Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = human adipose-derived stromal cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6623 KiB  
Article
Light Exposure as a Tool to Enhance the Regenerative Potential of Adipose-Derived Mesenchymal Stem/Stromal Cells
by Kaarthik Sridharan, Tawakalitu Okikiola Waheed, Susanne Staehlke, Alexander Riess, Mario Mand, Juliane Meyer, Hermann Seitz, Kirsten Peters and Olga Hahn
Cells 2025, 14(15), 1143; https://doi.org/10.3390/cells14151143 - 24 Jul 2025
Viewed by 420
Abstract
Photobiomodulation (PBM) utilizes different wavelengths of light to modulate cellular functions and has emerged as a promising approach in regenerative medicine. In this study, we examined the effects of blue (455 nm), red (660 nm), and near-infrared (810 nm) light, both individually and [...] Read more.
Photobiomodulation (PBM) utilizes different wavelengths of light to modulate cellular functions and has emerged as a promising approach in regenerative medicine. In this study, we examined the effects of blue (455 nm), red (660 nm), and near-infrared (810 nm) light, both individually and in combination, on human adipose-derived mesenchymal stem/stromal cells (adMSCs). A single, short-term exposure of adMSCs in suspension to these wavelengths using an integrating sphere revealed distinct wavelength- and dose-dependent cellular responses. Blue light exposure led to a dose-dependent increase in intracellular reactive oxygen species, accompanied by reduced cell proliferation, metabolic activity, interleukin-6/interleukin-8 secretion, and adipogenic differentiation. In contrast, red and near-infrared light preserved cell viability and metabolic function while enhancing cell migration, consistent with their documented ability to stimulate proliferation and mitochondrial activity in mesenchymal stem cells. These findings highlight the necessity of precise wavelength and dosage selection in PBM applications and support the potential of PBM as a customizable tool for optimizing patient-specific regenerative therapies. Full article
Show Figures

Figure 1

28 pages, 2589 KiB  
Systematic Review
Histology and Immunohistochemistry of Adipose Tissue: A Scoping Review on Staining Methods and Their Informative Value
by Tom Schimanski, Rafael Loucas, Marios Loucas, Oliver Felthaus, Vanessa Brébant, Silvan Klein, Alexandra Anker, Konstantin Frank, Andreas Siegmund, Andrea Pagani, Sebastian Geis, Sophia Theresa Diesch, Andreas Eigenberger and Lukas Prantl
Cells 2025, 14(12), 898; https://doi.org/10.3390/cells14120898 - 14 Jun 2025
Viewed by 1374
Abstract
Background: Histological and immunohistochemical analyses of adipose tissue are essential for evaluating the quality and functionality of lipoaspirates in regenerative medicine and fat grafting procedures. These methods provide insights into tissue viability, cellular subtypes, and extracellular matrix (ECM) composition—all factors influencing graft retention [...] Read more.
Background: Histological and immunohistochemical analyses of adipose tissue are essential for evaluating the quality and functionality of lipoaspirates in regenerative medicine and fat grafting procedures. These methods provide insights into tissue viability, cellular subtypes, and extracellular matrix (ECM) composition—all factors influencing graft retention and clinical outcomes. Purpose: This scoping review aims to summarize the most commonly used staining methods and their applications in the histology and immunohistochemistry of adipose tissue. By exploring qualitative and quantitative markers, we seek to guide researchers in selecting the appropriate methodologies for addressing experimental and translational research. Methods: A systematic search was conducted using PubMed, Ovid, and the Cochrane Library databases from inception to 2024, employing Boolean operators (“lipoaspirate” OR “fat graft” OR “gauze rolling” OR “decantation” OR “coleman fat” OR “celt” OR “nanofat” OR “lipofilling” OR “human fat” AND “histol*”). Studies were included if they utilized histology or immunohistochemistry on undigested human adipose tissue or its derivatives. The inclusion criteria focused on peer-reviewed, English-language studies reporting quantitative and qualitative data on adipose tissue markers. Results: Out of 166 studies analyzed, hematoxylin–eosin (H&E) was the most frequently employed histological stain (152 studies), followed by Masson Trichrome and Sudan III. Immunohistochemical markers such as CD31, CD34, and perilipin were extensively used to distinguish stromal vascular fraction (SVF) cells, adipocytes, and inflammatory processes. Studies employing semiquantitative scoring demonstrated enhanced comparability, particularly for fibrosis, necrosis, and oil cyst evaluation. Quantitative analyses focused on SVF cell density, mature adipocyte integrity, and ECM composition. Methodological inconsistencies, particularly in preparation protocols, were observed in 25 studies. Conclusions: This review highlights the critical role of histological and immunohistochemical methods in adipose tissue research. H&E staining remains the cornerstone for general tissue evaluation in the clinical context, while specialized stains and immunohistochemical markers allow for detailed analyses of specific cellular and ECM components in experimental research. Standardizing preparation and evaluation protocols will enhance interstudy comparability and support advancements in adipose tissue-based therapies. Full article
Show Figures

