Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = holographic communications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 782 KiB  
Article
On the Rate-Distortion Theory for Task-Specific Semantic Communication
by Jingxuan Chai, Huixiang Zhu, Yong Xiao, Guangming Shi and Ping Zhang
Entropy 2025, 27(8), 775; https://doi.org/10.3390/e27080775 - 23 Jul 2025
Viewed by 247
Abstract
Semantic communication has attracted considerable interest due to its potential to support emerging human-centric services, such as holographic communications, extended reality (XR), and human-machine interactions. Different from traditional communication systems that focus on minimizing the symbol-level distortion (e.g., bit error rate, signal-to-noise ratio, [...] Read more.
Semantic communication has attracted considerable interest due to its potential to support emerging human-centric services, such as holographic communications, extended reality (XR), and human-machine interactions. Different from traditional communication systems that focus on minimizing the symbol-level distortion (e.g., bit error rate, signal-to-noise ratio, etc.), semantic communication targets at delivering the intended meaning at the destination user which is often quantified by various statistical divergences, often referred to as the semantic distances. Currently, there still lacks a unified framework to quantify the rate-distortion tradeoff for semantic communication with different task-specific semantic distance measures. To tackle this problem, we propose the task-specific rate-distortion theory for semantic communication where different task-specific statistic divergence metrics can be considered. To investigate the impact of different semantic distance measures on the achievable rate, we consider two popular tasks, classification and signal generation. We present the closed-form expressions of the semantic rate-distortion functions for these two different tasks and compare their performance under various scenarios. Extensive experimental results are presented to verify our theoretical results. Full article
(This article belongs to the Special Issue Semantic Information Theory)
Show Figures

Figure 1

17 pages, 3234 KiB  
Article
A Graph Convolutional Network-Based Fine-Grained Low-Latency Service Slicing Algorithm for 6G Networks
by Yuan Ye, Caiming Zhang, Chenlan Wu and Xiaorong Zhu
Sensors 2025, 25(10), 3139; https://doi.org/10.3390/s25103139 - 15 May 2025
Viewed by 495
Abstract
The future 6G (sixth-generation) mobile communication technology is required to support advanced network services capabilities such as holographic communication, autonomous driving, and the industrial internet, which demand higher data rates, lower latency, and greater reliability. Furthermore, future service classifications will become more fine-grained. [...] Read more.
The future 6G (sixth-generation) mobile communication technology is required to support advanced network services capabilities such as holographic communication, autonomous driving, and the industrial internet, which demand higher data rates, lower latency, and greater reliability. Furthermore, future service classifications will become more fine-grained. To meet the requirements of these low-latency services with varying granularities, this work investigates fine-grained network slicing for low-latency services in 6G networks. A fine-grained network slicing algorithm for low-latency services in 6G based on GCNs (graph convolutional networks) is proposed. The goal is to minimize the end-to-end delay of network slicing while meeting the constraints of computational resources, communication resources, and the deployment of SFCs (service function chains). This algorithm focuses on the construction and deployment of network slices. First, due to the complexity and diversity of 6G networks, DAGs (Directed Acyclic Graphs) are used to represent network service requests. Then, based on the depth-first search algorithm, three types of SFCs of latency-type network slices are constructed according to the available computing and communication resources. Finally, the GCN-based low-latency service fine-grained network slicing algorithm is used to deploy SFCs. The simulation results show that the latency performance of the proposed algorithm outperforms that of the Double DQN and DQN algorithms across various scenarios, including changes in the number of underlying network nodes and variations in service sizes. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

