Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = hot-melt extruding technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14789 KiB  
Article
Feasibility of Hot Melt Extrusion in Converting Water-Based Nanosuspensions into Solid Dosage Forms
by Erasmo Ragucci, Marco Uboldi, Adam Sobczuk, Giorgio Facchetti, Alice Melocchi, Mauro Serratoni and Lucia Zema
Pharmaceutics 2025, 17(5), 662; https://doi.org/10.3390/pharmaceutics17050662 - 17 May 2025
Viewed by 766
Abstract
Aim: In addition to numerous benefits provided by nanosuspensions (NSs) (e.g., enhanced saturation solubility, increased area for interaction with fluids), they suffer from major stability, handling and compliance issues. To overcome these challenges, we evaluated the feasibility of hot melt extrusion (HME) in [...] Read more.
Aim: In addition to numerous benefits provided by nanosuspensions (NSs) (e.g., enhanced saturation solubility, increased area for interaction with fluids), they suffer from major stability, handling and compliance issues. To overcome these challenges, we evaluated the feasibility of hot melt extrusion (HME) in transforming a cinnarizine-based NS, selected as a case study, into granules for oral intake. Methods: Thermoplastic polymers, in principle compatible with the thermal behavior of the selected drug and characterized by different interaction mechanisms with aqueous fluids, were used as carriers to absorb the NS and were processed by HME. Results: The extruded granules pointed out good physio-technological characteristics, a drug content > 85% with coefficient of variation (CV) < 5% and tunable in vitro performance coherent with the polymeric carriers they were composed of. Particle size as well as the solid state of cinnarizine was checked using several analytical techniques in combination (e.g., DSC, SEM, FT-IR, Raman). Depending on the composition of the granules, and specifically for formulations processed below 85 °C, the drug was found to remain crystalline and in the desired nanoscale. Conclusions: HME turned out to be a versatile process to transform, in a single-step, NSs into multi-particulate solid products for oral administration showing a variety of release profiles. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Graphical abstract

28 pages, 10826 KiB  
Article
QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation
by Amit Gupta, Rashmi Dahima, Sunil K. Panda, Annie Gupta, Gaurav Deep Singh, Tanveer A. Wani, Afzal Hussain and Devashish Rathore
Pharmaceutics 2024, 16(6), 764; https://doi.org/10.3390/pharmaceutics16060764 - 4 Jun 2024
Cited by 3 | Viewed by 2089
Abstract
Background: Pazopanib hydrochloride (PZB) is a protein kinase inhibitor approved by the United States Food and Drug Administration and European agencies for the treatment of renal cell carcinoma and other renal malignancies. However, it exhibits poor aqueous solubility and inconsistent oral drug absorption. [...] Read more.
Background: Pazopanib hydrochloride (PZB) is a protein kinase inhibitor approved by the United States Food and Drug Administration and European agencies for the treatment of renal cell carcinoma and other renal malignancies. However, it exhibits poor aqueous solubility and inconsistent oral drug absorption. In this regard, the current research work entails the development and evaluation of the extrudates of pazopanib hydrochloride by the hot-melt extrusion (HME) technique for solubility enhancement and augmenting oral bioavailability. Results: Solid dispersion of the drug was prepared using polymers such as Kollidon VA64, hydroxypropylmethylcellulose (HPMC), Eudragit EPO, and Affinisol 15LV in a 1:2 ratio by the HME process through a lab-scale 18 mm extruder. Systematic optimization of the formulation variables was carried out with the help of custom screening design (JMP Software by SAS, Version 14.0) to study the impact of polymer type and plasticizer level on the quality of extrudate processability by measuring the torque value, appearance, and disintegration time as the responses. The polymer blends containing Kollidon VA64 and Affinisol 15LV resulted in respective clear transparent extrudates, while Eudragit EPO and HPMC extrudates were found to be opaque white and brownish, respectively. Furthermore, evaluation of the impact of process parameters such as screw rpm and barrel temperature was measured using a definitive screening design on the extrude appearance, torque, disintegration time, and dissolution profile. Based on the statistical outcomes, it can be concluded that barrel temperature has a significant impact on torque, disintegration time, and dissolution at 30 min, while screw speed has an insignificant impact on the response variables. Affinisol extrudates showed less moisture uptake and faster dissolution in comparison to Kollidon VA64 extrudates. Affinisol extrudates were evaluated for polymorphic stability up to a 3-month accelerated condition and found no recrystallization. PZB–Extrudates using the Affinisol polymer (Test formulation A) revealed significantly higher bioavailability (AUC) in comparison to the free Pazopanib drug and marketed formulation. Full article
Show Figures

