Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = holographic printer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3918 KiB  
Article
Transforming Monochromatic Images into 3D Holographic Stereograms Through Depth-Map Extraction
by Oybek Mirzaevich Narzulloev, Jinwon Choi, Jumamurod Farhod Ugli Aralov, Leehwan Hwang, Philippe Gentet and Seunghyun Lee
Appl. Sci. 2025, 15(10), 5699; https://doi.org/10.3390/app15105699 - 20 May 2025
Viewed by 516
Abstract
Traditional holographic printing techniques prove inadequate when only input data are available. Therefore, this paper proposes a new artificial-intelligence-based process for generating digital holographic stereograms from a single black-and-white photograph. This method eliminates the need for stereo cameras, photogrammetry, or 3D models. In [...] Read more.
Traditional holographic printing techniques prove inadequate when only input data are available. Therefore, this paper proposes a new artificial-intelligence-based process for generating digital holographic stereograms from a single black-and-white photograph. This method eliminates the need for stereo cameras, photogrammetry, or 3D models. In this approach, a convolutional neural network and deep convolutional neural field model are used for image colorization and a depth-map estimation, respectively. Subsequently, the colored image and depth map are used to generate the multiview images required for creating holographic stereograms. This method efficiently preserves the visual characteristics of the original black-and-white images in the final digital holographic portraits. This provides a new and accessible method for holographic reconstruction using limited data, enabling the generation of 3D holographic content from existing images. Experiments were conducted using black-and-photographs of two historical figures, and highly realistic holograms were obtained successfully. This study has significant implications for cultural preservation, personal archiving, and the generation of life-like holographic images with minimal input data. By bridging the gap between historical photographic sources and modern holographic techniques, our approach opens up new possibilities for memory preservation and visual storytelling. Full article
Show Figures

Figure 1

20 pages, 9296 KiB  
Article
An Inexpensive, 3D-Printable, Arduino- and Blu-Ray-Based Confocal Laser and Fluorescent Scanning Microscope
by Justin Loose, Samuel H. Hales, Jonah Kendell, Isaac Cutler, Ryan Ruth, Jacob Redd, Samuel Lino and Troy Munro
Metrology 2025, 5(1), 2; https://doi.org/10.3390/metrology5010002 - 6 Jan 2025
Viewed by 1628
Abstract
There is a growing field that is devoted to developing inexpensive microscopes and measurement devices by leveraging low-cost commercial parts that can be controlled using smartphones or embedded devices, such as Arduino and Raspbery Pi. Examples include the use of Blu-ray optical heads [...] Read more.
There is a growing field that is devoted to developing inexpensive microscopes and measurement devices by leveraging low-cost commercial parts that can be controlled using smartphones or embedded devices, such as Arduino and Raspbery Pi. Examples include the use of Blu-ray optical heads like the PHR-803T to perform cytometry, spinning disc microscopy, and lensless holographic microscopy. The modular or disposable nature of these devices means that they can also be used in contaminating and degrading environments, including radioactive environments, where replacement of device elements can be expensive. This paper presents the development and operation of a confocal microscope that uses the PHR-803T optical device in a Blu-ray reader for both imaging and detection of temperature variations with between 1.5 and 15 µm resolution. The benefits of using a PHR-803T confocal system include its relatively inexpensive design and the accessibility of the components that are used in its construction. The design of this scanning confocal thermal microscope (SCoT) was optimized based on cost, modularity, portability, spatial resolution, and ease of manufacturability using common tools (e.g., drill press, 3D printer). This paper demonstrated the ability to resolve microscale features such as synthetic spider silk and measure thermal waves in stainless steel using a system requiring <USD 1000 in material costs. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

10 pages, 4978 KiB  
Article
Speckle Noise-Free Interconnective Holographic Projection
by Hosung Jeon and Joonku Hahn
Photonics 2022, 9(12), 899; https://doi.org/10.3390/photonics9120899 - 24 Nov 2022
Cited by 1 | Viewed by 2589
Abstract
Generally, speckle noise is regarded as unavoidable in holographic projection, and it results from unexpected high spatial frequency components of diffracted light at the sharp edge of pixel openings in a spatial light modulator. Speckle noise typically reduces image contrast and degrades the [...] Read more.
Generally, speckle noise is regarded as unavoidable in holographic projection, and it results from unexpected high spatial frequency components of diffracted light at the sharp edge of pixel openings in a spatial light modulator. Speckle noise typically reduces image contrast and degrades the image quality of the holographic projection. In this study, we propose a novel holographic optical interconnection method free of speckle noise in holographic projection. This optical interconnection is achieved by using a holographic optical element (HOE). The HOE is designed to reconstruct Gaussian beams with low divergence. These Gaussian beams become points which form target images at desired depths. Since the Gaussian beam from the HOE does not share the same position with other Gaussian beams, there is no interference at the projection image. Therefore, the image is composed of the points from the Gaussian beams and there is no reason for unexpected high spatial frequency noise to appear on the image. In this paper, we fabricate the HOE, produced with our specially manufactured hologram printer, where the directions of two Gaussian beams with low divergence are controlled by goniometers. We experimentally demonstrated a speckle noise-free interconnective holographic projection. Two images are successfully formed at different depths by optically connecting two points in pairs. Full article
(This article belongs to the Special Issue Computer Holography)
Show Figures