34 pages, 3195 KiB  
Review
Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication
by Rahat Ullah, Sibghat Ullah, Jianxin Ren, Hathal Salamah Alwageed, Yaya Mao, Zhipeng Qi, Feng Wang, Suhail Ayoub Khan and Umar Farooq
Sensors 2025, 25(7), 2109; https://doi.org/10.3390/s25072109 - 27 Mar 2025
Viewed by 1651
Abstract
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to [...] Read more.
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to overcome conventional bandwidth limitations. While THz-FSO technology promises ultra-high data rates, it is significantly affected by atmospheric absorption, particularly absorption beyond 500 GHz, where the attenuation exceeds 100 dB/km, which severely limits its transmission range. However, the presence of a lower-loss transmission window at 680 GHz provides an opportunity for optimized THz-FSO communication. This paper explores recent developments in high-power THz sources, such as quantum cascade lasers, photonic mixers, and free-electron lasers, which facilitate the attainment of ultra-high data rates. Additionally, adaptive optics, machine learning-based beam alignment, and low-loss materials are examined as potential solutions to mitigating signal degradation due to atmospheric absorption. The integration of THz-FSO systems with optical and radio frequency (RF) technologies is assessed within the framework of software-defined networking (SDN) and multi-band adaptive communication, enhancing their reliability and range. Furthermore, this review discusses emerging applications such as self-driving systems in 6G networks, ultra-low latency communication, holographic telepresence, and inter-satellite links. Future research directions include the use of artificial intelligence for network optimization, creating energy-efficient system designs, and quantum encryption to obtain secure THz communications. Despite the severe constraints imposed by atmospheric attenuation, the technology’s power efficiency, and the materials that are used, THz-FSO technology is promising for the field of ultra-fast and secure next-generation networks. Addressing these limitations through hybrid optical-THz architectures, AI-driven adaptation, and advanced waveguides will be critical for the full realization of THz-FSO communication in modern telecommunication infrastructures. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Optical Communications)
Show Figures

Figure 1

41 pages, 1522 KiB  
Review
Radiator Enablers for Wireless Communication Evolution
by Apostolos-Christos Tsafaras, Panagiotis Mpatargias, Adamantios Karakilidis, Georgios Giouros, Ioannis Gavriilidis, Vasileios Katsinelis, Georgios Sarinakis and Theodoros Kaifas
Electronics 2025, 14(6), 1081; https://doi.org/10.3390/electronics14061081 - 9 Mar 2025
Cited by 2 | Viewed by 3598
Abstract
The general objective of the work is to propose, examine, and study the innovations needed, providing a roadmap in order to place the next generation of wireless communication vision and concepts into technological reach. The main trends and directions are identified; relative challenges [...] Read more.
The general objective of the work is to propose, examine, and study the innovations needed, providing a roadmap in order to place the next generation of wireless communication vision and concepts into technological reach. The main trends and directions are identified; relative challenges are addressed; and needed solutions are anticipated, proposed, and evaluated. In detail, to address the role of the antenna system in the wireless communication evolution, in the work at hand, we examine the challenges addressed by the increase in the degrees of freedom of the radiator systems. Specifically, we study the increase in the degrees of freedom provided by gMIMO, reconfigurable intelligence surfaces (RIS), holographic metasurfaces, and orbital angular momentum (OAM). Then, we thoroughly examine the impact that those potent technologies deliver to the mmWave, satellite, and THz wireless communications systems. Full article
(This article belongs to the Special Issue State-of-the-Art Antenna Technology for Advanced Wireless Systems)
Show Figures

Figure 1

57 pages, 2877 KiB  
Review
A Comprehensive Exploration of 6G Wireless Communication Technologies
by Md Nurul Absar Siddiky, Muhammad Enayetur Rahman, Md Shahriar Uzzal and H. M. Dipu Kabir
Computers 2025, 14(1), 15; https://doi.org/10.3390/computers14010015 - 3 Jan 2025
Cited by 8 | Viewed by 5367
Abstract
As the telecommunications landscape braces for the post-5G era, this paper embarks on delineating the foundational pillars and pioneering visions that define the trajectory toward 6G wireless communication systems. Recognizing the insatiable demand for higher data rates, enhanced connectivity, and broader network coverage, [...] Read more.
As the telecommunications landscape braces for the post-5G era, this paper embarks on delineating the foundational pillars and pioneering visions that define the trajectory toward 6G wireless communication systems. Recognizing the insatiable demand for higher data rates, enhanced connectivity, and broader network coverage, we unravel the evolution from the existing 5G infrastructure to the nascent 6G framework, setting the stage for transformative advancements anticipated in the 2030s. Our discourse navigates through the intricate architecture of 6G, highlighting the paradigm shifts toward superconvergence, non-IP-based networking protocols, and information-centric networks, all underpinned by a robust 360-degree cybersecurity and privacy-by-engineering design. Delving into the core of 6G, we articulate a systematic exploration of the key technologies earmarked to revolutionize wireless communication including terahertz (THz) waves, optical wireless technology, and dynamic spectrum management while elucidating the intricate trade-offs necessitated by the integration of such innovations. This paper not only lays out a comprehensive 6G vision accentuated by high security, affordability, and intelligence but also charts the course for addressing the pivotal challenges of spectrum efficiency, energy consumption, and the seamless integration of emerging technologies. In this study, our goal is to enrich the existing discussions and research efforts by providing comprehensive insights into the development of 6G technology, ultimately supporting the creation of a thoroughly connected future world that meets evolving demands. Full article
Show Figures

