Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = human pythiosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2853 KiB  
Article
Clinical Features, Microbiological Characteristics, and Drug Sensitivity Analysis of Rare Human Spinal Pythiosis Strain
by Mingliang Li, Donglin Zhu, Qiuyue Diao, Xiaoyun Liu, Xiaogang Bi, Jianwen Dong, Jian Sun, Yun Xi and Kouxing Zhang
J. Fungi 2024, 10(12), 812; https://doi.org/10.3390/jof10120812 - 22 Nov 2024
Viewed by 1411
Abstract
Pythiosis, a rare and formidable infectious disease caused by Pythium insidiosum, is characterized by profound uncertainties in achieving definitive diagnoses, suboptimal outcomes, and an exceptionally high mortality rate. Here, we present a rare case of human spinal pythiosis in southern China. With [...] Read more.
Pythiosis, a rare and formidable infectious disease caused by Pythium insidiosum, is characterized by profound uncertainties in achieving definitive diagnoses, suboptimal outcomes, and an exceptionally high mortality rate. Here, we present a rare case of human spinal pythiosis in southern China. With advanced metagenomic sequencing technology, Pythium insidiosum was pinpointed as the causative pathogen. We discovered that the inoculation of either tissue fragments or homogenate yielded more successful results and enabled a moderate extension of the culture duration to 5–10 days through an exhaustive comparison of diverse inoculation and culture conditions for general clinical specimens. A pronounced genetic affinity of the isolated strain towards the Pythium insidiosum strain MCC 13 was detected after a comprehensive whole-genome sequencing analysis. Antifungal agents exhibited negligible sensitivity towards Pythium insidiosum in an antimicrobial susceptibility test. Conversely, antibacterial agents such as oxazolidinones, tetracyclines, macrolides, and amphenicols demonstrated varying degrees of sensitivity, albeit with most of their minimum inhibitory concentrations (MICs) substantially surpassing the safe concentration ranges for effective clinical treatment. Notably, tigecycline stood out as a promising candidate, exhibiting favorable therapeutic effects at moderate concentrations, making it a potential drug of choice for the control of pythiosis. A combined susceptibility test suggested that combinations of tetracyclines with macrolides, oxazolidinones, and amphenicols exhibited synergistic antibacterial effects, with the combination of doxycycline and trimethoprim–sulfamethoxazole (TMP-SMX) in particular playing a pivotal role. To our surprise, the MICs of iron chelators, specifically deferiprone and deferoxamine, against the strain were exceedingly low, which led to the speculation that exogenous iron chelators may have competitively inhibited the iron-chelating enzymes of the strain. The research derived from this single, rare case has certain limitations, but considering that there are currently no reports of invasive infections of deep organs in humans caused by Pythium insidiosum, the above findings can offer novel insights into the treatment of invasive pythiosis. Combination therapy based on tetracyclines, especially tigecycline, the use of TMP-SMX, and the adjunctive use of iron chelators, represent promising approaches to tackle the clinical challenges in the treatment of invasive pythiosis. However, further studies, including similar cases of spinal pythiosis and in vivo trials, are still needed to validate them. In addition, while paying attention to the therapeutic potentials of the above plans, we should also closely monitor the risks and side effects that may arise from excessive MICs or the expanded use of related drugs during the treatment process. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

