Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = human chitotriosidase (CHIT1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 806 KiB  
Review
The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments
by Angelika Muchowicz, Agnieszka Bartoszewicz and Zbigniew Zaslona
Biomolecules 2024, 14(5), 513; https://doi.org/10.3390/biom14050513 - 24 Apr 2024
Cited by 4 | Viewed by 2402
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish [...] Read more.
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment. Full article
Show Figures

Figure 1

13 pages, 974 KiB  
Article
Exploratory Longitudinal Analysis of the Circulating CHIT1 Activity in Pediatric Patients with Obesity
by Ioana Țaranu, Nicoleta Răcătăianu, Cristina Drugan, Cristina-Sorina Cătană, Andreea-Manuela Mirea, Diana Miclea and Sorana D. Bolboacă
Children 2023, 10(1), 124; https://doi.org/10.3390/children10010124 - 6 Jan 2023
Viewed by 2235
Abstract
Macrophage activation and cytokine release play a pivotal role in inflammation-mediated metabolic disturbances in obesity. The proinflammatory macrophage secretes human chitotriosidase (CHIT1). The expression of the CHIT1 in visceral adipose tissue is associated with cytokine production. Our study aimed to assess whether the [...] Read more.
Macrophage activation and cytokine release play a pivotal role in inflammation-mediated metabolic disturbances in obesity. The proinflammatory macrophage secretes human chitotriosidase (CHIT1). The expression of the CHIT1 in visceral adipose tissue is associated with cytokine production. Our study aimed to assess whether the CHIT1 circulating activity, as a macrophage activation indicator, reflects the change of the adiposity level and the insulin resistance (IR) in children with obesity. We longitudinally (median follow-up period of 7 months; IQR [5 to 8.5] and {2 to 13} months) evaluated the CHIT1 circulating activity, the adiposity level (waist circumference (WC), waist-to-hip ratio (WHR), waist-to-height ratio (WtHR), and body mass index (BMI)-for-age z score), and two surrogate markers of IR (Homeostatic Model Assessment for Insulin Resistance, HOMA-IR and the triglycerides-to-high density lipoprotein cholesterol ratio, TG/HDLc) in 29 pediatric patients (16 girls and 13 boys) with obesity. We found a significant reduction in CHIT1 circulating activity (Wilcoxon test, p = 0.015) and a decrease in TG/HDLc at the follow-up evaluation (Wilcoxon test, p < 0.001). Indicators of adiposity were positively correlated with HOMA-IR at baseline, among which WC was the sole indicator associated with HOMA-IR (Spearman’s rank correlation coefficients, p < 0.05) at follow-up. Human chitotriosidase has the potential to be a valuable measure of the progression of subclinical inflammation in children with obesity. Subclinical inflammation, as expressed by the circulating CHIT1 activity, progresses independently of the abdominal adiposity, as measured by the clinical indicators, and is associated with a change in insulin resistance. Full article
(This article belongs to the Section Pediatric Endocrinology & Diabetes)
Show Figures