Figure 1

15 pages, 2803 KiB  
Article
Exploiting Extrinsic Information for Serial MAP Detection by Utilizing Estimator in Holographic Data Storage Systems
by Thien An Nguyen and Jaejin Lee
Appl. Sci. 2025, 15(1), 139; https://doi.org/10.3390/app15010139 - 27 Dec 2024
Cited by 1 | Viewed by 592
Abstract
In the big data era, data are created in huge volume. This leads to the development of storage devices. Many technologies are proposed for the next generation of storage fields. However, among them, holographic data storage (HDS) has attracted much attention and has [...] Read more.
In the big data era, data are created in huge volume. This leads to the development of storage devices. Many technologies are proposed for the next generation of storage fields. However, among them, holographic data storage (HDS) has attracted much attention and has been introduced as the promising candidate to meet the increasing demand for capacity and speed. For signal processing, HDS faces two major challenges: inter-page interference (IPI) and two-dimensional (2D) interference. To access the IPI problem, we can use balanced coding, which converts user data into an intensity level with uniformly distributed values for each page. For 2D interference, we can use the equalizer and detection to mitigate the 2D interference. However, the often-used equalizer and detection are methods in wireless communication and only handle the one-dimensional (1D) signal. Thus, we can combine the equalizer, detection, and estimator to reduce 2D interference into 1D interference. In this paper, we proposed a combined model using serial maximum a posteriori (MAP) detection and estimator to improve the detection of HDS systems. In our proposed model, instead of using an estimator with the Viterbi algorithm to predict the upper–lower interference (UPI) or left–right interference (LRI) and converting the received signal into 1D ISI, we used the estimator to predict the extrinsic information for serial MAP detection. This preserves the 2D information in the received signal in serial MAP detection and improves the detection of serial MAP detection by extrinsic information. The simulation results demonstrate that our proposed model significantly improves the bit-error rate (BER) performance compared to previous studies. Full article
Show Figures

Figure 1

22 pages, 73175 KiB  
Article
Multiplane Optimizing Phase Holograms Using Advanced Machine Learning Algorithms and GPU Acceleration
by Luz Hernández-Felipe, José Humberto Arroyo-Nuñez, César Camacho-Bello and Iván Rivas-Cambero
Optics 2024, 5(4), 544-565; https://doi.org/10.3390/opt5040041 - 25 Nov 2024
Cited by 1 | Viewed by 3943
Abstract
Phase holography is a critical optical imaging and information processing technique with applications ranging from microscopy to optical communications. However, optimizing phase hologram generation remains a significant challenge due to the non-convex nature of the optimization problem. This paper presents a novel multiplane [...] Read more.
Phase holography is a critical optical imaging and information processing technique with applications ranging from microscopy to optical communications. However, optimizing phase hologram generation remains a significant challenge due to the non-convex nature of the optimization problem. This paper presents a novel multiplane optimization approach for phase hologram generation to minimize the reconstruction error across multiple focal planes. We significantly improve holographic reconstruction quality by integrating advanced machine learning algorithms like RMSprop and Adam with GPU acceleration. The proposed method utilizes TensorFlow to implement custom propagation layers, optimizing the phase hologram to reduce errors at strategically selected distances. Full article
Show Figures

Figure 1

17 pages, 5605 KiB  
Review
Imaging of Live Cells by Digital Holographic Microscopy
by Emilia Mitkova Mihaylova
Photonics 2024, 11(10), 980; https://doi.org/10.3390/photonics11100980 - 18 Oct 2024
Cited by 2 | Viewed by 3198
Abstract
Imaging of microscopic objects is of fundamental importance, especially in life sciences. Recent fast progress in electronic detection and control, numerical computation, and digital image processing, has been crucial in advancing modern microscopy. Digital holography is a new field in three-dimensional imaging. Digital [...] Read more.
Imaging of microscopic objects is of fundamental importance, especially in life sciences. Recent fast progress in electronic detection and control, numerical computation, and digital image processing, has been crucial in advancing modern microscopy. Digital holography is a new field in three-dimensional imaging. Digital reconstruction of a hologram offers the remarkable capability to refocus at different depths inside a transparent or semi-transparent object. Thus, this technique is very suitable for biological cell studies in vivo and could have many biomedical and biological applications. A comprehensive review of the research carried out in the area of digital holographic microscopy (DHM) for live-cell imaging is presented. The novel microscopic technique is non-destructive and label-free and offers unmatched imaging capabilities for biological and bio-medical applications. It is also suitable for imaging and modelling of key metabolic processes in living cells, microbial communities or multicellular plant tissues. Live-cell imaging by DHM allows investigation of the dynamic processes underlying the function and morphology of cells. Future applications of DHM can include real-time cell monitoring in response to clinically relevant compounds. The effect of drugs on migration, proliferation, and apoptosis of abnormal cells is an emerging field of this novel microscopic technique. Full article
(This article belongs to the Special Issue Technologies and Applications of Digital Holography)
Show Figures