Figure 1

19 pages, 3292 KiB  
Article
Phenothiazine-Based Nanoaggregates: Dual Role in Bioimaging and Stem Cell-Driven Photodynamic Therapy
by Eleonora Calzoni, Alessio Cesaretti, Nicolò Montegiove, Maria Luisa Valicenti, Francesco Morena, Rajneesh Misra, Benedetta Carlotti and Sabata Martino
Nanomaterials 2025, 15(12), 894; https://doi.org/10.3390/nano15120894 - 10 Jun 2025
Cited by 1 | Viewed by 455
Abstract
Nanotechnology is transforming contemporary medicine by providing cutting-edge tools for the treatment and diagnosis of complex disorders. Advanced techniques such as bioimaging and photodynamic therapy (PDT) combine early diagnosis and targeted therapy, offering a more precise approach than conventional treatments. However, a significant [...] Read more.
Nanotechnology is transforming contemporary medicine by providing cutting-edge tools for the treatment and diagnosis of complex disorders. Advanced techniques such as bioimaging and photodynamic therapy (PDT) combine early diagnosis and targeted therapy, offering a more precise approach than conventional treatments. However, a significant obstacle for PDT is the need to selectively deliver photosensitizers to disease sites while minimizing systemic side effects. In this context, mesenchymal stem cells have emerged as promising biological carriers due to their natural tropism towards tumors, low immunogenicity, and their ability to overcome biological barriers. In this study, two push–pull compounds, NPI-PTZ and BTZ-PTZ, phenothiazine derivatives featuring aggregation-induced emission (AIE) abilities, were analyzed. These molecules proved to be excellent fluorescent probes and photosensitizing agents. When administered to human bone marrow-derived multipotent stromal cells (hBM-MSCs) and human adipose multipotent stem cells (hASCs), the compounds were efficiently internalized, maintained a stable fluorescent emission for several days, and showed phototoxicity after irradiation, without inducing major cytotoxic effects under normal conditions. These results highlight the potential of NPI-PTZ and BTZ-PTZ combined with mesenchymal stem cells as theranostic tools, bridging bioimaging and PDT, and suggest new possibilities for advanced therapeutic approaches in clinical applications. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