16 pages, 2385 KiB  
Article
Pins Gene Table v2.0: An Online Genome Database of 37 Pythium insidiosum Strains for Gene Content Exploration and Phylogenomic Analysis
by Weerayuth Kittichotirat, Preecha Patumcharoenpol, Thidarat Rujirawat, Sithichoke Tangphatsornruang, Chompoonek Yurayart and Theerapong Krajaejun
J. Fungi 2024, 10(2), 112; https://doi.org/10.3390/jof10020112 - 29 Jan 2024
Viewed by 1992
Abstract
Unlike most pathogenic oomycetes, Pythium insidiosum infects humans and animals instead of plants. P. insidiosum has three clinically relevant genotypes/clades that cause a severe disease called pythiosis. To develop strategies for infection control, it is necessary to understand the biology and pathogenesis of [...] Read more.
Unlike most pathogenic oomycetes, Pythium insidiosum infects humans and animals instead of plants. P. insidiosum has three clinically relevant genotypes/clades that cause a severe disease called pythiosis. To develop strategies for infection control, it is necessary to understand the biology and pathogenesis of this pathogen. Investigating the evolutionary mechanisms behind the host-specific adaptation is vital, and comparative genomic analysis can help with this. To facilitate genomic analysis, an online bioinformatics tool called P. insidiosum (Pins) Gene Table v2.0 was developed. This tool includes genomic data from 37 genetically diverse P. insidiosum strains and four related species. The database contains 732,686 genes, grouped into 80,061 unique clusters and further divided into core and variable categories at genus, species, and genotype levels. A high-resolution phylogenomic relationship among P. insidiosum strains and other oomycetes was projected through hierarchical clustering and core gene analyses. 3156 P. insidiosum-specific genes were shared among all genotypes and may be responsible for causing disease in humans and animals. After comparing these species-specific genes to the MvirDB database, 112 had significant matches with 66 known virulence proteins, some of which might be involved in vascular occlusion, which is a pathological feature of pythiosis. The correlation of genotypes, geographic origins, and affected hosts of P. insidiosum suggests that clade-I strains are more specific to animals, while clade-II/III strains are more specific to humans. The clade-specific genes might link to host preference. In summary, Pins Gene Table v2.0 is a comprehensive genome database accessible to users with minimal bioinformatics experience for the analysis of P. insidiosum genomes. Full article
(This article belongs to the Special Issue Bioinformatics in Pathogenic Fungi)
Show Figures

Figure 1

14 pages, 5082 KiB  
Article
Comparative Genomic Analysis Reveals Gene Content Diversity, Phylogenomic Contour, Putative Virulence Determinants, and Potential Diagnostic Markers within Pythium insidiosum Traits
by Weerayuth Kittichotirat, Thidarat Rujirawat, Preecha Patumcharoenpol and Theerapong Krajaejun
J. Fungi 2023, 9(2), 169; https://doi.org/10.3390/jof9020169 - 27 Jan 2023
Cited by 2 | Viewed by 2212
Abstract
Pythium insidiosum has successfully evolved into a human/animal filamentous pathogen, causing pythiosis, a life-threatening disease, worldwide. The specific rDNA-based genotype of P. insidiosum (clade I, II, or III) is associated with the different hosts and disease prevalence. Genome evolution of P. insidiosum can [...] Read more.
Pythium insidiosum has successfully evolved into a human/animal filamentous pathogen, causing pythiosis, a life-threatening disease, worldwide. The specific rDNA-based genotype of P. insidiosum (clade I, II, or III) is associated with the different hosts and disease prevalence. Genome evolution of P. insidiosum can be driven by point mutations, pass vertically to the offspring, and diverge into distinct lineages, leading to different virulence, including the ability to be unrecognized by the host. We conducted comprehensive genomic comparisons of 10 P. insidiosum strains and 5 related Pythium species using our online “Gene Table” software to investigate the pathogen’s evolutionary history and pathogenicity. In total, 245,378 genes were found in all 15 genomes and grouped into 45,801 homologous gene clusters. Gene contents among P. insidiosum strains varied by as much as 23%. Our results showed a strong agreement between the phylogenetic analysis of 166 core genes (88,017 bp) identified across all genomes and the hierarchical clustering analysis of gene presence/absence profiles, suggesting divergence of P. insidiosum into two groups, clade I/II and clade III strains, and the subsequent segregation of clade I and clade II. A stringent gene content comparison using the Pythium Gene Table provided 3263 core genes exclusively presented in all P. insidiosum strains but no other Pythium species, which could involve host-specific pathogenesis and serve as biomarkers for diagnostic purposes. More studies focusing on characterizing the biological function of the core genes (including the just-identified putative virulence genes encoding hemagglutinin/adhesin and reticulocyte-binding protein) are needed to explore the biology and pathogenicity of this pathogen. Full article
(This article belongs to the Special Issue Genomics Analysis of Fungi)
Show Figures