Figure 1

12 pages, 3497 KiB  
Article
Dynamic Attention Mixer-Based Residual Network Assisted Design of Holographic Metasurface
by Lei Zhu, Hongda Zhang, Liang Dong, Zhengliang Lv and Xumin Ding
Photonics 2024, 11(10), 963; https://doi.org/10.3390/photonics11100963 - 14 Oct 2024
Viewed by 1289
Abstract
Multi-channel holographic metasurfaces have great potential for applications in wireless communications and radar. However, geometric phase-based multichannel metasurface units often have complex phase spectra, making the design of holographic metasurfaces complex and time-consuming. To address this challenge, we propose a dynamic attention mixer-based [...] Read more.
Multi-channel holographic metasurfaces have great potential for applications in wireless communications and radar. However, geometric phase-based multichannel metasurface units often have complex phase spectra, making the design of holographic metasurfaces complex and time-consuming. To address this challenge, we propose a dynamic attention mixer-based residual network to streamline the optimization and design of a multi-channel holographic metasurface unit. We conduct validation using multi-channel metasurface units, with a training set mean squared error (MSE) of 0.003 and a validation set MSE of 0.4. Additionally, we calculate the mean absolute error (MAE) for the geometric parameters θ1 and θ2 of the backward-predicted metasurface units in the validation set, which are 0.2° and 0.6°, respectively. Compared to traditional networks, our method achieves robust learning outcomes without the need for extensive datasets and provides accurate results even in complex electromagnetic responses. It is believed that the method presented in this paper is also applicable to the design of other artificial materials or multifunctional metasurfaces. Full article
(This article belongs to the Special Issue Emerging Trends in Metamaterials and Metasurfaces Research)
Show Figures

Figure 1

22 pages, 94009 KiB  
Article
A Roadside Precision Monocular Measurement Technology for Vehicle-to-Everything (V2X)
by Peng Sun, Xingyu Qi and Ruofei Zhong
Sensors 2024, 24(17), 5730; https://doi.org/10.3390/s24175730 - 3 Sep 2024
Cited by 1 | Viewed by 1606
Abstract
Within the context of smart transportation and new infrastructure, Vehicle-to-Everything (V2X) communication has entered a new stage, introducing the concept of holographic intersection. This concept requires roadside sensors to achieve collaborative perception, collaborative decision-making, and control. To meet the high-level requirements of V2X, [...] Read more.
Within the context of smart transportation and new infrastructure, Vehicle-to-Everything (V2X) communication has entered a new stage, introducing the concept of holographic intersection. This concept requires roadside sensors to achieve collaborative perception, collaborative decision-making, and control. To meet the high-level requirements of V2X, it is essential to obtain precise, rapid, and accurate roadside information data. This study proposes an automated vehicle distance detection and warning scheme based on camera video streams. It utilizes edge computing units for intelligent processing and employs neural network models for object recognition. Distance estimation is performed based on the principle of similar triangles, providing safety recommendations. Experimental validation shows that this scheme can achieve centimeter-level distance detection accuracy, enhancing traffic safety. This approach has the potential to become a crucial tool in the field of traffic safety, providing intersection traffic target information for intelligent connected vehicles (ICVs) and autonomous vehicles, thereby enabling V2X driving at holographic intersections. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

