Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = histone variant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2227 KiB  
Article
Divergent Mechanisms of H2AZ.1 and H2AZ.2 in PRC1-Mediated H2A Ubiquitination
by Xiangyu Shen, Chunxu Chen, Amanda E. Jones, Xiaokun Jian, Gengsheng Cao and Hengbin Wang
Cells 2025, 14(15), 1133; https://doi.org/10.3390/cells14151133 - 23 Jul 2025
Viewed by 256
Abstract
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. [...] Read more.
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. In this study, we employed isoform-specific epitope-tagged knock-in mouse embryonic stem cell (ESC) lines to dissect the roles of each isoform in Polycomb Repressive Complex 1 (PRC1)-mediated H2AK119ub. Our results show that H2AZ.1 and H2AZ.2 share highly overlapping genomic binding profiles, both co-localizing extensively with H2AK119ub-enriched loci. The knockdown of either isoform led to reduced H2AK119ub levels; however, the two isoforms appear to function through distinct mechanisms. H2AZ.1 facilitates the recruitment of Ring1B, the catalytic subunit of PRC1, thereby promoting the deposition of H2AK119ub. In contrast, H2AZ.2 does not significantly affect Ring1B recruitment but instead functions as a structural component that stabilizes H2AK119ub-modified nucleosomes. In vitro ubiquitination assays indicate that H2AZ.1-containing nucleosomes serve as more efficient substrates for PRC1-mediated ubiquitination compared to those containing H2AZ.2. Thus, these findings define the distinct mechanisms of the two H2AZ variants in regulated PRC1-mediated H2AK119 ubiquitination and highlight a functional division of labor in epigenetic regulation. Full article
Show Figures

Figure 1

22 pages, 6977 KiB  
Article
Exploration of Bromodomain Proteins as Drug Targets for Niemann–Pick Type C Disease
by Martina Parente, Amélie Barthelemy, Claudia Tonini, Sara Caputo, Alessandra Sacchi, Stefano Leone, Marco Segatto, Frank W. Pfrieger and Valentina Pallottini
Int. J. Mol. Sci. 2025, 26(12), 5769; https://doi.org/10.3390/ijms26125769 - 16 Jun 2025
Viewed by 417
Abstract
Defects in lysosomal cholesterol handling provoke fatal disorders presenting neurovisceral symptoms with variable onset and life spans. A prime example is Niemann–Pick type C disease (NPCD), where cholesterol export from the endosomal–lysosomal system is impaired due to variants of either NPC intracellular cholesterol [...] Read more.
Defects in lysosomal cholesterol handling provoke fatal disorders presenting neurovisceral symptoms with variable onset and life spans. A prime example is Niemann–Pick type C disease (NPCD), where cholesterol export from the endosomal–lysosomal system is impaired due to variants of either NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2). Therapeutic options for NPCD are limited to palliative care and disease-modifying drugs, and there is a need for new treatments. Here, we explored bromodomain and extra-terminal domain (BET) proteins as new drug targets for NPCD using patient-derived skin fibroblasts. Treatment with JQ1, a prototype BET protein inhibitor, raised the level of NPC1 protein, diminished lysosomal expansion and cholesterol accumulation, and induced extracellular release of lysosomal components in a dose-, time-, and patient-dependent manner. Lastly, JQ1 enhanced and reduced cholesterol accumulation induced by pharmacologic inhibition of NPC1 and of histone deacetylase (HDAC) activity, respectively. Taken together, bromodomain proteins should be further explored as therapeutic drug targets for lysosomal diseases like NPCD, and as new components regulating lysosomal function and cholesterol metabolism. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