Figure 1

13 pages, 5771 KiB  
Article
Efficient Hogel-Based Hologram Synthesis Method for Holographic Stereogram Printing
by Erkhembaatar Dashdavaa, Anar Khuderchuluun, Hui-Ying Wu, Young-Tae Lim, Chang-Won Shin, Hoonjong Kang, Seok-Hee Jeon and Nam Kim
Appl. Sci. 2020, 10(22), 8088; https://doi.org/10.3390/app10228088 - 15 Nov 2020
Cited by 22 | Viewed by 4424
Abstract
With the development of the holographic printer, printing synthetic hologram requires smaller holographic element (hogel) size to improve spatial resolution of the reconstruction. On the contrary, a larger hogel size affords higher angular resolution, but it leads to a lower lateral resolution and [...] Read more.
With the development of the holographic printer, printing synthetic hologram requires smaller holographic element (hogel) size to improve spatial resolution of the reconstruction. On the contrary, a larger hogel size affords higher angular resolution, but it leads to a lower lateral resolution and there exists a trade-off problem. In this paper, a hologram synthesis method based on three-dimensional (3D) rendering of computer-generated holographic stereogram (HS) is proposed to limit the spatial-angular trade-off problem. The perspectives of the 3D scene are captured by re-centering the camera method and transformed into parallax-related images by a proposed pixel re-arrangement algorithm for holographic printing. Unlike the conventional approaches, the proposed algorithm not only improves the angular resolution of the reconstruction while maintaining the hogel size fixed, but also keeps the spatial resolution without degradation. The effectiveness of the proposed method is verified by numerical simulation and an optical experiment. Full article
(This article belongs to the Special Issue Practical Computer-Generated Hologram for 3D Display)
Show Figures

Graphical abstract

25 pages, 5928 KiB  
Article
On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations
by Marcelino Ferri, José María Bravo, Javier Redondo, Sergio Jiménez-Gambín, Noé Jiménez, Francisco Camarena and Juan Vicente Sánchez-Pérez
Polymers 2019, 11(9), 1521; https://doi.org/10.3390/polym11091521 - 19 Sep 2019
Cited by 13 | Viewed by 5434
Abstract
The correction of transcranial focused ultrasound aberrations is a relevant topic for enhancing various non-invasive medical treatments. Presently, the most widely accepted method to improve focusing is the emission through multi-element phased arrays; however, a new disruptive technology, based on 3D printed holographic [...] Read more.
The correction of transcranial focused ultrasound aberrations is a relevant topic for enhancing various non-invasive medical treatments. Presently, the most widely accepted method to improve focusing is the emission through multi-element phased arrays; however, a new disruptive technology, based on 3D printed holographic acoustic lenses, has recently been proposed, overcoming the spatial limitations of phased arrays due to the submillimetric precision of the latest generation of 3D printers. This work aims to optimize this recent solution. Particularly, the preferred acoustic properties of the polymers used for printing the lenses are systematically analyzed, paying special attention to the effect of p-wave speed and its relationship to the achievable voxel size of 3D printers. Results from simulations and experiments clearly show that, given a particular voxel size, there are optimal ranges for lens thickness and p-wave speed, fairly independent of the emitted frequency, the transducer aperture, or the transducer-target distance. Full article
(This article belongs to the Special Issue Polymer Materials for Holography)
Show Figures

Graphical abstract

9 pages, 1503 KiB  
Article
3D Conductive Polymer Printed Metasurface Antenna for Fresnel Focusing
by Okan Yurduseven, Shengrong Ye, Thomas Fromenteze, Benjamin J. Wiley and David R. Smith
Designs 2019, 3(3), 46; https://doi.org/10.3390/designs3030046 - 4 Sep 2019
Cited by 7 | Viewed by 6016
Abstract
We demonstrate a 3D printed holographic metasurface antenna for beam-focusing applications at 10 GHz within the X-band frequency regime. The metasurface antenna is printed using a dual-material 3D printer leveraging a biodegradable conductive polymer material (Electrifi) to print the conductive parts and polylactic [...] Read more.
We demonstrate a 3D printed holographic metasurface antenna for beam-focusing applications at 10 GHz within the X-band frequency regime. The metasurface antenna is printed using a dual-material 3D printer leveraging a biodegradable conductive polymer material (Electrifi) to print the conductive parts and polylactic acid (PLA) to print the dielectric substrate. The entire metasurface antenna is 3D printed at once; no additional techniques, such as metal-plating and laser etching, are required. It is demonstrated that using the 3D printed conductive polymer metasurface, high-fidelity beam focusing can be achieved within the Fresnel region of the antenna. It is also shown that the material conductivity for 3D printing has a substantial effect on the radiation characteristics of the metasurface antenna. Full article
(This article belongs to the Special Issue 3D-Printed RF Devices and Antennas)
Show Figures

Figure 1

Back to TopTop