Figure 1

14 pages, 2802 KiB  
Article
Fabrication of a Controlled-Release Core-Shell Floating Tablet of Ketamine Hydrochloride Using a 3D Printing Technique for Management of Refractory Depressions and Chronic Pain
by Tahmineh Karami, Emad Ghobadi, Mohammad Akrami and Ismaeil Haririan
Polymers 2024, 16(6), 746; https://doi.org/10.3390/polym16060746 - 8 Mar 2024
Cited by 6 | Viewed by 2441
Abstract
In this study, a novel floating, controlled-release and core-shell oral tablet of ketamine hydrochloride (HCl) was produced using a dual extrusion by 3D printing method. A mixture of Soluplus® and Eudragit® RS-PO was extruded by a hot-melt extrusion (HME) nozzle at [...] Read more.
In this study, a novel floating, controlled-release and core-shell oral tablet of ketamine hydrochloride (HCl) was produced using a dual extrusion by 3D printing method. A mixture of Soluplus® and Eudragit® RS-PO was extruded by a hot-melt extrusion (HME) nozzle at 150–160 °C to fabricate the tablet shell, while a second nozzle known as a pressure-assisted syringe (PAS) extruded the etamine HCl in carboxymethyl cellulose gel at room temperature (25 °C) inside the shell. The resulting tablets were optimized based on the United States pharmacopeia standards (USP) for solid dosage forms. Moreover, the tablet was characterized using Fourier-transform infrared (FTIR) spectrum, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and buoyancy techniques. The results showed a desired dissolution profile for a 100% infill optimized tablet with total drug release (100%) during 12 h. Weight variation and content uniformity of the tablets achieved the USP requirements. SEM micrographs showed a smooth surface with acceptable layer diameters. According to the FTIR analysis, no interference was detected among peaks. Based on DSC analysis, the crystallinity of ketamine HCl did not change during melt extrusion. In conclusion, the floating controlled-release 3D-printed tablet of ketamine HCl can be a promising candidate for management of refractory depressions and chronic pain. Additionally, the additive manufacturing method enables the production of patient-tailored dosage with tunable-release kinetics for personalized medicine in point-of care setting. Full article
Show Figures

Figure 1

19 pages, 5750 KiB  
Article
Factors That Influence Sustained Release from Hot-Melt Extrudates
by Yaser Mansuroglu and Jennifer Dressman
Pharmaceutics 2023, 15(7), 1996; https://doi.org/10.3390/pharmaceutics15071996 - 20 Jul 2023
Cited by 4 | Viewed by 2945
Abstract
Hot-melt extrusion is a well-established tool in the pharmaceutical industry, mostly implemented to increase the solubility of poorly soluble drugs. A less frequent application of this technique is to obtain formulations with extended release. This study investigated the influence of polymer choice, drug [...] Read more.
Hot-melt extrusion is a well-established tool in the pharmaceutical industry, mostly implemented to increase the solubility of poorly soluble drugs. A less frequent application of this technique is to obtain formulations with extended release. This study investigated the influence of polymer choice, drug loading, milling and hydrodynamics on the release of a model drug, flurbiprofen, from sustained-release hot-melt extrudates with Eudragit polymers. The choice of polymer and degree of particle size reduction of the extrudate by milling were the two key influences on the release profile: the percentage release after 12 h varied from 6% (2 mm threads) to 84% (particle size <125 µm) for Eudragit RL extrudates vs. 4.5 to 62% for the corresponding Eudragit RS extrudates. By contrast, the release profile was largely independent of drug loading and robust to hydrodynamics in the dissolution vessel. Thus, hot-melt extrusion offers the ability to tailor the release of the API to the therapeutic indication through a combination of particle size and polymer choice while providing robustness over a wide range of hydrodynamic conditions. Full article
(This article belongs to the Special Issue Solid Dispersions for Bioavailability Enhancement)
Show Figures