22 pages, 30677 KiB  
Article
Mitochondrial Translation Inhibition Uncovers a Critical Metabolic–Epigenetic Interface in Renal Cell Carcinoma
by Kazumi Eckenstein, Beyza Cengiz, Matthew E. K. Chang, Jessie May Cartier, Mark R. Flory and George V. Thomas
Metabolites 2025, 15(6), 393; https://doi.org/10.3390/metabo15060393 - 12 Jun 2025
Viewed by 608
Abstract
Background/Objectives: Renal cell carcinoma (RCC) exhibits distinctive metabolic vulnerabilities that may be therapeutically targeted. This study investigates how tigecycline, an FDA-approved antibiotic that inhibits mitochondrial translation, affects RCC cells and explores potential combinatorial approaches to enhance its efficacy. Methods: We employed comprehensive metabolomic [...] Read more.
Background/Objectives: Renal cell carcinoma (RCC) exhibits distinctive metabolic vulnerabilities that may be therapeutically targeted. This study investigates how tigecycline, an FDA-approved antibiotic that inhibits mitochondrial translation, affects RCC cells and explores potential combinatorial approaches to enhance its efficacy. Methods: We employed comprehensive metabolomic profiling, subcellular proteomics, and functional assays to characterize the effects of tigecycline on RCC cell lines, patient-derived organoids, and xenograft models. The synergistic potential of tigecycline with the histone deacetylase inhibitor entinostat was evaluated using combination index analysis. Results: Tigecycline selectively inhibited mitochondrial translation in RCC cells, reducing mitochondrially-encoded proteins while sparing nuclear-encoded components, profoundly disrupting mitochondrial bioenergetics and reducing tumor growth in xenograft models. Subcellular proteomic analyses revealed that tigecycline treatment triggered a significant accumulation of multiple histone variants concurrent with cell cycle arrest. Based on this discovery, combined treatment with tigecycline and entinostat demonstrated remarkable synergism across RCC cell lines and patient-derived. Conclusions: Our findings identify a promising therapeutic opportunity by targeting the crosstalk between mitochondrial function and epigenetic homeostasis in RCC, with the potential for rapid clinical translation given the established pharmacological profiles of both agents. Full article
Show Figures

Figure 1

18 pages, 1224 KiB  
Article
Reduced Gene Dosage of the Psychiatric Risk Gene Cacna1c Is Associated with Impairments in Hypothalamic–Pituitary–Adrenal Axis Activity in Rats
by Anna L. Moon, Eleanor R. Mawson, Patricia Gasalla, Lawrence S. Wilkinson, Dominic M. Dwyer, Jeremy Hall and Kerrie L. Thomas
Int. J. Mol. Sci. 2025, 26(12), 5547; https://doi.org/10.3390/ijms26125547 - 10 Jun 2025
Viewed by 431
Abstract
Common and rare variation in CACNA1C gene expression has been consistently associated with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and major depression. However, the underlying biological pathways that cause this association have yet to be fully determined. In this study, we present [...] Read more.
Common and rare variation in CACNA1C gene expression has been consistently associated with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and major depression. However, the underlying biological pathways that cause this association have yet to be fully determined. In this study, we present evidence that rats with a reduced gene dosage of Cacna1c have increased basal corticosterone levels in the periphery and reduced the expression of Nr3c1 encoding the glucocorticoid receptor in the hippocampus and hypothalamus. These results are consistent, with an effect of Cacna1c dosage on hypothalamus–pituitary–adrenal (HPA) axis function. Heterozygous Cacna1c rats had lower levels of the histone markers H3K4me3 and H3K27acat exon 17 of the Nr3c1 gene. These histone modifications are typically linked to increased gene expression, but here were not associated with changes in the expression of exon 17 variants under non-stress conditions. Heterozygous Cacna1c rats additionally show increased anxiety behaviours. These results support an association of Cacna1c heterozygosity with the altered activity of the HPA axis and function in the resting state, and this may be a predisposing mechanism that contributes to the increased risk of psychiatric disorders with stress. Full article
Show Figures