Figure 1

15 pages, 592 KiB  
Article
Evaluation of Circulating Chitotriosidase Activity in Children with Obesity
by Ioana Țaranu, Mihaela Iancu, Cecilia Lazea, Camelia Alkhzouz, Nicoleta Răcătăianu, Cristina-Sorina Cătană, Andreea-Manuela Mirea, Diana Miclea, Sorana D. Bolboacă and Cristina Drugan
J. Clin. Med. 2022, 11(13), 3634; https://doi.org/10.3390/jcm11133634 - 23 Jun 2022
Cited by 3 | Viewed by 2587
Abstract
Childhood obesity progresses to metabolic disturbances via low-grade inflammation. Identifying novel molecules that reflect the activity of the immune responses is critical in understanding its underlying pathogenesis. Our exploratory study aimed to evaluate the change of chitotriosidase (CHIT1) plasma activity according to Body [...] Read more.
Childhood obesity progresses to metabolic disturbances via low-grade inflammation. Identifying novel molecules that reflect the activity of the immune responses is critical in understanding its underlying pathogenesis. Our exploratory study aimed to evaluate the change of chitotriosidase (CHIT1) plasma activity according to Body Mass Index (BMI)-for-age z score in pediatric patients. The study evaluated 68 children consisting of 47.1% girls with a mean age of 12.47 ± 3.71 years and 52.9% boys with a mean age of 11.93 ± 3.18 years. The effect of the most frequent CHIT1 gene variants, the 24 base pair duplication (dup24) and G102S polymorphism, upon the association between circulating CHIT1 activity and the obesity level, was also investigated. A significantly higher logCHIT1 plasma activity was found in children with extreme obesity than in children with overweight (p = 0.048 for the uncorrected CHIT1 and 0.026 for the corrected CHIT1). The BMI-for-age z score significantly (p = 0.031) predicts increased CHIT1 activity in children with overweight, obesity, and extreme obesity after controlling for the two gene variants, age, gender, and time since weight gain. Dup24 and G102S polymorphism were significant independent predictors (p-values < 0.002) for the change of CHIT1 plasma activity. Circulating CHIT1 might be an accurate indicator of inflammation in children with obesity. Its role and the effect of the dup24 and G102S variants on the CHIT1 activity should be validated in a larger cohort. Full article
(This article belongs to the Collection Obesity: From Diagnosis to Treatment)
Show Figures

Figure 1

19 pages, 11959 KiB  
Article
Discovery of Octahydroisoindolone as a Scaffold for the Selective Inhibition of Chitinase B1 from Aspergillus fumigatus: In Silico Drug Design Studies
by Alberto Marbán-González, Armando Hernández-Mendoza, Mario Ordóñez, Rodrigo Said Razo-Hernández and José Luis Viveros-Ceballos
Molecules 2021, 26(24), 7606; https://doi.org/10.3390/molecules26247606 - 15 Dec 2021
Cited by 3 | Viewed by 3080
Abstract
Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis since they are necessary for fungal cell wall remodeling. This study presents the design of new chitinase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus fumigatus chitinase B1 (AfChiB1) [...] Read more.
Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis since they are necessary for fungal cell wall remodeling. This study presents the design of new chitinase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus fumigatus chitinase B1 (AfChiB1) and chitotriosidase (CHIT1) by length and conservation was done to obtain consensus sequences, and molecular homology models of fungi and human chitinases were built to determine their structural differences. We explored the octahydroisoindolone scaffold as a potential new antifungal series by means of its structural and electronic features. Therefore, we evaluated several synthesis-safe octahydroisoindolone derivatives by molecular docking and evaluated their AfChiB1 interaction profile. Additionally, compounds with the best interaction profile (15) were docked within the CHIT1 catalytic site to evaluate their selectivity over AfChiB1. Furthermore, we considered the interaction energy (MolDock score) and a lipophilic parameter (aLogP) for the selection of the best candidates. Based on these descriptors, we constructed a mathematical model for the IC50 prediction of our candidates (60–200 μM), using experimental known inhibitors of AfChiB1. As a final step, ADME characteristics were obtained for all the candidates, showing that 5 is our best designed hit, which possesses the best pharmacodynamic and pharmacokinetic character. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