Figure 1

18 pages, 6678 KiB  
Article
Molecular Interactions between APIs and Enteric Polymeric Excipients in Solid Dispersion: Insights from Molecular Simulations and Experiments
by Krishna M. Gupta, Xavier Chin and Parijat Kanaujia
Pharmaceutics 2023, 15(4), 1164; https://doi.org/10.3390/pharmaceutics15041164 - 6 Apr 2023
Cited by 9 | Viewed by 2817
Abstract
Solid dispersion of poorly soluble APIs is known to be a promising strategy to improve dissolution and oral bioavailability. To facilitate the development and commercialization of a successful solid dispersion formulation, understanding of intermolecular interactions between APIs and polymeric carriers is essential. In [...] Read more.
Solid dispersion of poorly soluble APIs is known to be a promising strategy to improve dissolution and oral bioavailability. To facilitate the development and commercialization of a successful solid dispersion formulation, understanding of intermolecular interactions between APIs and polymeric carriers is essential. In this work, first, we assessed the molecular interactions between various delayed-release APIs and polymeric excipients using molecular dynamics (MD) simulations, and then we formulated API solid dispersions using a hot melt extrusion (HME) technique. To assess the potential API–polymer pairs, three quantities were evaluated: (a) interaction energy between API and polymer [electrostatic (Ecoul), Lenard-Jones (ELJ), and total (Etotal)], (b) energy ratio (API–polymer/API–API), and (c) hydrogen bonding between API and polymer. The Etotal quantities corresponding to the best pairs: NPX-Eudragit L100, NaDLO–HPMC(P), DMF–HPMC(AS) and OPZ–HPMC(AS) were −143.38, −348.04, −110.42, and −269.43 kJ/mol, respectively. Using a HME experimental technique, few API–polymer pairs were successfully extruded. These extruded solid forms did not release APIs in a simulated gastric fluid (SGF) pH 1.2 environment but released them in a simulated intestinal fluid (SIF) pH 6.8 environment. The study demonstrates the compatibility between APIs and excipients, and finally suggests a potential polymeric excipient for each delayed-release API, which could facilitate the development of the solid dispersion of poorly soluble APIs for dissolution and bioavailability enhancement. Full article
(This article belongs to the Special Issue Polymers Enhancing Bioavailability in Drug Delivery, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 3482 KiB  
Article
Effect of Varying Hot Extrusion Temperatures on the Properties of a Sinterless Turning Induced Deformation Processed Eco-Friendly Mg-Zn-Ca Alloy
by Zhipeng Wang, Gururaj Parande and Manoj Gupta
Crystals 2023, 13(1), 3; https://doi.org/10.3390/cryst13010003 - 20 Dec 2022
Cited by 2 | Viewed by 1928
Abstract
In this work, Mg-4Zn-1Ca (wt. %) alloy was primarily processed by disintegrated melt deposition. The resulting ingots were further pre-processed by the turning induced deformation technique (TID), and the turnings were subsequently consolidated by the hot extrusion process and sinterless powder metallurgy. A [...] Read more.
In this work, Mg-4Zn-1Ca (wt. %) alloy was primarily processed by disintegrated melt deposition. The resulting ingots were further pre-processed by the turning induced deformation technique (TID), and the turnings were subsequently consolidated by the hot extrusion process and sinterless powder metallurgy. A range of extrusion temperatures (200, 250 and 300 °C) was tested to understand the effect of the extrusion temperature on tailoring the microstructure and properties of TID-processed Mg-4Zn-1Ca (wt. %) alloys. The results indicated that the combined effect of TID and extrusion temperature plays a significant role in grain refinement, specifically at 200 °C. Overall, the sample extruded at 300 °C showed the best microhardness and compressive yield strength values. The resistance to ignition and wet corrosion increased and decreased, respectively, when the extrusion temperature was increased. Variations of basal texture and fine grain strengthening due to variations of extrusion temperature led to different properties peaking at different extrusion temperatures. Microstructure-property relationships are therefore discussed, highlighting that different extrusion temperatures have characteristic effects in improving and lowering the properties. Many of the investigated properties of TID-processed alloys exceed that of commercial Mg alloys, suggesting the capability of the sinterless TID technique to develop as an economical industrial way of recycling and manufacturing magnesium-based materials. Full article
Show Figures