Figure 1

21 pages, 3511 KiB  
Article
In Silico Analysis of s-DAPK-1: From Structure to Function and Regulation
by Lilian Makgoo, Salerwe Mosebi and Zukile Mbita
Curr. Issues Mol. Biol. 2025, 47(6), 416; https://doi.org/10.3390/cimb47060416 - 4 Jun 2025
Viewed by 454
Abstract
The existence of s-DAPK-1, an alternatively spliced variant of DAPK-1, adds complexity to our understanding of the proteins involved in the regulation of cell survival, apoptosis, and autophagy. DAPK-1 has been implicated in the regulation of these processes; however, it remains unclear whether [...] Read more.
The existence of s-DAPK-1, an alternatively spliced variant of DAPK-1, adds complexity to our understanding of the proteins involved in the regulation of cell survival, apoptosis, and autophagy. DAPK-1 has been implicated in the regulation of these processes; however, it remains unclear whether s-DAPK-1 also plays a similar role or a separate function; thus, determining its involvement in these processes is challenging due to the limited understanding of its regulation, interacting partners, function, and three-dimensional (3D) structure. Hence, this study was aimed at (1) understanding the regulation of s-DAPK-1 by predicting its microRNA targets, (2) predicting the 3D structure of s-DAPK-1, (3) its physicochemical and thermodynamic properties, (4) its interacting partners, and (5) molecular functions using computational methods. To achieve this aim, various bioinformatics tools and in silico webservers, such as ProteinPrompt, ProtParam, ProtScale, ScooP, Hawkdock, Phyre2, I-TASSER, PSIPRED, SAVES, and PROCHECK, along with user-friendly databases, such as NCBI, TarBase, and Protein Data Bank (PDB), were employed. For miRNA prediction, we used TarBase, and identified the specific microRNAs targeting s-DAPK-1. Furthermore, the Phyre2 database demonstrated that s-DAPK-1 possesses 40% alpha helices and 4% beta strands, forming a stable 3D structure. Additionally, s-DAPK-1 demonstrated stability to withstand high temperatures, suggesting that it is a thermostable protein. Moreover, s-DAPK-1 was found to interact with a variety of proteins involved in tumor progression and gene regulation, including a prion protein and histone H2B type 2-E (H2B2E). This suggests that s-DAPK-1 may perform diverse molecular functions such as regulation of metabolic processes, nucleic acid binding, and mRNA splicing by interacting with different proteins. Full article
(This article belongs to the Special Issue Protein Domains: Structure and Molecular Function)
Show Figures

Figure 1

20 pages, 3638 KiB  
Article
Parental Phasing Study Identified Lineage-Specific Variants Associated with Gene Expression and Epigenetic Modifications in European–Chinese Hybrid Pigs
by Chenyu Li, Mei Ge, Keren Long, Ziyin Han, Jing Li, Mingzhou Li and Zhiyan Zhang
Animals 2025, 15(10), 1494; https://doi.org/10.3390/ani15101494 - 21 May 2025
Viewed by 511
Abstract
Understanding how hybrids integrate lineage-specific regulatory variants at the haplotype level is crucial for elucidating the genetic basis of heterosis in livestock. In this study, we established three crossbred pig families derived from distant genetic lineages and systematically identified variants from different lineages, [...] Read more.
Understanding how hybrids integrate lineage-specific regulatory variants at the haplotype level is crucial for elucidating the genetic basis of heterosis in livestock. In this study, we established three crossbred pig families derived from distant genetic lineages and systematically identified variants from different lineages, including single nucleotide polymorphisms (SNPs) and structural variations (SVs). At the phase level, we quantitatively analyzed gene expression, four histone modifications (H3K4me3, H3K27ac, H3K4me1, and H3K27me3), and the binding strength of transcription factor (CTCF) in backfat (BF) and longissimus dorsi (LD) muscle. By colocalization analysis of phased genetic variants with phased gene expression levels and with phased epigenetic modifications, we identified 18,670 expression quantitative trait loci (eQTL) (FDR < 0.05) and 8,652 epigenetic modification quantitative trait loci (epiQTL) (FDR < 0.05). The integration of eQTL and epiQTL allowed us to explore the potential regulatory mechanisms by which lineage-specific genetic variants simultaneously influence gene expression and epigenetic modifications. For example, we identified a Large White lineage-specific duplication (DUP) encompassing the KIT gene that was significantly associated with its promoter activity (FDR = 7.83 × 10−4) and expression levels (FDR = 9.03 × 10−4). Additionally, we found that a Duroc lineage-specific SNP located upstream of AMIGO2 was significantly associated with a Duroc-specific H3K27ac peak (FDR = 0.035) and also showed a significant association with AMIGO2 expression levels (FDR = 5.12 × 10−4). These findings underscore the importance of phased regulatory variants in shaping lineage-specific transcriptional programs and highlight how the haplotype-resolved integration of eQTL and epigenetic signals can reveal the mechanistic underpinnings of hybrid regulatory architecture. Our results offer insights for molecular marker development in precision pig breeding. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