15 pages, 6399 KiB  
Article
Characterisation of Mesenchymal Stromal Cells (MSCs) from Human Adult Thymus as a Potential Cell Source for Regenerative Medicine
by Martina Ramsperger-Gleixner, Chang Li, Nina Wallon, Annika Kuckhahn, Volker Weisbach, Michael Weyand and Christian Heim
J. Clin. Med. 2025, 14(10), 3474; https://doi.org/10.3390/jcm14103474 - 15 May 2025
Viewed by 685
Abstract
Background: Mesenchymal stem cell-based therapy may be indicated in ischaemic heart disease. The use of autologous adipose-derived mesenchymal stromal cells (AdMSCs) offers regenerative potential due to their paracrine effects. The aim of this study was to expand and characterise adult human thymus-derived MSCs [...] Read more.
Background: Mesenchymal stem cell-based therapy may be indicated in ischaemic heart disease. The use of autologous adipose-derived mesenchymal stromal cells (AdMSCs) offers regenerative potential due to their paracrine effects. The aim of this study was to expand and characterise adult human thymus-derived MSCs harvested during open heart surgery with respect to their stem cell and paracrine properties. Methods: Enzymatically and non-enzymatically isolated human thymic AdMSCs (ThyAdMSCs) were cultured in xeno-free media containing pooled human platelet lysate (pPL). MSC characterisation was performed. Ex vivo expanded ThyAdMSCs were differentiated into three lineages. Proliferative capacity and immunomodulatory properties were assessed by proliferation assays and mixed lymphocyte reaction, respectively. Gene expression analysis was performed by qPCR. Results: Both isolation methods yielded fibroblast-like cells with plastic adherence and high proliferation. Flow cytometry revealed distinct expression of MSC markers in the absence of haematopoietic cell surface markers. Ex vivo expanded ThyAdMSCs could be differentiated into adipocytes, osteocytes, and chondrocytes. Activated peripheral blood mononuclear cells were significantly reduced when co-cultured with ThyAdMSCs, indicating their ability to inhibit immune cells in vitro. Gene expression analysis showed significantly less IFNγ and TNFα, indicating an alteration of the activated and pro-inflammatory state in the presence of ThyAdMSCs. Conclusions: These results demonstrate an efficient method to generate AdMSCs from human thymus. These MSCs have a strong immunomodulatory capacity and are, therefore, a promising cell source for regenerative medicine. The culture conditions are crucial for cells to proliferate in culture. Further research could explore the use of ThyAdMSCs or their secretome in surgical procedures. Full article
Show Figures

Graphical abstract

26 pages, 4223 KiB  
Article
CTHRC1 Expression Results in Secretion-Mediated, SOX9-Dependent Suppression of Adipogenesis: Implications for the Regulatory Role of Newly Identified CTHRC1+/PDGFR-Alpha+ Stromal Cells of Adipose
by Matthew E. Siviski, Rachel Bercovitch, Kathleen Pyburn, Christian Potts, Shivangi R. Pande, Carlos A. Gartner, William Halteman, Doreen Kacer, Barbara Toomey, Calvin Vary, Robert Koza, Lucy Liaw, Sergey Ryzhov, Volkhard Lindner and Igor Prudovsky
Int. J. Mol. Sci. 2025, 26(5), 1804; https://doi.org/10.3390/ijms26051804 - 20 Feb 2025
Viewed by 924
Abstract
Adipogenesis is regulated by the coordinated activity of adipogenic transcription factors including PPAR-gamma and C/EBP alpha, while dysregulated adipogenesis can predispose adipose tissues to adipocyte hypertrophy and hyperplasia. We have previously reported that Cthrc1-null mice have increased adiposity compared to wildtype mice, [...] Read more.
Adipogenesis is regulated by the coordinated activity of adipogenic transcription factors including PPAR-gamma and C/EBP alpha, while dysregulated adipogenesis can predispose adipose tissues to adipocyte hypertrophy and hyperplasia. We have previously reported that Cthrc1-null mice have increased adiposity compared to wildtype mice, supporting the notion that CTHRC1 regulates body composition. Herein, we derived conditioned medium from 3T3-L1 cells expressing human CTHRC1 and investigated its anti-adipogenic activity. This constituent significantly reduced 3T3-L1 cell adipogenic differentiation commensurate to the marked suppression of Cebpa and Pparg gene expression. It also increased the expression of the anti-adipogenic transcription factor SOX9 and promoted its nuclear translocation. Importantly, Sox9 gene knockdown demonstrated that the anti-adipogenic effect produced by this conditioned medium is dependent on SOX9 expression, while its ability to positively regulate SOX9 was attenuated by the application of Rho and Rac1 signaling pathway inhibitors. We also identified the selective expression of CTHRC1 in PDGFRA-expressing cell populations in human white adipose tissue, but not brown or perivascular adipose tissues. Congruently, flow cytometry revealed CTHRC1 expression in PDGFR-alpha+ stromal cells of mouse white adipose tissue, thus defining a novel stromal cell population that could underpin the ability of CTHRC1 to regulate adiposity. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