Figure 1

21 pages, 3375 KiB  
Systematic Review
Nucleic Acid-Based Detection of Pythium insidiosum: A Systematic Review
by Thanawat Sridapan and Theerapong Krajaejun
J. Fungi 2023, 9(1), 27; https://doi.org/10.3390/jof9010027 - 23 Dec 2022
Cited by 7 | Viewed by 2813
Abstract
Pythiosis, a life-threatening infectious condition caused by Pythium insidiosum, has been increasingly reported in humans and animals worldwide. Antifungal drugs usually fail to control the pathogen. The surgical removal of an infected organ is the treatment of choice. Many affected patients die [...] Read more.
Pythiosis, a life-threatening infectious condition caused by Pythium insidiosum, has been increasingly reported in humans and animals worldwide. Antifungal drugs usually fail to control the pathogen. The surgical removal of an infected organ is the treatment of choice. Many affected patients die due to advanced infection. A timely and accurate diagnosis could lead to a better prognosis in pythiosis patients and save their lives. Although a standard culture method is available in microbiological laboratories, it is time-consuming, laborious, and insensitive for P. insidiosum identification. Immunological assays have been developed to improve the diagnosis of pythiosis. However, immunological methods are commercially unavailable and primarily detect anti-P. insidiosum antibodies, which constitute indirect evidence of pythiosis, making it challenging to differentiate a past from a recent infection. Moreover, such immunological tests cannot diagnose patients with a local infection, such as in the eye. Nucleic acid-based tests (NATs) are efficient for the direct and rapid detection of P. insidiosum DNA in trace-amount or culture-negative specimens. The reagents and equipment required for NATs are usually available in molecular diagnostic laboratories. Herein, we provide a systematic review to comprehensively present the principal and clinical usages, advantages, and limitations of such NATs in the detection of P. insidiosum. Various NATs have been established to detect P. insidiosum, which can be classified into amplification-based (i.e., PCR assays, isothermal tests, and next-generation sequencing methods) and non-amplification-based (i.e., DNA hybridization) techniques. This concise review on NATs constitutes an up-to-date reference with which healthcare professionals can learn about and decide upon which detection method is suitable for their respective laboratory environments. Full article
(This article belongs to the Special Issue Molecular Markers for Fungal Detection and Identification)
Show Figures

Figure 1

20 pages, 780 KiB  
Article
Selection of an Appropriate In Vitro Susceptibility Test for Assessing Anti-Pythium insidiosum Activity of Potassium Iodide, Triamcinolone Acetonide, Dimethyl Sulfoxide, and Ethanol
by Hanna Yolanda, Tassanee Lohnoo, Thidarat Rujirawat, Wanta Yingyong, Yothin Kumsang, Pattarana Sae-Chew, Penpan Payattikul and Theerapong Krajaejun
J. Fungi 2022, 8(11), 1116; https://doi.org/10.3390/jof8111116 - 24 Oct 2022
Cited by 2 | Viewed by 2569
Abstract
The orphan but highly virulent pathogen Pythium insidiosum causes pythiosis in humans and animals. Surgery is a primary treatment aiming to cure but trading off losing affected organs. Antimicrobial drugs show limited efficacy in treating pythiosis. Alternative drugs effective against the pathogen are [...] Read more.
The orphan but highly virulent pathogen Pythium insidiosum causes pythiosis in humans and animals. Surgery is a primary treatment aiming to cure but trading off losing affected organs. Antimicrobial drugs show limited efficacy in treating pythiosis. Alternative drugs effective against the pathogen are needed. In-house drug susceptibility tests (i.e., broth dilution, disc diffusion, and radial growth assays) have been established, some of which adapted the standard protocols (i.e., CLSI M38-A2 and CLSI M51) designed for fungi. Hyphal plug, hyphal suspension, and zoospore are inocula commonly used in the drug susceptibility assessment for P. insidiosum. A side-by-side comparison demonstrated that each method had advantages and limitations. Minimum inhibitory and cidal concentrations of a drug varied depending on the selected method. Material availability, user experience, and organism and drug quantities determined which susceptibility assay should be used. We employed the hyphal plug and a combination of broth dilution and radial growth methods to screen and validate the anti-P. insidiosum activities of several previously reported chemicals, including potassium iodide, triamcinolone acetonide, dimethyl sulfoxide, and ethanol, in which data on their anti-P. insidiosum efficacy are limited. We tested each chemical against 29 genetically diverse isolates of P. insidiosum. These chemicals possessed direct antimicrobial effects on the growth of the pathogen in a dose- and time-dependent manner, suggesting their potential application in pythiosis treatment. Future attempts should focus on standardizing these drug susceptibility methods, such as determining susceptibility/resistant breakpoints, so healthcare workers can confidently interpret a result and select an effective drug against P. insidiosum. Full article
(This article belongs to the Special Issue Novel, Emerging and Neglected Fungal Pathogens for Humans and Animals)
Show Figures