Figure 1

16 pages, 3055 KiB  
Article
SEDEX—Self-Emulsifying Delivery Via Hot Melt Extrusion: A Continuous Pilot-Scale Feasibility Study
by Ožbej Zupančič, Aygün Doğan, Josip Matić, Varun Kushwah, Carolina Alva, Martin Spoerk and Amrit Paudel
Pharmaceutics 2022, 14(12), 2617; https://doi.org/10.3390/pharmaceutics14122617 - 27 Nov 2022
Cited by 5 | Viewed by 3115
Abstract
The aim of this study was to develop a continuous pilot-scale solidification and characterization of self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME) using Soluplus® and Kollidon® VA-64. First, an oil-binding capacity study was performed to estimate the maximal [...] Read more.
The aim of this study was to develop a continuous pilot-scale solidification and characterization of self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME) using Soluplus® and Kollidon® VA-64. First, an oil-binding capacity study was performed to estimate the maximal amount of SEDDSs that the polymers could bind. Then, HME was conducted using a Coperion 18 mm ZSK18 pilot plant-scale extruder with split-feeding of polymer and SEDDS in 10, 20, and 30% w/w SEDDSs was conducted. The prepared extrudates were characterized depending on appearance, differential scanning calorimetry, wide-angle X-ray scattering, emulsification time, droplet size, polydispersity index, and cloud point. The oil-binding studies showed that the polymers were able to bind up to 50% w/w of liquid SEDDSs. The polymers were processed via HME in a temperature range between 110 and 160 °C, where a plasticizing effect of the SEDDSs was observed. The extrudates were found to be stable in the amorphous state and self-emulsified in demineralized water at 37 °C with mean droplet sizes between 50 and 300 nm. A cloud point and phase inversion were evident in the Soluplus® samples. In conclusion, processing SEDDSs with HME could be considered a promising alternative to the established solidification techniques as well as classic amorphous solid dispersions for drug delivery. Full article
(This article belongs to the Special Issue Strategies for Enhancing the Bioavailability of Poorly Soluble Drugs)
Show Figures

Figure 1

19 pages, 91519 KiB  
Article
Downstream Processing of Itraconazole:HPMCAS Amorphous Solid Dispersion: From Hot-Melt Extrudate to Tablet Using a Quality by Design Approach
by Saurabh M Mishra, Margarethe Richter, Luis Mejia and Andreas Sauer
Pharmaceutics 2022, 14(7), 1429; https://doi.org/10.3390/pharmaceutics14071429 - 7 Jul 2022
Cited by 7 | Viewed by 5502
Abstract
The downstream processing of hot-melt extruded amorphous solid dispersions (ASDs) into tablets is challenging due to the low tabletability of milled ASDs. Typically, the extrudate strand is sized before milling, as the strand cannot be fed directly into the milling system. At the [...] Read more.
The downstream processing of hot-melt extruded amorphous solid dispersions (ASDs) into tablets is challenging due to the low tabletability of milled ASDs. Typically, the extrudate strand is sized before milling, as the strand cannot be fed directly into the milling system. At the lab scale, the strand can be sized by hand-cutting before milling. For scaling up, pelletizers or chill roll and flaker systems can be used to break strands. Due to the different techniques used, differences in milling and tablet compaction are to be expected. We present a systematic study of the milling and tableting of an extruded ASD of itraconazole with hypromellose acetate succinate (HPMCAS) as a carrier polymer. The strand was sized using different techniques at the end of the extruder barrel (hand-cutting, pelletizer, or chill roll and flaker) before being milled at varying milling speeds with varying screen sizes. The effects of these variables (sizing technology, milling speed, and screen size) on the critical quality attributes (CQAs) of the milled ASD, such as yield, mean particle size (D50), tablet compaction characteristics, and tablet dissolution, were established using response surface methodology. It was found that the CQAs varied according to sizing technology, with chill roll flakes showing the highest percentage yield, the lowest D50, and the highest tabletability and dissolution rate for itraconazole. Pearson correlation coefficient tests indicated D50 as the most important CQA related to tabletability and dissolution. For certain milling conditions, the milling of hand-cut filaments results in similar particle size distributions (PSDs) to the milling of pellets or chill roll flakes. Full article
Show Figures