12 pages, 2430 KiB  
Article
Higher-Dimensional Communications Using Multimode Fibers and Compact Components to Enable a Dense Set of Communicating Channels
by Daniel A. Nolan
Optics 2024, 5(3), 330-341; https://doi.org/10.3390/opt5030024 - 7 Aug 2024
Cited by 1 | Viewed by 1725
Abstract
Higher-dimensional communications are of interest for multiple reasons, including increasing the classical transmission capacity and, more recently, the quantum state transfer through fibers using the many modes within the fiber. For quantum communications, this enables an increase in the number of bits per [...] Read more.
Higher-dimensional communications are of interest for multiple reasons, including increasing the classical transmission capacity and, more recently, the quantum state transfer through fibers using the many modes within the fiber. For quantum communications, this enables an increase in the number of bits per photon, increasing quantum fidelity, increasing error thresholds and enabling hyperentanglement transfer, among other possibilities. A high-dimensional quantum state transfer can be transported through multimode fiber using the many modes available. However, this transfer of information through multimode optical fiber is limited by attenuation and mode coupling among the various spatial and polarization modes. Here, we consider how this mode coupling impacts the transfer process. We consider the fiber’s modal properties, including orbital angular momentum, modal group numbers, and principal modes. We also investigate and propose input and output optical components, as well as fiber properties, which better mitigate the deleterious effects of mode coupling. We use the WKB approximation to the scaler wave equation as a guidance to quantify this coupling and then implement corrections to this approximation using exact solutions to the scaler wave equation. We consider methods to circumvent this mode coupling using optical fiber designs, holographic optical components and devices that are commercially available today. Some of these components, such as the holographic gratings and lenses, could be implemented using flat optics. Full article
Show Figures

Figure 1

27 pages, 40189 KiB  
Article
Tensor-Free Holographic Metasurface Leaky-Wave Multi-Beam Antennas with Tailorable Gain and Polarization
by Chuan-Kuei Weng, Yu-Zhan Tsai, Artem Vilenskiy and Malcolm Ng Mou Kehn
Sensors 2024, 24(8), 2422; https://doi.org/10.3390/s24082422 - 10 Apr 2024
Cited by 2 | Viewed by 2532
Abstract
Recently, the community has seen a rise in interest and development regarding holographic antennas. The planar hologram is made of subwavelength metal patches printed on a grounded dielectric board, constituting flat metasurfaces. When a known reference wave is launched, the hologram produces a [...] Read more.
Recently, the community has seen a rise in interest and development regarding holographic antennas. The planar hologram is made of subwavelength metal patches printed on a grounded dielectric board, constituting flat metasurfaces. When a known reference wave is launched, the hologram produces a pencil beam towards a prescribed direction. Most earlier works on such antennas have considered only a single beam. For the few later ones that studied multiple beams, they were achieved either by having each beam taken care of by a distinct frequency or by partitioning the hologram, thereby depriving each beam of the directivity it could have had it not shared the holographic aperture with other beams. There have been recent studies related to the use of tensor surface impedance concepts for the synthesis of holograms which have attained control over the polarizations and intensities of the beams. However, this approach is complicated, tedious, and time-consuming. In this paper, we present a method for designing a planar holographic leaky-wave multi-beam metasurface antenna, of which each simultaneous beam radiating at the same frequency towards any designated direction has a tailorable amplitude, phase, and polarization, all without hologram partitioning. Most importantly, this antenna is exempted from the need for the cumbersome technique of tensor impedance. Such features of beam configurability are useful in selective multiple-target applications that require differential gain and polarization control among the various beams. Only a single source is needed, which is another benefit. In addition, effective methods to mitigate sidelobes are also proposed here. Designs by simulations according to the method are herein validated with measurements performed on fabricated prototypes. Full article
(This article belongs to the Special Issue Communication, Sensing and Localization in 6G Systems)
Show Figures

Figure 1

14 pages, 2749 KiB  
Article
Reconfigurable Holographic Surface-Assisted Wireless Secrecy Communication System
by Yiming Xu, Jinshuo Liu, Xiaoguang Wu, Tianwen Guo and Huadong Peng
Electronics 2024, 13(7), 1359; https://doi.org/10.3390/electronics13071359 - 4 Apr 2024
Cited by 2 | Viewed by 2046
Abstract
This new antenna, called the reconfigurable holographic surface (RHS), is lightweight and compact, and it can precisely steer many beams at once. Because of its reflecting characteristic, it differs from the reconfigurable intelligent surface (RIS), which is frequently employed as a passive relay. [...] Read more.
This new antenna, called the reconfigurable holographic surface (RHS), is lightweight and compact, and it can precisely steer many beams at once. Because of its reflecting characteristic, it differs from the reconfigurable intelligent surface (RIS), which is frequently employed as a passive relay. To leverage the holographic technology and generate the necessary beam, RHS is most likely to be integrated with the transceiver as an ultra-thin and lightweight planer antenna. This has enormous potential to satisfy the growing demands of the future generation network. This paper is the first to study a wireless secrecy communication system with a base station that has and is helped by an RHS. We suggest a strategy for simultaneously optimizing the holographic beamforming at the RHS and the digital beamforming at the base station with the introduction of artificial noise (AN) to attain the highest secrecy rate. However, because of its non-convexity and changeable coupling, this problem is challenging to solve. A proficient algorithm that utilizes alternating optimization and is capable of solving the problem below the ideal level is suggested. According to simulation studies, RHS outperforms RIS in terms of enhancing the performance of wireless secrecy communication systems, indicating that RHS has a wide range of potential applications in the realm of physical layer security. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