Figure 1

17 pages, 11872 KiB  
Article
Secretome Profiling by Proteogenomic Analysis Shows Species-Specific, Temperature-Dependent, and Putative Virulence Proteins of Pythium insidiosum
by Theerapong Krajaejun, Thidarat Rujirawat, Tassanee Lohnoo, Wanta Yingyong, Pattarana Sae-Chew, Onrapak Reamtong, Weerayuth Kittichotirat and Preecha Patumcharoenpol
J. Fungi 2022, 8(5), 527; https://doi.org/10.3390/jof8050527 - 20 May 2022
Cited by 3 | Viewed by 2887
Abstract
In contrast to most pathogenic oomycetes, which infect plants, Pythium insidiosum infects both humans and animals, causing a difficult-to-treat condition called pythiosis. Most patients undergo surgical removal of an affected organ, and advanced cases could be fetal. As a successful human/animal pathogen, P. [...] Read more.
In contrast to most pathogenic oomycetes, which infect plants, Pythium insidiosum infects both humans and animals, causing a difficult-to-treat condition called pythiosis. Most patients undergo surgical removal of an affected organ, and advanced cases could be fetal. As a successful human/animal pathogen, P. insidiosum must tolerate body temperature and develop some strategies to survive and cause pathology within hosts. One of the general pathogen strategies is virulence factor secretion. Here, we used proteogenomic analysis to profile and validate the secretome of P. insidiosum, in which its genome contains 14,962 predicted proteins. Shotgun LC–MS/MS analysis of P. insidiosum proteins prepared from liquid cultures incubated at 25 and 37 °C mapped 2980 genome-predicted proteins, 9.4% of which had a predicted signal peptide. P. insidiosum might employ an alternative secretory pathway, as 90.6% of the validated secretory/extracellular proteins lacked the signal peptide. A comparison of 20 oomycete genomes showed 69 P. insidiosum–specific secretory/extracellular proteins, and these may be responsible for the host-specific infection. The differential expression analysis revealed 14 markedly upregulated proteins (particularly cyclophilin and elicitin) at body temperature which could contribute to pathogen fitness and thermotolerance. Our search through a microbial virulence database matched 518 secretory/extracellular proteins, such as urease and chaperones (including heat shock proteins), that might play roles in P. insidiosum virulence. In conclusion, the identification of the secretome promoted a better understanding of P. insidiosum biology and pathogenesis. Cyclophilin, elicitin, chaperone, and urease are top-listed secreted/extracellular proteins with putative pathogenicity properties. Such advances could lead to developing measures for the efficient detection and treatment of pythiosis. Full article
(This article belongs to the Special Issue Novel, Emerging and Neglected Fungal Pathogens for Humans and Animals)
Show Figures

Figure 1

16 pages, 1558 KiB  
Review
A Review: Antimicrobial Therapy for Human Pythiosis
by Sadeep Medhasi, Ariya Chindamporn and Navaporn Worasilchai
Antibiotics 2022, 11(4), 450; https://doi.org/10.3390/antibiotics11040450 - 26 Mar 2022
Cited by 16 | Viewed by 4620
Abstract
Human pythiosis is associated with poor prognosis with significant mortality caused by Pythium insidiosum. Antimicrobials’ in vitro and in vivo results against P. insidiosum are inconsistent. Although antimicrobials are clinically useful, they are not likely to achieve therapeutic success alone without [...] Read more.
Human pythiosis is associated with poor prognosis with significant mortality caused by Pythium insidiosum. Antimicrobials’ in vitro and in vivo results against P. insidiosum are inconsistent. Although antimicrobials are clinically useful, they are not likely to achieve therapeutic success alone without surgery and immunotherapy. New therapeutic options are therefore needed. This non-exhaustive review discusses the rationale antimicrobial therapy, minimum inhibitory concentrations, and efficacy of antibacterial and antifungal agents against P. insidiosum. This review further provides insight into the immunomodulating effects of antimicrobials that can enhance the immune response to infections. Current data support using antimicrobial combination therapy for the pharmacotherapeutic management of human pythiosis. Also, the success or failure of antimicrobial treatment in human pythiosis might depend on the immunomodulatory effects of drugs. The repurposing of existing drugs is a safe strategy for anti-P. insidiosum drug discovery. To improve patient outcomes in pythiosis, we suggest further research and a deeper understanding of P. insidiosum virulence factors, host immune response, and host immune system modification by antimicrobials. Full article
Show Figures

Figure 1

18 pages, 1201 KiB  
Article
Global Distribution and Clinical Features of Pythiosis in Humans and Animals
by Hanna Yolanda and Theerapong Krajaejun
J. Fungi 2022, 8(2), 182; https://doi.org/10.3390/jof8020182 - 11 Feb 2022
Cited by 44 | Viewed by 5762
Abstract
Pythiosis is a difficult-to-treat infectious disease caused by Pythium insidiosum. The condition is unfamiliar among healthcare workers. Manifestation of pythiosis is similar to other fungal infections, leading to misdiagnosis and delayed treatment. The geographical extent of pythiosis at a global scale is [...] Read more.
Pythiosis is a difficult-to-treat infectious disease caused by Pythium insidiosum. The condition is unfamiliar among healthcare workers. Manifestation of pythiosis is similar to other fungal infections, leading to misdiagnosis and delayed treatment. The geographical extent of pythiosis at a global scale is unclear. This study aimed to analyze the clinical information recorded in the scientific literature to comprehensively project epidemiological characteristics, clinical features, and future trends of pythiosis. From 1980 to 2021, 4203 cases of pythiosis in humans (n = 771; 18.3%) and animals (primarily horse, dog, and cow; n = 3432; 81.7%), with an average of 103 cases/year, were recruited. Pythiosis case reports significantly increased in the last decade. Pythiosis spanned 23 tropical, subtropical, and temperate countries worldwide. Some patients acquired pythiosis from a trip to an endemic country. Strikingly, 94.3% of human cases were in India and Thailand, while 79.2% of affected animals were in the U.S.A. and Brazil. Clinical features of pythiosis varied. Vascular and ocular pythiosis were only observed in humans, whereas cutaneous/subcutaneous and gastrointestinal infections were predominant in animals. Mortality depended on host species and clinical forms: for example, none in patients with ocular pythiosis, 0.7% in cows with a cutaneous lesion, 26.8% in humans with vascular disease, 86.4% in dogs with gastrointestinal pathology, and 100% in several animals with disseminated infection. In summary, this study reports up-to-date epidemiological and clinical features of pythiosis in humans and animals. It increases awareness of this life-threatening disease, as the illness or outbreak can exist in any country, not limited to the endemic areas. Full article
(This article belongs to the Special Issue Novel, Emerging and Neglected Fungal Pathogens for Humans and Animals)
Show Figures