Figure 1

17 pages, 2476 KiB  
Article
Precise Dosing of Pramipexole for Low-Dosed Filament Production by Hot Melt Extrusion Applying Various Feeding Methods
by Rebecca Chamberlain, Hellen Windolf, Simon Geissler, Julian Quodbach and Jörg Breitkreutz
Pharmaceutics 2022, 14(1), 216; https://doi.org/10.3390/pharmaceutics14010216 - 17 Jan 2022
Cited by 19 | Viewed by 3386
Abstract
The aim of this research was the production of low-dosed filaments via hot-melt extrusion (HME) with the model drug pramipexole for the treatment of Parkinson’s disease. The active pharmaceutical ingredient (API) and one of the polymers polyvinyl alcohol (PVA) or basic butylated methacrylate [...] Read more.
The aim of this research was the production of low-dosed filaments via hot-melt extrusion (HME) with the model drug pramipexole for the treatment of Parkinson’s disease. The active pharmaceutical ingredient (API) and one of the polymers polyvinyl alcohol (PVA) or basic butylated methacrylate copolymer (bPMMA) were fed by various dosing techniques with the aim of achieving the smallest deviation (RSD) from the target concentration of 0.1% (w/w) pramipexole. It was found that deviation from target pramipexole concentration occurred due to degradation products in bPMMA formulations. Additionally, material temperature above 120 °C led to the formation of the anhydrous form of pramipexole within the extruded filaments and need to be considered in the calculation of the recovered API. This study clearly shows that even if equilibrium state of the extrusion parameters was reached, equilibrium condition for drug content was reached relatively late in the process. In addition, the RSD calculated by the Stange–Poole equation was proposed by us to predict the final content uniformity considering the sample size of the analyzed filament. The calculated RSD, depending on sample size and drug load, can serve as upper and lower limits of variation from target concentration and can be used to evaluate the deviations of drug content in equilibrium conditions of the HME process. The lowest deviations from target concentration in equilibrium condition for drug content were obtained in filaments extruded from previously prepared granule mixtures (RSD = 6.00%, acceptance value = 12.2). These promising results can be transferred to other API–excipient combinations to produce low-dosed filaments, which can be used for, e.g., fused filament 3D printing. The introduced calculation of the RSD by Stange–Poole equation can be used for precise determination of the homogeneity of an extruded batch. Full article
Show Figures

Graphical abstract

13 pages, 1933 KiB  
Article
Preparation and In Vitro/In Vivo Evaluation of Orally Disintegrating/Modified-Release Praziquantel Tablets
by Xuemei Wen, Zhaoyou Deng, Yangfeng Xu, Guoqing Yan, Xin Deng, Liqin Wu, Qiuling Liang, Fang Fang, Xin Feng, Meiling Yu and Jiakang He
Pharmaceutics 2021, 13(10), 1567; https://doi.org/10.3390/pharmaceutics13101567 - 27 Sep 2021
Cited by 8 | Viewed by 3086
Abstract
This study was designed to develop orally disintegrating/sustained-release praziquantel (PZQ) tablets using the hot-melt extrusion (HME) technique and direct compression, and subsequently evaluate their release in in vitro and in vivo pharmacokinetics. For the extrusion process, hypromellose acetate succinate (HPMCAS)-LG was the carrier [...] Read more.
This study was designed to develop orally disintegrating/sustained-release praziquantel (PZQ) tablets using the hot-melt extrusion (HME) technique and direct compression, and subsequently evaluate their release in in vitro and in vivo pharmacokinetics. For the extrusion process, hypromellose acetate succinate (HPMCAS)-LG was the carrier of pure PZQ, with a standard screw configuration used at an extrusion temperature of 140 °C and a screw rotation speed of 100 rpm. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD) and Fourier-transform infrared spectroscopy (FTIR) were performed to characterize the extrudate. Orally disintegrating/sustained-release praziquantel tablets (PZQ ODSRTs) were prepared by direct compression after appropriate excipients were blended with the extrudate. The release amount was 5.10% in pH 1.0 hydrochloric acid at 2 h and over 90% in phosphoric acid buffer at 45 min, indicating the enteric-coating character of PZQ ODSRTs. Compared with the pharmacokinetics of marketed PZQ tablets (Aipuruike®) in dogs, the times to peak (Tmax), elimination half-life (t1/2λ) and mean residence time (MRT) were extended in PZQ ODSRTs, and the relative bioavailability of PZQ ODSRTs was up to 184.48% of that of Aipuruike®. This study suggested that PZQ ODSRTs may have potential for the clinical treatment of parasitosis. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

19 pages, 3717 KiB  
Article
The Development and Optimization of Hot-Melt Extruded Amorphous Solid Dispersions Containing Rivaroxaban in Combination with Polymers
by Jong-Hwa Lee, Hyeong Sik Jeong, Jong-Woo Jeong, Tae-Sung Koo, Do-Kyun Kim, Young Ho Cho and Gye Won Lee
Pharmaceutics 2021, 13(3), 344; https://doi.org/10.3390/pharmaceutics13030344 - 6 Mar 2021
Cited by 22 | Viewed by 4233
Abstract
Rivaroxaban (RXB), a novel oral anticoagulant that directly inhibits factor Xa, is a poorly soluble drug belonging to Biopharmaceutics Classification System (BCS) class II. In this study, a hot-melt extruded amorphous solid dispersion (HME-ASD) containing RXB is prepared by changing the drug:polymer ratio [...] Read more.
Rivaroxaban (RXB), a novel oral anticoagulant that directly inhibits factor Xa, is a poorly soluble drug belonging to Biopharmaceutics Classification System (BCS) class II. In this study, a hot-melt extruded amorphous solid dispersion (HME-ASD) containing RXB is prepared by changing the drug:polymer ratio (Polyvinylpyrrolidione-vinyl acetate 64, 1:1–1:4) and barrel temperature (200–240 °C), fixed at 20% of Cremophor® RH 40 and 15 rpm of the screw speed, using the hot-melt extruding technique. This study evaluates the solubility, dissolution behavior, and bioavailability for application to oral drug delivery and optimizes the formulation of rivaroxaban amorphous solid dispersion (RXB-ASD). Based on a central composite design, optimized RXB-ASD (PVP VA 64 ratio 1:4.1, barrel temperature 216.1 °C, Cremophor® RH 40 20%, screw speed 15 rpm) showed satisfactory results for dependent variables. An in vitro drug dissolution study exhibited relatively high dissolution in four media and achieved around an 80% cumulative drug release in 120 min. Optimized RXB-ASD was stable under the accelerated condition for three months without a change in crystallinity and the dissolution rate. A pharmacokinetic study of RXB-ASD in rats showed that the absorption was markedly increased in terms of rate and amount, i.e., the systemic exposure values, compared to raw RXB powder. These results showed the application of quality by design (QbD) in the formulation development of hot-melt extruded RXB-ASD, which can be used as an oral drug delivery system by increasing the dissolution rate and bioavailability. Full article
Show Figures

Graphical abstract

21 pages, 3661 KiB  
Article
Development and Characterization of Sustained-Released Donepezil Hydrochloride Solid Dispersions Using Hot Melt Extrusion Technology
by Abdullah Alshetaili, Bjad K. Almutairy, Sultan M. Alshehri and Michael A. Repka
Pharmaceutics 2021, 13(2), 213; https://doi.org/10.3390/pharmaceutics13020213 - 4 Feb 2021
Cited by 22 | Viewed by 3837
Abstract
The aim of this work was to develop the sustained release formulation of donepezil hydrochloride (DH) using the hot-melt extruded solid dispersion technique via the rational screening of hydrophobic carriers. Hydrophobic carriers with different physicochemical properties such as pH-independent swellability, low-permeability (Eudragit® [...] Read more.
The aim of this work was to develop the sustained release formulation of donepezil hydrochloride (DH) using the hot-melt extruded solid dispersion technique via the rational screening of hydrophobic carriers. Hydrophobic carriers with different physicochemical properties such as pH-independent swellability, low-permeability (Eudragit® RS PO (E-RS)), pH-independent non-swellability (ethyl cellulose N7 (EC-N7)), and the presence of lipids (Compritol® 888 ATO (C-888)) with or without pore-forming agents were used to achieve the sustained release profile of DH. Mannitol (MNT) was chosen as the temporary pore-forming agent. The thermal analysis showed that both the drug and C-888 preserved their crystallinity within a solid dispersion. During a dissolution test, MNT could generate pores, and the drug release rate was proportionally correlated to the MNT content. Tailoring of the ratio of C-888 and MNT in the formulations along with an appropriate extrusion temperature profile resulted in the modified release of DH, and a preferable release pattern was obtained under these conditions. C-888 was chosen for the further investigations to obtain tablets with a high integrity. The optimized tablets were compared to the marketed formulation of Aricept® in terms of drug release profiles. The optimized formulation showed the stable and sustained release behavior of extended release profile, which was close to the release behavior of Aricept® with good tablet characteristics. It was concluded that the hot-melt extrusion technique can be utilized for the manufacturing of DH sustained release tablets with improved tablet integrity and characteristics by co-processing the tablet excipient with DH/C-888. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

11 pages, 2273 KiB  
Article
Effect of Thermally-Treated Chips on Density of AlMgSi Alloys Recycled Using Solid-State Technique
by Abdullah Wagiman, Mohammad Sukri Mustapa, Shazarel Shamsudin, Mohd Amri Lajis, Rosli Asmawi, Mohammed H Rady and Mohd Shahir Yahya
Processes 2020, 8(11), 1406; https://doi.org/10.3390/pr8111406 - 4 Nov 2020
Cited by 7 | Viewed by 2878
Abstract
Solid-state recycling is a sustainable technique for recycling aluminium scrap, and the process before recycling is essential to control the physical properties of the product. In this work, the effect of the thermally-treated chips on the extrudate density was investigated. The aluminium chips [...] Read more.
Solid-state recycling is a sustainable technique for recycling aluminium scrap, and the process before recycling is essential to control the physical properties of the product. In this work, the effect of the thermally-treated chips on the extrudate density was investigated. The aluminium chips were thermally-treated to enrich the alumina layer and reduce compaction pressure during chips compaction before recycled using direct hot extrusion. The chips that were transformed into compacted billets were extruded directly without melting and conducted according to 24 full factorial experimental design. The density test on the recycle extrudate found that the density variation ranged from 2724 to 2983 kg/m3. The ANOVA result showed that all factors investigated were statistically significant. The most significant factor was the preheating temperature, followed by extrusion ratio, chip treatment temperature, chip treatment time, and the interaction of chip treatment-time–extrusion ratio. The predictive model suggested by the ANOVA is useful to predict the density with 1% error. Microstructure examination revealed the presence of alumina entrapped in the recycle extrudate, in which thermal-treated chips contained more alumina than that of the untreated chips. The result indicated that the thermal treatment performed on the chips had enriched the in-situ alumina, affecting the density of the recycle extrudate. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