21 pages, 3698 KiB  
Article
Student-Centered Assessment Research on Holographic Learning Paradigm Based on Intelligent Analytic Hierarchy Process in Teaching of Bridge Engineering Course
by Maojun Duan, Fenghui Dong and Jiaqing Wang
Sustainability 2024, 16(6), 2430; https://doi.org/10.3390/su16062430 - 14 Mar 2024
Cited by 6 | Viewed by 1541
Abstract
As the core course of civil engineering, the teaching quality of bridge engineering and the learning effectiveness of students are crucial for the construction of bridge engineering. The traditional teaching of bridge engineering courses tends to be teacher-centered, with learning as a supplement, [...] Read more.
As the core course of civil engineering, the teaching quality of bridge engineering and the learning effectiveness of students are crucial for the construction of bridge engineering. The traditional teaching of bridge engineering courses tends to be teacher-centered, with learning as a supplement, and therefore is commonly referred to as teacher-centered. This article analyzes the drawbacks of the teacher-centered teaching model and proposes a student-centered holographic teaching method in the teaching practice of bridge engineering courses. By reconstructing the learning content and constructing a holographic information field from a comprehensive perspective of digital, physical, and humanistic aspects, a teacher–student learning community guided by teachers and deeply participated in by students is established. From the perspective of integrating life experience, professional knowledge cognition, and engineering philosophy thinking, the learning effect of students is made high order, innovative, and challenging. The improved analytic hierarchy process (AHP) was used to evaluate the student-centered holographic teaching concept, and the results showed that adopting a multidimensional and multi-level holographic teaching method has great practical significance in promoting the establishment of student knowledge systems and the development of diversity. Full article
(This article belongs to the Special Issue Sustainable Education: Theories, Practices and Approaches)
Show Figures

Figure 1

20 pages, 4240 KiB  
Review
Generation of Orbital Angular Momentum Light by Patterning Azopolymer Thin Films
by Temitope M. Olaleye, Maria Raposo and Paulo A. Ribeiro
Photonics 2023, 10(12), 1319; https://doi.org/10.3390/photonics10121319 - 29 Nov 2023
Cited by 2 | Viewed by 2273
Abstract
Orbital angular momentum (OAM) encoding is a promising technique to boost data transmission capacity in optical communications. Most recently, azobenzene films have gained attention as a versatile tool for creating and altering OAM-carrying beams. Unique features of azobenzene films make it possible to [...] Read more.
Orbital angular momentum (OAM) encoding is a promising technique to boost data transmission capacity in optical communications. Most recently, azobenzene films have gained attention as a versatile tool for creating and altering OAM-carrying beams. Unique features of azobenzene films make it possible to control molecular alignment through light-induced isomerization about the azo bond. This feature enables the fabrication of diffractive optical devices such as spiral phase plates and holograms by accurately imprinting a phase profile on the incident light. By forming azobenzene sheets into diffractive optical elements, such as spiral phase plates, one can selectively create OAM-carrying beams. Due to the helical wavefront and phase variation shown by these beams, multiple distinct channels can be encoded within a single optical beam. This can significantly increase the data transmission capacity of optical communication systems with this OAM multiplexing technique. Additionally, holographic optical components made from azobenzene films can be used to build and reconstruct intricate wavefronts. It is possible to create OAM-based holograms by imprinting holographic designs on azobenzene films, which makes it simpler to control and shape optical beams for specific communication requirements. In addition, azobenzene-based materials can then be suitable for integration into optical communication devices because of their reconfigurability, compactness, and infrastructure compatibility, which are the main future perspectives for achieving OAM-based technologies for the next generation, among other factors. In this paper, we see the possible use of azobenzene films in the generation and modification of OAM beams for optical communications through light-induced isomerization. In addition, the potential role of azobenzene films in the development of novel OAM-based devices that paves the way for the realization of high-capacity, OAM-enabled optical communication networks are discussed. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement II)
Show Figures

Figure 1

Back to TopTop