Figure 1

29 pages, 1087 KiB  
Review
History and Perspective of Immunotherapy for Pythiosis
by Hanna Yolanda and Theerapong Krajaejun
Vaccines 2021, 9(10), 1080; https://doi.org/10.3390/vaccines9101080 - 26 Sep 2021
Cited by 22 | Viewed by 4583
Abstract
The fungus-like microorganism Pythium insidiosum causes pythiosis, a life-threatening infectious disease increasingly reported worldwide. Antimicrobial drugs are ineffective. Radical surgery is an essential treatment. Pythiosis can resume post-surgically. Immunotherapy using P. insidiosum antigens (PIA) has emerged as an alternative treatment. This review aims [...] Read more.
The fungus-like microorganism Pythium insidiosum causes pythiosis, a life-threatening infectious disease increasingly reported worldwide. Antimicrobial drugs are ineffective. Radical surgery is an essential treatment. Pythiosis can resume post-surgically. Immunotherapy using P. insidiosum antigens (PIA) has emerged as an alternative treatment. This review aims at providing up-to-date information of the immunotherapeutic PIA, with the focus on its history, preparation, clinical application, outcome, mechanism, and recent advances, in order to promote the proper use and future development of this treatment modality. P. insidiosum crude extract is the primary source of immunotherapeutic antigens. Based on 967 documented human and animal (mainly horses) pythiosis cases, PIA immunotherapy reduced disease morbidity and mortality. Concerning clinical outcomes, 19.4% of PIA-immunized human patients succumbed to vascular pythiosis instead of 41.0% in unimmunized cases. PIA immunotherapy may not provide an advantage in a local P. insidiosum infection of the eye. Both PIA-immunized and unimmunized horses with pythiosis showed a similar survival rate of ~70%; however, demands for surgical intervention were much lesser in the immunized cases (22.8% vs. 75.2%). The proposed PIA action involves switching the non-protective T-helper-2 to protective T-helper-1 mediated immunity. By exploring the available P. insidiosum genome data, synthetic peptides, recombinant proteins, and nucleic acids are potential sources of the immunotherapeutic antigens worth investigating. The PIA therapeutic property needs improvement for a better prognosis of pythiosis patients. Full article
Show Figures

Figure 1

17 pages, 3052 KiB  
Article
Prospecting Biomarkers for Diagnostic and Therapeutic Approaches in Pythiosis
by Jéssica Luana Chechi, Tiwa Rotchanapreeda, Giselle Souza da Paz, Ana Carolina Prado, Alana Lucena Oliveira, José Cavalcante Souza Vieira, Marília Afonso Rabelo Buzalaf, Anderson Messias Rodrigues, Lucilene Delazari dos Santos, Theerapong Krajaejun and Sandra de Moraes Gimenes Bosco
J. Fungi 2021, 7(6), 423; https://doi.org/10.3390/jof7060423 - 28 May 2021
Cited by 3 | Viewed by 5019
Abstract
Pythiosis, whose etiological agent is the oomycete Pythium insidiosum, is a life-threatening disease that occurs mainly in tropical and subtropical countries, affecting several animal species. It is frequently found in horses in Brazil and humans in Thailand. The disease is difficult to [...] Read more.
Pythiosis, whose etiological agent is the oomycete Pythium insidiosum, is a life-threatening disease that occurs mainly in tropical and subtropical countries, affecting several animal species. It is frequently found in horses in Brazil and humans in Thailand. The disease is difficult to diagnose because the pathogen’s hyphae are often misdiagnosed as mucoromycete fungi in histological sections. Additionally, there is no specific antigen to use for rapid diagnosis, the availability of which could improve the prognosis in different animal species. In this scenario, we investigated which P. insidiosum antigens are recognized by circulating antibodies in horses and humans with pythiosis from Brazil and Thailand, respectively, using 2D immunoblotting followed by mass spectrometry for the identification of antigens. We identified 23 protein spots, 14 recognized by pooled serum from horses and humans. Seven antigens were commonly recognized by both species, such as the heat-shock cognate 70 KDa protein, the heat-shock 70 KDa protein, glucan 1,3-beta-glucosidase, fructose-bisphosphate aldolase, serine/threonine-protein phosphatase, aconitate hydratase, and 14-3-3 protein epsilon. These results demonstrate that there are common antigens recognized by the immune responses of horses and humans, and these antigens may be studied as biomarkers for improving diagnosis and treatment. Full article
Show Figures