41 pages, 1709 KiB  
Review
A Narrative Review on Manufacturing Methods Employed in the Production of Mesenchymal Stromal Cells for Knee Osteoarthritis Therapy
by Rasmus Roost Aabling, Maria Rusan, Anaïs Marie Julie Møller, Naija Munk-Pedersen, Carsten Holm, Brian Elmengaard, Michael Pedersen and Bjarne Kuno Møller
Biomedicines 2025, 13(2), 509; https://doi.org/10.3390/biomedicines13020509 - 18 Feb 2025
Viewed by 1693
Abstract
Knee osteoarthritis (OA) is a chronic, progressive, inflammatory, and degenerative whole-joint disease. Early-stage OA treatments typically include physiotherapy, weight-loss, pain relief medications, and intra-articular knee injections, such as corticosteroids, hyaluronic acid, or platelet-rich plasma. These treatments primarily provide symptomatic relief rather than reversing [...] Read more.
Knee osteoarthritis (OA) is a chronic, progressive, inflammatory, and degenerative whole-joint disease. Early-stage OA treatments typically include physiotherapy, weight-loss, pain relief medications, and intra-articular knee injections, such as corticosteroids, hyaluronic acid, or platelet-rich plasma. These treatments primarily provide symptomatic relief rather than reversing or halting disease progression. Recently, mesenchymal stromal cell (MSC) injections have garnered attention due to their immunomodulatory and regenerative capacities. MSCs, which can be derived from sources such as bone marrow, umbilical cord, or adipose tissue, and can be allogeneic or autologous, have demonstrated promising results in both animal models and several human studies. However, different protocols have been employed, presenting challenges for comparing outcomes. In this review, we address these variable settings, evaluate current practices, and identify key factors critical in optimizing MSC-based therapies by critically reviewing clinical trials of ex vivo expanded MSC therapies for OA undertaken between 2008 and 2023. Specific attention was given to two key aspects: (1) the cell culture process employed in manufacturing of autologous or allogeneic MSC products, and (2) the post-culture methods employed in storage, reconstitution and administration of the MSCs. Our findings suggest that standardizing MSC production for clinical applications remains a significant challenge, primarily due to variations in tissue sources, harvesting techniques, and manufacturing protocols, and due to broad discrepancies in reporting. Thus, we propose a set of minimal reporting criteria to guide future clinical trials. A common reporting guideline is a critical step towards a more standardized MSC production across different laboratories and clinical settings, thereby enhancing reproducibility and advancing the field of regenerative medicine for knee OA, as well as other disease settings. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

32 pages, 3557 KiB  
Article
Secretome Analysis of Human and Rat Pancreatic Islets Co-Cultured with Adipose-Derived Stromal Cells Reveals a Signature with Enhanced Regenerative Capacities
by Erika Pinheiro-Machado, Bart J. de Haan, Marten A. Engelse and Alexandra M. Smink
Cells 2025, 14(4), 302; https://doi.org/10.3390/cells14040302 - 18 Feb 2025
Cited by 1 | Viewed by 1260
Abstract
Pancreatic islet transplantation (PIT) is a promising treatment for type 1 diabetes (T1D) but faces challenges pre- and post-transplantation. Co-transplantation with mesenchymal stromal cells (MSCs), known for their regenerative properties, has shown potential in improving PIT outcomes. This study examined the secretome of [...] Read more.
Pancreatic islet transplantation (PIT) is a promising treatment for type 1 diabetes (T1D) but faces challenges pre- and post-transplantation. Co-transplantation with mesenchymal stromal cells (MSCs), known for their regenerative properties, has shown potential in improving PIT outcomes. This study examined the secretome of islets cultured alone compared to the secretomes of islets co-cultured with adipose-derived stromal cells (ASCs), a subtype of MSCs, under transplantation-relevant stressors: normoxia, cytokines, high glucose, hypoxia, and combined hypoxia and high glucose. Islet co-culture with ASCs significantly altered the proteome, affecting pathways related to energy metabolism, angiogenesis, extracellular matrix organization, and immune modulation. Key signaling molecules (e.g., VEGF, PDGF, bFGF, Collagen I alpha 1, IL-1α, and IL-10) were differentially regulated depending on culture conditions and ASC presence. Functional assays demonstrated that the co-culture secretome could enhance angiogenesis, collagen deposition, and immune modulation, depending on the stress conditions. These findings highlight possible mechanisms through which ASCs may support islet survival and function, offering insights into overcoming PIT challenges. Moreover, this work contributes to identifying biomarkers of the post-transplantation microenvironment, advancing therapeutic strategies for T1D and regenerative medicine. Full article
Show Figures

Figure 1

7 pages, 1672 KiB  
Proceeding Paper
Bioengineering of Mesenchymal-Stromal-Cell-Based 3D Constructs with Different Cell Organizations
by Natalia Trufanova, Oleh Trufanov, Galyna Bozhok, Ruslana Oberemok, Olena Revenko and Oleksandr Petrenko
Eng. Proc. 2024, 81(1), 8; https://doi.org/10.3390/engproc2024081008 - 17 Feb 2025
Viewed by 550
Abstract
Standard 2D cultures inadequately mimic the natural microenvironment of mesenchymal stromal cells (MSCs), compromising their properties. This study investigated the impact of 3D cultures in spheroids, alginate microspheres (AMSs), and blood plasma scaffolds on human-adipose-derived MSC behavior. The cell morphology, viability/apoptosis (6-CFDA/Annexin-Cy3.18), actin [...] Read more.
Standard 2D cultures inadequately mimic the natural microenvironment of mesenchymal stromal cells (MSCs), compromising their properties. This study investigated the impact of 3D cultures in spheroids, alginate microspheres (AMSs), and blood plasma scaffolds on human-adipose-derived MSC behavior. The cell morphology, viability/apoptosis (6-CFDA/Annexin-Cy3.18), actin filament development (phalloidin-FITC), and metabolic activity (Alamar Blue) were assessed on the 3rd day of the generated 3D construct cultures. The abilities for adipogenic and osteogenic differentiation were evaluated after 21 days of culture in media with inducers by Nile Red and Alizarin Red staining, respectively. The 3D culture supported closer-to-physiological cell interactions and morphology and resulted in F-actin reduction compared with the 2D culture. While the metabolic activity was elevated in the scaffolds, it was significantly reduced in the spheroids and AMSs, which reflected natural-like quiescence. The differentiation was maintained across all the 3D constructs. These findings highlight the essential influence of 3D construct design on MSC function, underscoring its potential for advancing both in vitro models and cell-based therapies. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Bioengineering)
Show Figures

Figure 1

22 pages, 5401 KiB  
Article
Adipose-Derived Stromal Cells Exposed to RGD Motifs Enter an Angiogenic Stage Regulating Endothelial Cells
by Nicolo-Constantino Brembilla, Sanae El-Harane, Stéphane Durual, Karl-Heinz Krause and Olivier Preynat-Seauve
Int. J. Mol. Sci. 2025, 26(3), 867; https://doi.org/10.3390/ijms26030867 - 21 Jan 2025
Cited by 1 | Viewed by 1156
Abstract
Adipose-derived stromal cells (ASCs) possess significant regenerative potential, playing a key role in tissue repair and angiogenesis. During wound healing, ASC interacts with the extracellular matrix by recognizing arginylglycylaspartic acid (RGD) motifs, which are crucial for mediating these functions. This study investigates how [...] Read more.
Adipose-derived stromal cells (ASCs) possess significant regenerative potential, playing a key role in tissue repair and angiogenesis. During wound healing, ASC interacts with the extracellular matrix by recognizing arginylglycylaspartic acid (RGD) motifs, which are crucial for mediating these functions. This study investigates how RGD exposure influences ASC behavior, with a focus on angiogenesis. To mimic the wound-healing environment, ASC were cultured in a porcine gelatin sponge, an RGD-exposing matrix. Transcriptomics revealed that ASC cultured in gelatin exhibited an upregulated expression of genes associated with inflammation, angiogenesis, and tissue repair compared to ASC in suspension. Pro-inflammatory and pro-angiogenic factors, including IL-1, IL-6, IL-8, and VEGF, were significantly elevated. Functional assays further demonstrated that ASC-conditioned media enhanced endothelial cell migration, tubulogenesis, and reduced endothelial permeability, all critical processes in angiogenesis. Notably, ASC-conditioned media also promoted vasculogenesis in human vascular organoids. The inhibition of ASC-RGD interactions using the cyclic peptide cilengitide reversed these effects, underscoring the essential role of RGD-integrin interactions in ASC-mediated angiogenesis. These findings suggest that gelatin sponges enhance ASC’s regenerative and angiogenic properties via RGD-dependent mechanisms, offering promising therapeutic potential for tissue repair and vascular regeneration. Understanding how RGD modulates ASC behavior provides valuable insights into advancing cell-based regenerative therapies. Full article
Show Figures

Figure 1

14 pages, 2882 KiB  
Article
Heparin Differentially Regulates the Expression of Specific miRNAs in Mesenchymal Stromal Cells
by Michaela Oeller, Tanja Schally, Georg Zimmermann, Wanda Lauth, Katharina Schallmoser, Eva Rohde and Sandra Laner-Plamberger
Int. J. Mol. Sci. 2024, 25(23), 12589; https://doi.org/10.3390/ijms252312589 - 23 Nov 2024
Cited by 1 | Viewed by 910
Abstract
In regenerative medicine, stromal cells are supposed to play an important role by modulating immune responses and differentiating into various tissue types. The aim of this study was to investigate the influence of heparin, frequently used as an anticoagulant in human platelet lysate [...] Read more.
In regenerative medicine, stromal cells are supposed to play an important role by modulating immune responses and differentiating into various tissue types. The aim of this study was to investigate the influence of heparin, frequently used as an anticoagulant in human platelet lysate (HPL)-supplemented cell cultures, on the expression of non-coding RNA species, particularly microRNAs (miRNA), which are pivotal regulators of gene expression. Through genomic analysis and quantitative RT-PCR, we assessed the differential impact of heparin on miRNA expression in various stromal cell types, derived from human bone marrow, umbilical cord and white adipose tissue. Our results demonstrate that heparin significantly alters miRNA expression, with distinct up- and downregulation patterns depending on the original tissue source of human stromal cells. Furthermore, our analyses indicate that these heparin-induced alterations in miRNA expression profiles influence critical cellular processes, including proliferation, apoptosis and differentiation. In conclusion, our study highlights that heparin not only fulfills its primary role as an efficient anticoagulant but can also modulate important regulatory pathways in stromal cells by influencing miRNA expression. This may alter cellular properties and thus influence stromal cell-based therapeutic applications in regenerative medicine. Full article
(This article belongs to the Special Issue Molecular Research in Human Stem Cells)
Show Figures

Figure 1

19 pages, 4062 KiB  
Article
Investigation of the Effect of High Shear Stress on Mesenchymal Stem Cells Using a Rotational Rheometer in a Small-Angle Cone–Plate Configuration
by Mario Mand, Olga Hahn, Juliane Meyer, Kirsten Peters and Hermann Seitz
Bioengineering 2024, 11(10), 1011; https://doi.org/10.3390/bioengineering11101011 - 11 Oct 2024
Cited by 1 | Viewed by 1767
Abstract
Within the healthy human body, cells reside within the physiological environment of a tissue compound. Here, they are subject to constant low levels of mechanical stress that can influence the growth and differentiation of the cells. The liposuction of adipose tissue and the [...] Read more.
Within the healthy human body, cells reside within the physiological environment of a tissue compound. Here, they are subject to constant low levels of mechanical stress that can influence the growth and differentiation of the cells. The liposuction of adipose tissue and the subsequent isolation of mesenchymal stem/stromal cells (MSCs), for example, are procedures that induce a high level of mechanical shear stress. As MSCs play a central role in tissue regeneration by migrating into regenerating areas and driving regeneration through proliferation and tissue-specific differentiation, they are increasingly used in therapeutic applications. Consequently, there is a strong interest in investigating the effects of shear stress on MSCs. In this study, we present a set-up for applying high shear rates to cells based on a rotational rheometer with a small-angle cone–plate configuration. This set-up was used to investigate the effect of various shear stresses on human adipose-derived MSCs in suspension. The results of the study show that the viability of the cells remained unaffected up to 18.38 Pa for an exposure time of 5 min. However, it was observed that intense shear stress damaged the cells, with longer treatment durations increasing the percentage of cell debris. Full article
(This article belongs to the Special Issue Regenerative Technologies in Plastic and Reconstructive Surgery)
Show Figures

Graphical abstract

26 pages, 9307 KiB  
Article
Cellular In Vitro Responses Induced by Human Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles Obtained from Suspension Culture
by Ingrid L. M. Souza, Andreia A. Suzukawa, Raphaella Josino, Bruna H. Marcon, Anny W. Robert, Patrícia Shigunov, Alejandro Correa and Marco A. Stimamiglio
Int. J. Mol. Sci. 2024, 25(14), 7605; https://doi.org/10.3390/ijms25147605 - 11 Jul 2024
Cited by 2 | Viewed by 2311
Abstract
Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as [...] Read more.
Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as facility for dosage, histocompatibility, and low immunogenicity, thus possessing a lower possibility of rejection. In this work, we address the potential activity of MSC-EVs isolated from adipose-derived MSCs (ADMSC-EVs) cultured on cross-linked dextran microcarriers, applied to test the scalability and reproducibility of EV production. Isolated ADMSC-EVs were added into cultured human dermal fibroblasts (NHDF-1), keratinocytes (HaCat), endothelial cells (HUVEC), and THP-1 cell-derived macrophages to evaluate cellular responses (i.e., cell proliferation, cell migration, angiogenesis induction, and macrophage phenotype-switching). ADMSC viability and phenotype were assessed during cell culture and isolated ADMSC-EVs were monitored by nanotracking particle analysis, electron microscopy, and immunophenotyping. We observed an enhancement of HaCat proliferation; NHDF-1 and HaCat migration; endothelial tube formation on HUVEC; and the expression of inflammatory cytokines in THP-1-derived macrophages. The increased expression of TGF-β and IL-1β was observed in M1 macrophages treated with higher doses of ADMSC-EVs. Hence, EVs from microcarrier-cultivated ADMSCs are shown to modulate cell behavior, being able to induce skin tissue related cells to migrate and proliferate as well as stimulate angiogenesis and cause balance between pro- and anti-inflammatory responses in macrophages. Based on these findings, we suggest that the isolation of EVs from ADMSC suspension cultures makes it possible to induce in vitro cellular responses of interest and obtain sufficient particle numbers for the development of in vivo concept tests for tissue regeneration studies. Full article
(This article belongs to the Special Issue New Insights into Human Mesenchymal Stem Cells)
Show Figures

Figure 1

19 pages, 1482 KiB  
Article
Donor Sites and Harvesting Techniques Affect miRNA Cargos of Extracellular Vesicles Released by Human Adipose-Derived Mesenchymal Stromal Cells
by Caterina Visconte, Michela Maria Taiana, Alessandra Colombini, Paola De Luca, Enrico Ragni and Laura de Girolamo
Int. J. Mol. Sci. 2024, 25(12), 6450; https://doi.org/10.3390/ijms25126450 - 11 Jun 2024
Cited by 3 | Viewed by 1337
Abstract
Osteoarthritis (OA) is a degenerative joint disorder characterized by the progressive deterioration of articular cartilage driven and sustained by catabolic and inflammatory processes that lead to pain and functional impairment. Adipose-derived stem cells (ASCs) have emerged as a promising therapeutic strategy for OA [...] Read more.
Osteoarthritis (OA) is a degenerative joint disorder characterized by the progressive deterioration of articular cartilage driven and sustained by catabolic and inflammatory processes that lead to pain and functional impairment. Adipose-derived stem cells (ASCs) have emerged as a promising therapeutic strategy for OA due to their regenerative potential, which mainly relies on the adaptive release of paracrine molecules that are soluble or encapsulated in extracellular vesicles (EVs). The biological effects of EVs specifically depend on their cargo; in particular, microRNAs (miRNAs) can specifically modulate target cell function through gene expression regulation. This study aimed to investigate the impact of collection site (abdominal vs. peri-trochanteric adipose tissue) and collection method (surgical excision vs. lipoaspiration) on the miRNAs profile in ASC-derived EVs and their potential implications for OA therapy. EV-miRNA cargo profiles from ASCs of different origins were compared. An extensive bioinformatics search through experimentally validated and OA-related targets, pathways, and tissues was conducted. Several miRNAs involved in the restoration of cartilage homeostasis and in immunomodulation were identified in all ASC types. However, EV-miRNA expression profiles were affected by both the tissue-harvesting site and procedure, leading to peculiar characteristics for each type. Our results suggest that adipose-tissue-harvesting techniques and the anatomical site of origin influence the therapeutic efficacy of ASC-EVs for tissue-specific regenerative therapies in OA, which warrants further investigation. Full article
Show Figures

Figure 1

10 pages, 1918 KiB  
Communication
Proposal of Simplified Standardization of the Cell-Growth-Promoting Activity of Human Adipose Tissue Mesenchymal Stromal Cell Culture Supernatants
by Shin Enosawa, Sho Kobayashi and Eiji Kobayashi
Int. J. Mol. Sci. 2024, 25(10), 5197; https://doi.org/10.3390/ijms25105197 - 10 May 2024
Cited by 1 | Viewed by 1284
Abstract
The conditioned medium (CM) obtained from mesenchymal stromal cell (MSC) culture has excellent cell growth-promoting activity and is used for cosmetics and healthcare products. Unlike pharmaceuticals, strict efficacy verification is not legally required for these products. However, their efficacy must be substantiated as [...] Read more.
The conditioned medium (CM) obtained from mesenchymal stromal cell (MSC) culture has excellent cell growth-promoting activity and is used for cosmetics and healthcare products. Unlike pharmaceuticals, strict efficacy verification is not legally required for these products. However, their efficacy must be substantiated as commercial products. We attempted to simplify CM production and to standardize the evaluation of the growth-promoting activity of CM. CM was obtained through the culturing of two lines of commercially available human adipose tissue-derived MSCs using MEMα with or without 10% fetal bovine serum (FBS) for 24 h. Non-CM control media were produced by the same protocol without MSCs. Growth-promoting activities of the CM were estimated by [3H]-thymidine pulse. CM were subjected to molecular weight fractionation with ultrafiltration using 10 k-, 30 k-, 50 k-, and 100 k-membranes. The FBS-free CMs showed 1.34- to 1.85-fold increases and FBS-containing CMs showed 1.45- to 1.67-fold increases in proliferation-promoting activity compared with non-CM controls, regardless of the source of the cell. The thymidine incorporation levels were approximately three times higher in FBS-containing CMs. Aged cells also showed 1.67- to 2.48-fold increases in the activity due to FBS-containing CM, but not to FBS-free CM. The CM activities were sustained even after 1 year at 4 °C. Molecular weight fractionation showed that the activity was recovered in the fraction above 100 k. Clear and stable cell-growth-promoting activity was confirmed with CMs of commercially available adipose tissue MSCs. The activity was detected in the fraction over 100 k. We propose here the importance of standardizing the production and evaluation of CMs to indicate their specific action. Full article
(This article belongs to the Special Issue Adipose Tissue in Human Health and Disease)
Show Figures

Figure 1

27 pages, 8271 KiB  
Article
Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications
by Angelika Zaszczyńska, Arkadiusz Gradys, Anna Ziemiecka, Piotr K. Szewczyk, Ryszard Tymkiewicz, Małgorzata Lewandowska-Szumieł, Urszula Stachewicz and Paweł Ł. Sajkiewicz
Int. J. Mol. Sci. 2024, 25(9), 4980; https://doi.org/10.3390/ijms25094980 - 2 May 2024
Cited by 8 | Viewed by 2476
Abstract
Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering [...] Read more.
Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers’ diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation. Full article
Show Figures

Figure 1

Back to TopTop