17 pages, 789 KiB  
Review
Chitinases and Chitinase-Like Proteins as Therapeutic Targets in Inflammatory Diseases, with a Special Focus on Inflammatory Bowel Diseases
by Marzena Mazur, Anna Zielińska, Marcin M. Grzybowski, Jacek Olczak and Jakub Fichna
Int. J. Mol. Sci. 2021, 22(13), 6966; https://doi.org/10.3390/ijms22136966 - 28 Jun 2021
Cited by 39 | Viewed by 7520
Abstract
Chitinases belong to the evolutionarily conserved glycosyl hydrolase family 18 (GH18). They catalyze degradation of chitin to N-acetylglucosamine by hydrolysis of the β-(1-4)-glycosidic bonds. Although mammals do not synthesize chitin, they possess two enzymatically active chitinases, i.e., chitotriosidase (CHIT1) and acidic mammalian [...] Read more.
Chitinases belong to the evolutionarily conserved glycosyl hydrolase family 18 (GH18). They catalyze degradation of chitin to N-acetylglucosamine by hydrolysis of the β-(1-4)-glycosidic bonds. Although mammals do not synthesize chitin, they possess two enzymatically active chitinases, i.e., chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase), as well as several chitinase-like proteins (YKL-40, YKL-39, oviductin, and stabilin-interacting protein). The latter lack enzymatic activity but still display oligosaccharides-binding ability. The physiologic functions of chitinases are still unclear, but they have been shown to be involved in the pathogenesis of various human fibrotic and inflammatory disorders, particularly those of the lung (idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, sarcoidosis, and asthma) and the gastrointestinal tract (inflammatory bowel diseases (IBDs) and colon cancer). In this review, we summarize the current knowledge about chitinases, particularly in IBDs, and demonstrate that chitinases can serve as prognostic biomarkers of disease progression. Moreover, we suggest that the inhibition of chitinase activity may be considered as a novel therapeutic strategy for the treatment of IBDs. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

8 pages, 441 KiB  
Article
The Genetic Polymorphisms of 24 Base Pair Duplication and Point G102S of Human Chitotriosidase to Bancroftian Filariasis at the Thai–Myanmar Border
by Vivornpun Sanprasert, Sarit Charuchaibovorn and Surang Nuchprayoon
Pathogens 2019, 8(1), 41; https://doi.org/10.3390/pathogens8010041 - 25 Mar 2019
Cited by 1 | Viewed by 3554
Abstract
Lymphatic filariasis, caused by lymphatic filarial parasites, Wuchereria bancrofti, and Brugia malayi, causes significant morbidity and disability to 120 million people in the tropics and subtropics. Chitin has an important role for embryogenesis in adult worms and is a component of microfilaria [...] Read more.
Lymphatic filariasis, caused by lymphatic filarial parasites, Wuchereria bancrofti, and Brugia malayi, causes significant morbidity and disability to 120 million people in the tropics and subtropics. Chitin has an important role for embryogenesis in adult worms and is a component of microfilaria sheath. Human chitotriosidase (CHIT1) is a chitin-degrading enzyme which provides a protective role against chitin-containing pathogens. Here, we determined the association of CHIT1 polymorphisms with susceptibility to bancroftian filariasis (BF) in 88 individuals at the Thai–Myanmar border. Two common polymorphisms of CHIT1, contributing inactive CHIT protein, including 24 base pair (24 bp) duplication in exon 10, and p. G102S in exon 4 were genotyped by allele-specific Polymerase Chain Reaction (PCR) and PCR sequencing, respectively. Unexpectedly, genotype frequencies of 24 bp duplication insertion homozygous (INS/INS) were significantly higher in endemic normal (EN) (40.0%) than BF patients (31.4%). In contrast, genotype frequencies of p. G102S homozygous (A/A) in BF patients (21.6%) was higher than in EN (19.0%) without statistical difference. Mutant allele frequencies of 24 bp duplication were 0.6125 (98/160) and p. G102S were 0.392 (69/176). Genotype and allele frequencies of CHIT1, 24 bp duplication, and p. G102S, showed no association with BF patients. Full article
(This article belongs to the Section Immunological Responses and Immune Defense Mechanisms)
Show Figures

Figure 1

14 pages, 4515 KiB  
Article
Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase
by Maiko Uehara, Eri Tabata, Kazuhiro Ishii, Akira Sawa, Misa Ohno, Masayoshi Sakaguchi, Vaclav Matoska, Peter O. Bauer and Fumitaka Oyama
Genes 2018, 9(5), 244; https://doi.org/10.3390/genes9050244 - 9 May 2018
Cited by 7 | Viewed by 9631
Abstract
Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey (Macaca fascicularis) is one of the most frequently used nonhuman primate models [...] Read more.
Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey (Macaca fascicularis) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey–mouse–human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop