Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = human-centered light design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 892 KB  
Article
Streetscapes and Street Livability: Advancing Sustainable and Human-Centered Urban Environments
by Walaa Mohamed Metwally
Sustainability 2026, 18(2), 667; https://doi.org/10.3390/su18020667 - 8 Jan 2026
Viewed by 192
Abstract
Street livability is widely recognized as a fundamental indicator of urban livability. Despite growing global agendas advocating human-centered, sustainable, and smart cities, the microscale implementation of streetscape interventions remains limited and non-integrated. This gap is particularly evident in developing cities’ contexts where policy-level [...] Read more.
Street livability is widely recognized as a fundamental indicator of urban livability. Despite growing global agendas advocating human-centered, sustainable, and smart cities, the microscale implementation of streetscape interventions remains limited and non-integrated. This gap is particularly evident in developing cities’ contexts where policy-level frameworks fail to translate into tangible street-level transformations. Responding to this challenge, this paper investigates how streetscape components can enhance everyday street livability. The study aims to explore opportunities for improving street livability through the utilization of three core streetscape components: vegetation, street furniture, and lighting. The discourse on street livability identifies vegetation, street furniture, and lighting as the primary drivers of high-quality urban spaces. Scholarly research suggests that these micro-interventions are most effective when viewed through the combined lenses of human-centered design, environmental sustainability, and smart city technology. While the literature indicates that integrating climate-responsive greenery and renewable energy systems can enhance social interaction and safety, it also highlights significant implementation hurdles. Specifically, researchers point to policy limitations, technical feasibility in developing nations, and the socio-economic threat of green gentrification. Despite these complexities, microscale streetscape improvements remain a vital strategy for fostering inclusive and resilient cities. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