63 pages, 3306 KiB  
Review
Polymer Selection for Hot-Melt Extrusion Coupled to Fused Deposition Modelling in Pharmaceutics
by Gabriela G. Pereira, Sara Figueiredo, Ana Isabel Fernandes and João F. Pinto
Pharmaceutics 2020, 12(9), 795; https://doi.org/10.3390/pharmaceutics12090795 - 22 Aug 2020
Cited by 95 | Viewed by 14497
Abstract
Three-dimensional (3D) printing offers the greatest potential to revolutionize the future of pharmaceutical manufacturing by overcoming challenges of conventional pharmaceutical operations and focusing design and production of dosage forms on the patient’s needs. Of the many technologies available, fusion deposition modelling (FDM) is [...] Read more.
Three-dimensional (3D) printing offers the greatest potential to revolutionize the future of pharmaceutical manufacturing by overcoming challenges of conventional pharmaceutical operations and focusing design and production of dosage forms on the patient’s needs. Of the many technologies available, fusion deposition modelling (FDM) is considered of the lowest cost and higher reproducibility and accessibility, offering clear advantages in drug delivery. FDM requires in-house production of filaments of drug-containing thermoplastic polymers by hot-melt extrusion (HME), and the prospect of connecting the two technologies has been under investigation. The ability to integrate HME and FDM and predict and tailor the filaments’ properties will extend the range of printable polymers/formulations. Hence, this work revises the properties of the most common pharmaceutical-grade polymers used and their effect on extrudability, printability, and printing outcome, providing suitable processing windows for different raw materials. As a result, formulation selection will be more straightforward (considering the characteristics of drug and desired dosage form or release profile) and the processes setup will be more expedite (avoiding or mitigating typical processing issues), thus guaranteeing the success of both HME and FDM. Relevant techniques used to characterize filaments and 3D-printed dosage forms as an essential component for the evaluation of the quality output are also presented. Full article
(This article belongs to the Special Issue Controlled Delivery Formulations)
Show Figures

Graphical abstract

21 pages, 7905 KiB  
Article
Influence of Carbamazepine Dihydrate on the Preparation of Amorphous Solid Dispersions by Hot Melt Extrusion
by Xiangyu Ma, Felix Müller, Siyuan Huang, Michael Lowinger, Xu Liu, Rebecca Schooler and Robert O. Williams
Pharmaceutics 2020, 12(4), 379; https://doi.org/10.3390/pharmaceutics12040379 - 20 Apr 2020
Cited by 23 | Viewed by 6530
Abstract
Amorphous solid dispersions (ASDs) are commonly used in the pharmaceutical industry to improve the dissolution and bioavailability of poorly water-soluble drugs. Hot melt extrusion (HME) has been employed to prepare ASD based products. However, due to the narrow processing window of HME, ASDs [...] Read more.
Amorphous solid dispersions (ASDs) are commonly used in the pharmaceutical industry to improve the dissolution and bioavailability of poorly water-soluble drugs. Hot melt extrusion (HME) has been employed to prepare ASD based products. However, due to the narrow processing window of HME, ASDs are normally obtained with high processing temperatures and mechanical stress. Interestingly, one-third of pharmaceutical compounds reportedly exist in hydrate forms. In this study, we selected carbamazepine (CBZ) dihydrate to investigate its solid-state changes during the dehydration process and the impact of the dehydration on the preparation of CBZ ASDs using a Leistritz micro-18 extruder. Various characterization techniques were used to study the dehydration kinetics of CBZ dihydrate under different conditions. We designed the extrusion runs and demonstrated that: 1) the dehydration of CBZ dihydrate resulted in a disordered state of the drug molecule; 2) the resulted higher energy state CBZ facilitated the drug solubilization and mixing with the polymer matrix during the HME process, which significantly decreased the required extrusion temperature from 140 to 60 °C for CBZ ASDs manufacturing compared to directly processing anhydrous crystalline CBZ. This work illustrated that the proper utilization of drug hydrates can significantly improve the processability of HME for preparing ASDs. Full article
(This article belongs to the Special Issue Hot-Melt Extrusion)
Show Figures

Figure 1

Back to TopTop