the optical extinction coefficient of micro/nano particle suspensions. Appl. Opt. 2016, 55, 8171–8179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabdec Ltd. Model FFS 30—Modular Milking System. Available online: https://www.agriculture-xprt.com/products/model-ffs-30-modular-milking-system-381810 (accessed on 25 February 2014).
- Russkayaferma Company. Available online: https://www.russkayaferma.ru/stati/elektromagnitnye_schetchiki_raskhodomery_moloka/ (accessed on 4 September 2016).
- Tsoi, Y.A. Processes and Equipment of Milking and Dairy Departments of Livestock Farms; GNU VIESH: Moscow, Russia, 2010. [Google Scholar]
- Caria, M.; Todde, G.; Pazzona, A. Evaluation of automated in-line precision dairy farming technology implementation in three dairy farms in Italy. Front. Agric. Sci. Eng. 2019, 6, 181–187. [Google Scholar] [CrossRef]
- Barbano, D.; Wojciechowski, K. Issues Related to Sampling and Analysis of Milk. In Proceedings of the Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 24–25 April 2012; Ohio State University: Columbus, OH, USA, 2012; pp. 33–39. [Google Scholar]
- Riu, J.; Gorla, G.; Chakif, D.; Boqué, R.; Giussani, B. Rapid Analysis of Milk Using Low-Cost Pocket-Size NIR Spectrometers and Multivariate Analysis. Foods 2020, 9, 1090. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Olivares, J.A.; Adriaens, I.; Stevens, E.; Saeys, W.; Aernouts, B. Rapid Online milk composition analysis with an on-farm near-infrared sensor. Comput. Electron. Agric. 2020, 178, 105734. [Google Scholar] [CrossRef]
- Yang, B.; Huang, X.; Yan, X.; Zhu, X.; Guo, W. A cost-effective on-site milk analyzer based on multispectral sensor. Comput. Electron. Agric. 2020, 179, 105823. [Google Scholar] [CrossRef]
- US Patent Application Publications. Spectroscopic Fluid Analyzer. Available online: https://patents.google.com/patent/US20040179194A1/en?assignee=afikim&oq=afikim (accessed on 26 June 2007).
- US Patent Application Publications. System and Method for on-Line Analysis and Sorting of Milk Coagulation Properties. Available online: https://patents.google.com/patent/US8072596B2/en?oq=US8072596B2 (accessed on 6 December 2011).
- Kaniyamattam, K.; De Vries, A. Agreement between milk fat, protein, and lactose observations collected from the Dairy Herd Improvement Association (DHIA) and a real-time milk analyzer. J. Dairy Sci. 2014, 97, 2896–2908. [Google Scholar] [CrossRef] [PubMed]
- Bunkin, N.F.; Shkirin, A.V.; Penkov, N.V.; Goltayev, M.V.; Ignatiev, P.S.; Gudkov, S.V.; Izmailov, A.Y. Effect of Gas Type and Its Pressure on Nanobubble Generation. Front. Chem. 2021, 9, 630074. [Google Scholar] [CrossRef] [PubMed]
- Favelukis, M.; Tadmor, Z.; Semiat, R. Bubble growth in a viscous liquid in a simple shear flow. AIChE J. 1999, 45, 691–695. [Google Scholar] [CrossRef]
- Groß, T.F.; Bauer, J.; Ludwig, G.; Fernandez Rivas, D.; Pelz, P.F. Bubble nucleation from micro-crevices in a shear flow. Exp. Fluids 2018, 59, 12. [Google Scholar] [CrossRef]
- Dietrich, N.; Poncin, S.; Li, H.-Z. Experimental Investigation of Bubble Formation in Micro-devices. In CHISA 2008; HAL: Prague, Czech Republic, 2008; p. hal-00366044. [Google Scholar]
- Guo, M.C.; Peng, Y.C.; Cai, Y.B.; Zhou, W.G. Effect of shear energy upon bubble nucleation under shear flow field. J. Mater. Sci. 2004, 39, 3805–3807. [Google Scholar] [CrossRef]
- Ageev, A.I.; Osiptsov, A.N. Shear Flow of a Viscous Fluid over a Cavity with a Pulsating Gas Bubble. Dokl. Phys. 2020, 65, 242–245. [Google Scholar] [CrossRef]
- ISO 5707:2007. Milking Machine Installations—Construction and Performance. Available online: https://www.iso.org/standard/37190.html (accessed on 17 December 2015).
- ICAR Certifications for Milk Meters for Cow Sheep Goats. Available online: https://www.icar.org/index.php/certifications/icar-certifications-for-milk-meters-for-cow-sheep-goats (accessed on 24 May 2016).
- Kirsanov, V.V. Structural and Technological Substantiation of Effective Construction and Operation of Milking Equipment; NGIEI: Knyaginino, Russia, 2012. [Google Scholar]
- Rylov, A.A.; Savinykh, P.A.; Shulyatyev, V.N. Experimental and theoretical studies of milk and air motion in the milk-producing tract of the milking machine. Agric. Sci. Euro-North-East 2020, 21, 614–624. [Google Scholar] [CrossRef]
- US Patent Application Publication. Method and Apparatus for Measuring a Value Corresponding to the Mass of a Milk Slug, and of the Corresponding Milk Flow. Available online: https://patents.google.com/patent/US5245946A/en?oq=US5245946 (accessed on 26 March 2012).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirsanov, V.V.; Shkirin, A.V.; Pavkin, D.Y.; Ignatenko, D.N.; Danielyan, G.L.; Khakimov, A.R.; Bunkin, N.F. Laser Fluorescence and Extinction Methods for Measuring the Flow and Composition of Milk in a Milking Machine. Photonics 2021, 8, 390. https://doi.org/10.3390/photonics8090390
Kirsanov VV, Shkirin AV, Pavkin DY, Ignatenko DN, Danielyan GL, Khakimov AR, Bunkin NF. Laser Fluorescence and Extinction Methods for Measuring the Flow and Composition of Milk in a Milking Machine. Photonics. 2021; 8(9):390. https://doi.org/10.3390/photonics8090390
Chicago/Turabian StyleKirsanov, Vladimir V., Alexey V. Shkirin, Dmitriy Yu. Pavkin, Dmitry N. Ignatenko, Georgy L. Danielyan, Artyom R. Khakimov, and Nikolai F. Bunkin. 2021. "Laser Fluorescence and Extinction Methods for Measuring the Flow and Composition of Milk in a Milking Machine" Photonics 8, no. 9: 390. https://doi.org/10.3390/photonics8090390
APA StyleKirsanov, V. V., Shkirin, A. V., Pavkin, D. Y., Ignatenko, D. N., Danielyan, G. L., Khakimov, A. R., & Bunkin, N. F. (2021). Laser Fluorescence and Extinction Methods for Measuring the Flow and Composition of Milk in a Milking Machine. Photonics, 8(9), 390. https://doi.org/10.3390/photonics8090390