25 pages, 354 KB  
Review
Roof Gardens: A Green Solution for Ecology, Community, and Wellbeing
by Georgia Yfantidou, Alkistis Papaioannou, Charikleia Patsi, Eleni Spyridopoulou and Michaela Melegkou
Encyclopedia 2026, 6(1), 7; https://doi.org/10.3390/encyclopedia6010007 - 25 Dec 2025
Viewed by 794
Abstract
Green roofs have emerged as a key nature-based solution for improving environmental quality, strengthening urban resilience, and enhancing human wellbeing. In the hospitality sector—where sustainable design and guest experience increasingly intersect—the incorporation of green roof gardens is particularly significant. Urban hotels face heightened [...] Read more.
Green roofs have emerged as a key nature-based solution for improving environmental quality, strengthening urban resilience, and enhancing human wellbeing. In the hospitality sector—where sustainable design and guest experience increasingly intersect—the incorporation of green roof gardens is particularly significant. Urban hotels face heightened challenges related to elevated temperatures, reduced green space, and the growing need for restorative environments within dense urban settings. This study aims to examine how green roof gardens function as integrated ecological, social, and psychological infrastructures in hotel environments. It evaluates the extent to which rooftop green spaces contribute to environmental sustainability, enhance guest experience, and foster community connections. The research adopts a qualitative design combining a comprehensive literature review conducted at selected five-star hotels in Greece. Data from secondary sources and field-based assessments were thematically analyzed to identify recurring patterns in environmental performance, social use, and psychological benefits. Findings indicate that hotel green roof gardens act as multifunctional systems that deliver significant ecological benefits—such as improved microclimate regulation, stormwater retention, and biodiversity support—while simultaneously enriching social interaction and guest experience through accessible, esthetically appealing spaces. Observations further highlight their contribution to psychological wellbeing by offering restorative environments characterized by greenery, natural light, and panoramic views. The study concludes that green roof gardens represent an effective design strategy that integrates sustainability, hospitality experience, and urban wellbeing. Their application in hotels provides both conceptual insight and practical guidance for the development of more resilient, livable, and guest-centered urban environments. These findings underscore the importance of incorporating green roofs into contemporary tourism and urban planning practices. Full article
(This article belongs to the Collection Encyclopedia of Social Sciences)
29 pages, 6830 KB  
Article
Developing a Theory-Integrated VR Information Platform for Age-Friendly Housing Environments
by Yeunsook Lee and Miseon Jang
Buildings 2026, 16(1), 63; https://doi.org/10.3390/buildings16010063 - 23 Dec 2025
Viewed by 344
Abstract
This study develops a theory-integrated Virtual Reality (VR) information platform for designing age-friendly residential units, addressing the intersection of population aging and digital transformation. Unlike studies emphasizing post-implementation outcomes, it focuses on the input-stage logic of design by embedding human cognition, emotion, and [...] Read more.
This study develops a theory-integrated Virtual Reality (VR) information platform for designing age-friendly residential units, addressing the intersection of population aging and digital transformation. Unlike studies emphasizing post-implementation outcomes, it focuses on the input-stage logic of design by embedding human cognition, emotion, and behavior into spatial reasoning. Grounded in environmental behavior theory, the research constructs a housing model that reflects older adults’ perceptual and behavioral responses to spatial configurations such as layouts, circulation, lighting, and visual coordination. Space is redefined as an experiential medium that evokes emotional resonance, fosters empathy, and bridges theoretical reasoning with practical design outcomes. The proposed VR platform integrates aging, behavioral, and design sciences into an intelligent guide functioning as both an educational and evaluative system, enabling interactive and scenario-based exploration of spatial experiences. Following design-based and developmental research principles, this study represents a preliminary phase within an ongoing framework, establishing a robust conceptual foundation for future empirical validation. It highlights that the robustness of the developmental process is as crucial as learning outcomes, reinforcing the importance of theoretical integration in sustainable, human-centered housing design for super-aged societies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 7853 KB  
Article
Designing for Cooler Street: Case Study of Van City
by Nursevil Yuca, Şevket Alp, Sevgi Yilmaz, Elmira Jamei and Adeb Qaid
Land 2025, 14(12), 2313; https://doi.org/10.3390/land14122313 - 25 Nov 2025
Viewed by 638
Abstract
In the context of global climate change and rapid urbanization, the Urban Heat Island (UHI) effect has become a pressing environmental and public health concern, particularly in semiarid regions. This study evaluates the microclimatic performance of various urban design strategies aimed at enhancing [...] Read more.
In the context of global climate change and rapid urbanization, the Urban Heat Island (UHI) effect has become a pressing environmental and public health concern, particularly in semiarid regions. This study evaluates the microclimatic performance of various urban design strategies aimed at enhancing thermal comfort along a densely built-up street in Van, a medium-sized city located in Turkey’s semiarid climate zone. Using ENVI-met 5.7.2, nine alternative scenarios were simulated, incorporating different configurations of vegetation cover (0%, 25%, 50%, 75%), ground surface materials, and green roof applications (0%, 25%, 50%, 75%). Physiological Equivalent Temperature (PET) and other thermal comfort indicators were assessed at multiple time intervals on the hottest summer day. Results indicate that increasing vegetation cover substantially reduces PET values, with a maximum reduction of 3.0 °C observed in the 75% vegetation scenario. While the scenario with no vegetation but light-colored pavements achieved a 1.8 °C reduction in air temperature at 2:00 p.m., the maximum PET value remained unchanged. Conversely, using dark-colored asphalt decreased the average air temperature by 1 °C and improved the thermal comfort level by reducing the PET by 0.4 °C compared to a non-vegetated scenario. The scenario with the highest overall greenery led to a 2.9 °C drop in air temperature and a 12.8 °C reduction in average PET at 2:00 p.m. compared to other scenarios. The study provides evidence-based recommendations for human-centered urban planning and advocates for the integration of microclimate simulation tools in the early stages of urban development. Full article
(This article belongs to the Special Issue Morphological and Climatic Adaptations for Sustainable City Living)
Show Figures

Figure 1

27 pages, 1283 KB  
Article
Salutogenic Factors and Sustainable Development Criteria in Architectural and Interior Design: Analysis of Polish and EU Standards and Recommendations
by Agnieszka Rek-Lipczyńska
Sustainability 2025, 17(21), 9661; https://doi.org/10.3390/su17219661 - 30 Oct 2025
Cited by 2 | Viewed by 955
Abstract
This article examines the integration of salutogenic design principles into the legal and regulatory framework for buildings in Poland, situating the analysis within a broader European and international context. The study combines a systematic literature review, a comparative analysis of Polish building law [...] Read more.
This article examines the integration of salutogenic design principles into the legal and regulatory framework for buildings in Poland, situating the analysis within a broader European and international context. The study combines a systematic literature review, a comparative analysis of Polish building law and technical conditions with international standards and empirical evidence from case studies and Post-Occupancy Evaluations (POE) conducted in hospitals, offices, and schools. This triangulated approach allowed for both qualitative and quantitative assessment of key salutogenic factors, including daylight access, acoustic comfort, air quality, thermal conditions, aesthetics, ergonomics, and opportunities for social interaction. The results demonstrate that Polish regulations continue to focus on minimum hygienic and safety requirements, thereby reflecting a pathogenic rather than salutogenic approach. While some factors—such as daylight and ventilation—are partially included, critical dimensions of psychosocial well-being remain underrepresented. By contrast, both European EN standards and voluntary frameworks such as WELL systematically incorporate broader salutogenic dimensions. Evidence from Polish POE studies further highlights gaps between regulatory compliance and actual user experiences, e.g., excessive hospital noise, insufficient lighting in operating rooms, and the absence of biophilic or therapeutic features. The discussion highlights challenges of measurability, economic feasibility, and stakeholder acceptance, while also emphasizing long-term health and social benefits. The conclusions recommend incorporating salutogenic principles into Polish law and sustainability policies, promoting pilot projects, and strengthening interdisciplinary collaboration. In this way, buildings can evolve from merely preventing harm to actively supporting health, well-being, and resilience—aligning with global trends in human-centered sustainable design. Full article
Show Figures

Figure 1

17 pages, 13312 KB  
Article
Interface Design, Visual Comfort, and Safety Perception: An Empirical Study of Spatial Lighting Environments in Subway Systems
by Liang Sun, Zhaoxi Chen, Haodong Li, Yixuan Zhou, Xin Zhang, Zhang Liu and Zebiao Shao
Buildings 2025, 15(20), 3796; https://doi.org/10.3390/buildings15203796 - 21 Oct 2025
Cited by 1 | Viewed by 1095
Abstract
The rapid expansion of metro systems has exacerbated lighting-related issues, including uneven illuminance, glare, and blind spots. These issues compromise passenger visual comfort and perceived safety. Previous research has predominantly focused on individual lighting parameters, paying little attention to the combined effects of [...] Read more.
The rapid expansion of metro systems has exacerbated lighting-related issues, including uneven illuminance, glare, and blind spots. These issues compromise passenger visual comfort and perceived safety. Previous research has predominantly focused on individual lighting parameters, paying little attention to the combined effects of multiple factors. Perceived safety is a core objective in metro space design and is particularly susceptible to adverse visual environments. This study uses field measurements, virtual environment simulations, and eye tracking experiments to investigate the influence of lighting conditions and interface design (ceiling height and material) on visual comfort and perceived safety. The findings indicate that light-coloured, low-reflectance materials enhance visual guidance, whereas dark, high-reflectance surfaces induce frequent gaze shifts and diminish perceived safety. The optimal environmental benchmark parameters were illuminance levels of 140–270 lux and a correlated color temperature (CCT) of 4428–6250 K. This study also discusses optimizing interface design parameters in different spatial contexts. It also revealed systematic correlations between lighting parameters and spatial geometry, particularly regarding ceiling height. Elevated spaces require increased illuminance and color temperature to compensate for light attenuation, while areas with low ceilings necessitate reduced lighting intensity and warmer color temperatures to mitigate oppressive sensations. This evidence provides a human-centered theoretical foundation for lighting design in underground transport spaces. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 3219 KB  
Article
An Interpretable Machine Learning Approach to Studying Environmental Safety Perception Among Elderly Residents in Pocket Parks
by Shengzhen Wu, Sichao Wu, Jingru Chen and Chen Pan
Buildings 2025, 15(18), 3411; https://doi.org/10.3390/buildings15183411 - 20 Sep 2025
Cited by 1 | Viewed by 844
Abstract
This research explores the environmental safety challenges faced by pocket parks in the context of urban aging within Chinese cities. It systematically analyzes visual elements that influence the elderly’s perception of environmental safety by applying interpretable machine learning techniques. By integrating panoramic image [...] Read more.
This research explores the environmental safety challenges faced by pocket parks in the context of urban aging within Chinese cities. It systematically analyzes visual elements that influence the elderly’s perception of environmental safety by applying interpretable machine learning techniques. By integrating panoramic image semantic segmentation and explainable AI models (e.g., SHAP and PDP), the study transforms subjective environmental perception into measurable indicators and constructs an environmental safety perception model using the LightGBM algorithm. Results indicate that sufficient pedestrian areas and moderate crowd activities significantly enhance safety perception among the elderly. Conversely, the presence of cars emerges as the most substantial adverse factor. Natural elements, such as vegetation and grass, exhibit nonlinear effects on safety perception, with an optimal threshold range identified. The research further elucidates the intricate synergies and constraints among visual elements, underscoring that the highest perceived safety arises from the synergistic combination of positive factors. This study deepens the understanding of environmental perception among the elderly and offers a data-driven framework and practical guidelines for urban planners and designers. It holds significant theoretical and practical implications for advancing the refined and human-centered renewal of urban public spaces. Full article
Show Figures

Figure 1

17 pages, 2585 KB  
Article
Novel Hybrid Peptide DEFB126 (1-39)-TP5 Inhibits LPS-Induced Inflammatory Responses and Oxidative Stress by Neutralizing LPS and Blocking the TLR4/MD2-NFκB Signaling Axis
by Yuan Tang, Xuelian Zhao, Zetao Ding, Junyong Wang, Jing Zhang, Yichen Zhou, Marhaba Ahmat, Hao Wang, Yang Zhu, Baseer Ahmad, Zaheer Abbas, Dayong Si, Rijun Zhang and Xubiao Wei
Antioxidants 2025, 14(9), 1117; https://doi.org/10.3390/antiox14091117 - 14 Sep 2025
Viewed by 1272
Abstract
Lipopolysaccharide (LPS), an essential structural molecule in the outer membrane of Gram-negative bacteria, is recognized as a principal trigger of inflammatory responses and oxidative stress. Thus, the control and clearance of LPS is essential to inhibit LPS-induced excessive inflammation, oxidative stress, and liver [...] Read more.
Lipopolysaccharide (LPS), an essential structural molecule in the outer membrane of Gram-negative bacteria, is recognized as a principal trigger of inflammatory responses and oxidative stress. Thus, the control and clearance of LPS is essential to inhibit LPS-induced excessive inflammation, oxidative stress, and liver injury. In recent years, some native bioactive peptides, such as human β-defensin 126 (DEFB126) and thymopentin (TP5), have been reported to have inhibitory effects against LPS-induced inflammation and oxidative stress. However, the cytotoxicity, weak stability, and poor biological activity have hindered their practical application and clinical development. The development of novel hybrid peptides is a promising approach for overcoming these problems. In this study, we designed a novel hybrid peptide [DTP, DEFB126 (1-39)-TP5] that combines the active center of DEFB126 and full-length thymopentin (TP5). Compared to the parental peptides, DTP has a longer half-life, lower cytotoxicity, and greater anti-inflammatory and antioxidant activity. The anti-inflammatory and antioxidant effects of DTP were demonstrated in a murine LPS-induced sepsis model, which showed that DTP successfully inhibited the indicators associated with LPS-induced liver injury; decreased the contents of TNF-α, IL-6, and IL-1β; increased the level of glutathione (GSH); and improved the activities of catalase (CAT) and superoxide dismutase (SOD). Furthermore, our study revealed that the anti-inflammatory and antioxidant activities of DTP were associated with LPS neutralization, blockade of LPS binding to the Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex, reduction in reactive oxygen species content, and inhibition of the activation of the nuclear factor kappa-B (NF-кB) signaling pathway. These results elucidate the structural and functional properties of the peptide DTP, reveal its underlying molecular mechanisms, and shed light on its potential as a multifunctional agent for applications in agriculture, food technology, and clinical therapeutics. Full article
(This article belongs to the Special Issue Antioxidant Peptides)
Show Figures

Figure 1

20 pages, 1239 KB  
Article
Monitoring Visual Fatigue with Eye Tracking in a Pharmaceutical Packing Area
by Carlos Albarrán Morillo, John F. Suárez-Pérez, Micaela Demichela, Mónica Andrea Camargo Salinas and Nasli Yuceti Miranda Arandia
Sensors 2025, 25(18), 5702; https://doi.org/10.3390/s25185702 - 12 Sep 2025
Viewed by 2863
Abstract
This study investigates visual fatigue in a real-world pharmaceutical packaging environment, where operators perform repetitive inspection and packing tasks under frequently suboptimal lighting conditions. A human-centered methodology was adopted, combining adapted self-report questionnaires, high-frequency eye-tracking data collected with Tobii Pro Glasses 3, and [...] Read more.
This study investigates visual fatigue in a real-world pharmaceutical packaging environment, where operators perform repetitive inspection and packing tasks under frequently suboptimal lighting conditions. A human-centered methodology was adopted, combining adapted self-report questionnaires, high-frequency eye-tracking data collected with Tobii Pro Glasses 3, and lux-level measurements. Key eye-movement metrics—including fixation duration, visit patterns, and pupil diameter—were analyzed within defined work zones (Areas of Interest). To reduce data complexity and uncover latent patterns of visual behavior, Principal Component Analysis was applied. Results revealed a progressive increase in visual fatigue across the workweek and throughout shifts, particularly during night work, and showed a strong association with inadequate lighting. Tasks involving high physical workload under poor illumination emerged as critical risk scenarios. This integrated approach not only confirmed the presence of visual fatigue but also identified high-risk conditions in the workflow, enabling targeted ergonomic interventions. The findings provide a practical framework for improving operator well-being and inspection performance through sensor-based monitoring and environment-specific design enhancements, in alignment with the goals of Industry 5.0. Full article
Show Figures

Figure 1

31 pages, 14150 KB  
Article
A Development Method for Load Adaptive Matching Digital Twin System of Bridge Cranes
by Junqi Li, Qing Dong, Gening Xu, Yifan Zuo and Lili Jiang
Machines 2025, 13(8), 745; https://doi.org/10.3390/machines13080745 - 20 Aug 2025
Cited by 1 | Viewed by 954
Abstract
Bridge cranes generally have a significant disparity between their actual service life and design life. If they are scrapped according to the design life, it is likely to result in resource wastage or pose potential safety hazards due to extended service. Existing studies [...] Read more.
Bridge cranes generally have a significant disparity between their actual service life and design life. If they are scrapped according to the design life, it is likely to result in resource wastage or pose potential safety hazards due to extended service. Existing studies have not thoroughly examined the coupling relationship among actual working conditions, structural damage, and load-matching strategies. It is difficult to achieve real-time and accurate adaptation between loads and the carrying capacity of equipment, and thus cannot effectively narrow this life gap. To this end, this paper defines a digital twin system framework for crane load adaptive matching, constructs a load adaptive matching optimization model, proposes a method for developing a digital twin system for bridge crane load adaptive matching, and builds a digital twin system platform centered on virtual-real mapping, IoT connectivity, and data interaction. Detailed experimental verification was conducted using the DQ40 kg-1.8 m-1.3 m light-duty bridge crane. The results demonstrate that this method and system can effectively achieve dynamic matching between the load and real-time carrying capacity. While ensuring the service life exceeds the design life, the difference between the two is controlled at around 3467 cycles, accounting for approximately 0.000462% of the design life. This significantly improves the equipment’s operational safety and resource utilization efficiency, breaks through the limitations of load reduction schemes formulated based on human experience under the traditional regular inspection mode, and provides a scientific load-matching decision-making basis and technical support for special equipment inspection institutions and users. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