Figure 1

22 pages, 2212 KiB  
Article
Identification and Biotyping of Pythium insidiosum Isolated from Urban and Rural Areas of Thailand by Multiplex PCR, DNA Barcode, and Proteomic Analyses
by Zin Mar Htun, Aree Laikul, Watcharapol Pathomsakulwong, Chompoonek Yurayart, Tassanee Lohnoo, Wanta Yingyong, Yothin Kumsang, Penpan Payattikul, Pattarana Sae-Chew, Thidarat Rujirawat, Paisan Jittorntam, Chalisa Jaturapaktrarak, Piriyaporn Chongtrakool and Theerapong Krajaejun
J. Fungi 2021, 7(4), 242; https://doi.org/10.3390/jof7040242 - 24 Mar 2021
Cited by 15 | Viewed by 3314
Abstract
Pythium insidiosum causes pythiosis, a fatal infectious disease of humans and animals worldwide. Prompt diagnosis and treatment are essential to improve the clinical outcome of pythiosis. Diagnosis of P. insidiosum relies on immunological, molecular, and proteomic assays. The main treatment of pythiosis aims [...] Read more.
Pythium insidiosum causes pythiosis, a fatal infectious disease of humans and animals worldwide. Prompt diagnosis and treatment are essential to improve the clinical outcome of pythiosis. Diagnosis of P. insidiosum relies on immunological, molecular, and proteomic assays. The main treatment of pythiosis aims to surgically remove all affected tissue to prevent recurrent infection. Due to the marked increase in case reports, pythiosis has become a public health concern. Thailand is an endemic area of human pythiosis. To obtain a complete picture of how the pathogen circulates in the environment, we surveyed the presence of P. insidiosum in urban (Bangkok) and rural areas of Thailand. We employed the hair-baiting technique to screen for P. insidiosum in 500 water samples. Twenty-seven culture-positive samples were identified as P. insidiosum by multiplex PCR, multi-DNA barcode (rDNA, cox1, cox2), and mass spectrometric analyses. These environmental strains of P. insidiosum fell into Clade-II and -III genotypes and exhibited a close phylogenetic/proteomic relationship with Thai clinical strains. Biodiversity of the environmental strains also existed in a local habitat. In conclusion, P. insidiosum is widespread in Thailand. A better understanding of the ecological niche of P. insidiosum could lead to the effective prevention and control of this pathogen. Full article
Show Figures

Figure 1

11 pages, 1412 KiB  
Article
Clinical Outcomes of Radical Surgery and Antimicrobial Agents in Vascular Pythiosis: A Multicenter Prospective Study
by Pattama Torvorapanit, Nipat Chuleerarux, Rongpong Plongla, Navaporn Worasilchai, Kasama Manothummetha, Achitpol Thongkam, Nattapong Langsiri, Jaruwan Diewsurin, Prasopchai Kongsakpaisan, Ratiporn Bansong, Nuttapon Susaengrat, Watchara Wattanasoontornsakul, Ariya Chindamporn and Nitipong Permpalung
J. Fungi 2021, 7(2), 114; https://doi.org/10.3390/jof7020114 - 4 Feb 2021
Cited by 10 | Viewed by 3801
Abstract
Vascular pythiosis is a rare, neglected, life-threatening disease with mortality of 100% in patients with incomplete surgical resection or patients with persistently elevated serum β-d-glucan (BDG). The study was conducted to understand the clinical outcomes of new treatment protocols and potential use of [...] Read more.
Vascular pythiosis is a rare, neglected, life-threatening disease with mortality of 100% in patients with incomplete surgical resection or patients with persistently elevated serum β-d-glucan (BDG). The study was conducted to understand the clinical outcomes of new treatment protocols and potential use of erythrocyte sedimentation rate (ESR) and c-reactive protein (CRP) as alternative monitoring tools, given recent favorable minimum inhibitory concentrations (MICs) of antibacterial agents and prohibitive cost of serum BDG in Thailand. A prospective cohort study of patients with vascular pythiosis was conducted between February 2019 and August 2020. After diagnosis, patients were followed at 0.5, 1, 1.5, 3, and 6 months. Descriptive statistics, Spearman’s correlation coefficient, and general linear model for longitudinal data were used. Amongst the cohort of ten vascular pythiosis patients, four had residual disease after surgery. Among four with residual disease, one developed disseminated disease and died, one developed relapse disease requiring surgery, and two were successfully managed with antimicrobial agents. The spearman’s correlation coefficients between BDG and ESR, and between BDG and CRP in patients without relapse or disseminated disease were 0.65 and 0.60, respectively. Tetracyclines and macrolides had most favorable minimum inhibitory concentrations and synergistic effects were observed in combinations of these two antibiotic classes. Adjunctive use of azithromycin and doxycycline preliminarily improved survival in vascular pythiosis patients with residual disease. Further studies are needed to understand the trends of ESR and CRP in this population. Full article
(This article belongs to the Special Issue Oomycetes)
Show Figures

Figure 1

Back to TopTop