26 pages, 9783 KB  
Article
Assessing the Impact of the Indoor Light Environment of Office Facilities on Multidimensional Human Responses
by Ki Rim Kim, Kyung Sun Lee and Hyesung Cho
Buildings 2025, 15(16), 2955; https://doi.org/10.3390/buildings15162955 - 20 Aug 2025
Cited by 3 | Viewed by 1566
Abstract
This study investigates the effects of adjustable indoor light variables (illuminance and correlated color temperature [CCT]) typically found in office environments on human physiological, psychological, and cognitive responses. An experiment involving 72 participants was conducted, producing 360 data points. Each participant was exposed [...] Read more.
This study investigates the effects of adjustable indoor light variables (illuminance and correlated color temperature [CCT]) typically found in office environments on human physiological, psychological, and cognitive responses. An experiment involving 72 participants was conducted, producing 360 data points. Each participant was exposed to 5 of 18 light environment conditions, which combined different levels of illuminance and CCT. Human responses were measured through skin conductivity, heart rate variability (SDNN, RMSSD, LF/HF ratio), preference, visual comfort, fatigue, work speed, and work accuracy. Correlation and multiple regression analyses were performed to evaluate both the direct effects and interrelationships among the variables. The results showed that psychological responses were most sensitive to light conditions. Illuminance significantly influenced visual comfort and fatigue, while both illuminance and CCT affected preference. Although physiological responses and work performance showed no direct statistical significance with light conditions, they were significantly correlated with psychological responses. These findings suggest that psychological responses may serve as mediators between light environments and other human reactions. Therefore, a more integrated evaluation framework is needed for light design. This study emphasizes the importance of considering psychological well-being in indoor light and provides practical implications for advancing human-centric light design in smart office environments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 6469 KB  
Article
Construction-Induced Waterlogging Simulation in Pinglu Canal Using a Coupled SWMM-HEC-RAS Model: Implications for Inland Waterway Engineering
by Jingwen Li, Jiangdong Feng, Qingyang Wang and Yongtao Zhang
Water 2025, 17(16), 2415; https://doi.org/10.3390/w17162415 - 15 Aug 2025
Cited by 1 | Viewed by 1240
Abstract
Focusing on the Lingshan section of Guangxi’s Pinglu Canal, this study addresses frequent waterlogging during construction under subtropical monsoon rainfall. Human disturbances alter hydrological processes, causing project delays and economic losses. We developed a coupled Storm Water Management Model (SWMM 1D hydrological) and [...] Read more.
Focusing on the Lingshan section of Guangxi’s Pinglu Canal, this study addresses frequent waterlogging during construction under subtropical monsoon rainfall. Human disturbances alter hydrological processes, causing project delays and economic losses. We developed a coupled Storm Water Management Model (SWMM 1D hydrological) and Hydrologic Engineering Center—River Analysis System 2D (HEC-RAS 2D hydrodynamic) model. High-resolution Unmanned Aerial Vehicle—Light Detection and Ranging (UAV-LiDAR) Digital Elevation Model (DEM) delineated sub-catchments, while the Green-Ampt model quantified soil conductivity decay. Synchronized runoff data drove high-resolution HEC-RAS 2D simulations of waterlogging evolution under design storms (1–100-year return periods) and a real event (10 May 2025). Key results: Water depth exhibits nonlinear growth with return period—slow at low intensities but accelerating beyond 50-year events, particularly at temporary road junctions where embankments impede flow. Additionally, intensive intermittent rainfall causes significant ponding at excavation pit-road intersections, and optimized drainage drastically shortens recession time. The study reveals a “rapid runoff generation–restricted convergence–prolonged ponding” mechanism under construction disturbance, validates the model’s capability for complex scenarios, and provides critical data for real-time waterlogging risk prediction and drainage optimization during the canal’s construction. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

17 pages, 1540 KB  
Article
Evaluating a Nationally Localized AI Chatbot for Personalized Primary Care Guidance: Insights from the HomeDOCtor Deployment in Slovenia
by Matjaž Gams, Tadej Horvat, Žiga Kolar, Primož Kocuvan, Kostadin Mishev and Monika Simjanoska Misheva
Healthcare 2025, 13(15), 1843; https://doi.org/10.3390/healthcare13151843 - 29 Jul 2025
Cited by 1 | Viewed by 1632
Abstract
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation [...] Read more.
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation (RAG) and a Redis-based vector database of curated medical guidelines. The objective of this study was to assess the performance and impact of HomeDOCtor in providing AI-powered healthcare assistance. Methods: HomeDOCtor is designed for human-centered communication and clinical relevance, supporting multilingual and multimedia citizen inputs while being available 24/7. It was tested using a set of 100 international clinical vignettes and 150 internal medicine exam questions from the University of Ljubljana to validate its clinical performance. Results: During its six-month nationwide deployment, HomeDOCtor received overwhelmingly positive user feedback with minimal criticism, and exceeded initial expectations, especially in light of widespread media narratives warning about the risks of AI. HomeDOCtor autonomously delivered localized, evidence-based guidance, including self-care instructions and referral suggestions, with average response times under three seconds. On international benchmarks, the system achieved ≥95% Top-1 diagnostic accuracy, comparable to leading medical AI platforms, and significantly outperformed stand-alone ChatGPT-4o in the national context (90.7% vs. 80.7%, p = 0.0135). Conclusions: Practically, HomeDOCtor eases the burden on healthcare professionals by providing citizens with 24/7 autonomous, personalized triage and self-care guidance for less complex medical issues, ensuring that these cases are self-managed efficiently. The system also identifies more serious cases that might otherwise be neglected, directing them to professionals for appropriate care. Theoretically, HomeDOCtor demonstrates that domain-specific, nationally adapted large language models can outperform general-purpose models. Methodologically, it offers a framework for integrating GDPR-compliant AI solutions in healthcare. These findings emphasize the value of localization in conversational AI and telemedicine solutions across diverse national contexts. Full article
(This article belongs to the Special Issue Application of Digital Services to Improve Patient-Centered Care)
Show Figures

Figure 1

51 pages, 4910 KB  
Review
The Impact of Building Windows on Occupant Well-Being: A Review Integrating Visual and Non-Visual Pathways with Multi-Objective Optimization
by Siqi He, Wenli Zhang and Yang Guan
Buildings 2025, 15(14), 2577; https://doi.org/10.3390/buildings15142577 - 21 Jul 2025
Cited by 3 | Viewed by 3617
Abstract
This review investigates the role of building windows in supporting occupant well-being through access to natural views and daylight. This review synthesizes recent interdisciplinary research from environmental psychology, building science, and human physiology to examine how windows impact cognitive performance, psychological restoration, and [...] Read more.
This review investigates the role of building windows in supporting occupant well-being through access to natural views and daylight. This review synthesizes recent interdisciplinary research from environmental psychology, building science, and human physiology to examine how windows impact cognitive performance, psychological restoration, and circadian health. Drawing on 304 peer-reviewed studies from 2000 to 2024, the review identifies two core pathways: visual effects—related to daylight availability, glare control, and view quality—and non-visual effects—linked to circadian entrainment and neuroendocrine regulation via ipRGCs. These effects interact yet compete, necessitating a multi-objective optimization approach. This paper evaluates commonly used metrics for visual comfort, circadian-effective lighting, and view quality and discusses their integration in design frameworks. The review also highlights the potential of adaptive facade technologies and artificial window systems to balance human-centered lighting goals with energy efficiency. A research roadmap is proposed to support future integrative design strategies that optimize both visual and non-visual outcomes in diverse architectural contexts. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 248 KB  
Review
Sustainable Architecture and Human Health: A Case for Effective Circadian Daylighting Metrics
by Bhaswati Mukherjee and Mohamed Boubekri
Buildings 2025, 15(3), 315; https://doi.org/10.3390/buildings15030315 - 21 Jan 2025
Cited by 2 | Viewed by 6468
Abstract
The development of the fluorescent lamp and the air-conditioning system resulted in buildings being lit inexpensively without having to rely on daylighting to save energy, as was the case during the incandescent lamp era. Consequently, architects were able to design buildings with deep [...] Read more.
The development of the fluorescent lamp and the air-conditioning system resulted in buildings being lit inexpensively without having to rely on daylighting to save energy, as was the case during the incandescent lamp era. Consequently, architects were able to design buildings with deep floor plates for maximum occupancy, placing workstations far away from windows since daylighting was no longer a necessity. Floor-to-ceiling heights became lower to minimize the inhabitable volumes that needed to be cooled or heated. With the rising costs of land in some major American cities such as New York City and Chicago at the beginning of the twentieth century, developers sought to optimize their investments by erecting tall structures, giving rise to densely inhabited city centers with massive street canyons that limit sunlight access in the streets. Today, there is growing awareness in terms of the impact of the built environment on people’s health especially in terms of the health benefits of natural light. The fact that buildings, through their shapes and envelope, filter a large amount of daylight, which may impact building occupants’ health and well-being, should cause architects and building developers to take this issue seriously. The amount and quality of light we receive daily impacts many of our bodily functions and consequently several aspects of our health and well-being. The human circadian rhythm is entrained by intrinsically photosensitive retinal ganglion cells (ipRGCs) in our eyes that are responsible for non-visual responses due to the presence of a short-wavelength sensitive pigment called melanopsin. The entrainment of the circadian rhythm depends on several factors such as the intensity, wavelength, timing, and duration of light exposure. Recently, this field of research has gained popularity, and several researchers have tried to create metrics to quantify photopic light, which is the standard way of measuring visual light, into a measure of circadian effective lighting. This paper discusses the relationship between different parameters of daylighting and their non-visual effects on the human body. It also summarizes the existing metrics of daylighting, especially those focusing on its effects on the human circadian rhythm and its shortcomings. Finally, it discusses areas of future research that can address these shortcomings and potentially pave the way for a universally acceptable standardized metric. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Back to TopTop