11 pages, 995 KiB  
Review
DDM1 Maintains Heterochromatin by Regulating Histone Variants
by Yuanyi Sun, Qijun Xie, Huaixue Chu, Bin Lv, Linan Xie and Qingzhu Zhang
Int. J. Mol. Sci. 2025, 26(10), 4845; https://doi.org/10.3390/ijms26104845 - 19 May 2025
Viewed by 497
Abstract
Chromatin remodeling factors efficiently and precisely establish, maintain, regulate, and distinguish between chromatin states in eukaryotes. DECREASE in DNA METHYLATION 1 (DDM1) is an important heterochromatin remodeling factor in plants that is responsible for maintaining heterochromatin DNA methylation and suppressing most transposable elements. [...] Read more.
Chromatin remodeling factors efficiently and precisely establish, maintain, regulate, and distinguish between chromatin states in eukaryotes. DECREASE in DNA METHYLATION 1 (DDM1) is an important heterochromatin remodeling factor in plants that is responsible for maintaining heterochromatin DNA methylation and suppressing most transposable elements. Previous studies have predominantly focused on the effects of DDM1 on chromatin, with only a few focusing on its remodeling mechanisms. However, recent studies have greatly advanced understanding of the remodeling functions of DDM1 and, in particular, have clarified the mechanisms involved. In this review, we discuss the newly identified remodeling functions and mechanisms of DDM1. As DDM1 is closely involved in histone variant exchange, we first introduce the main histone variants associated with chromatin states in plants. Next, we focus on how DDM1 promotes the deposition of specific histone variants and describe its other remodeling functions. We propose that the core function of DDM1 is the regulation of histone variant distribution. DDM1 maintains heterochromatin by regulating the deposition of H2A and H3 variants, particularly by facilitating the exchange of specific histone variants. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

21 pages, 3846 KiB  
Article
Epigenetic Modifications in Alternative Splicing of LDLR pre-mRNA on Hypercholesterolemia Following Aerobic Exercise Training
by Jinfeng Zhao, Peirun Yan, Yana Pang, Yuankun Dong and Xiangrong Shi
Int. J. Mol. Sci. 2025, 26(9), 4262; https://doi.org/10.3390/ijms26094262 - 30 Apr 2025
Viewed by 475
Abstract
This study investigated whether exercise training improved cholesterol metabolism through modifying alternative splicing of the low-density lipoprotein receptor (LDLR). Blood lipids and expressions of LDLR splice variants were compared between exercise-trained and non-trained young adults with normal and high cholesterol. The expression of [...] Read more.
This study investigated whether exercise training improved cholesterol metabolism through modifying alternative splicing of the low-density lipoprotein receptor (LDLR). Blood lipids and expressions of LDLR splice variants were compared between exercise-trained and non-trained young adults with normal and high cholesterol. The expression of LDLR splice isoforms were examined using RT-PCR and the histone H3K36me3 by CHIP-assay in mouse liver following a 13-week normal or high-cholesterol-diet combined with or without 8 weeks of aerobic exercise-training. The influence of histone modifications on LDLR alternative splicing was examined in HepG2 cells (human liver cell-line). Expression levels of LDLR deletions in exons 4 and 12 (LDLR-∆Exon4 and LDLR-∆Exon12) were significantly higher in the obese adults with high-cholesterol. These LDLR splice variants were significantly lower in the exercise-trained than non-trained group with normal cholesterol. Thirteen weeks of high-cholesterol feeding increased LDLR-∆Exon14 expression in mice, which was diminished after 8 weeks of exercise training. When H3-K36me3 or the MORF-related gene on chromosomes 15 were overexpressed and interfered, the levels of LDLR-∆Exon4 and LDLR-∆Exon12 expression in HepG2 cells were significantly augmented and inhibited, respectively. Hypercholesterolemia was associated with augmented expressions of LDLR splice variants in obese adults and following high-cholesterol diet in mice. Aerobic exercise training prevented and reversed the dyslipidemia-related alternative splicing of LDLR pre-mRNA. The histone modifications contributed to the alternative splicing. Full article
Show Figures

Figure 1

9 pages, 1023 KiB  
Review
A Novel Frameshift Variant and a Partial EHMT1 Microdeletion in Kleefstra Syndrome 1 Patients Resulting in Variable Phenotypic Severity and Literature Review
by Maria Tzetis, Anastasios Mitrakos, Ioanna Papathanasiou, Vasiliki Koute, Konstantina Kosma, Roser Pons, Aspasia Michoula, Ioanna Grivea and Aspasia Tsezou
Genes 2025, 16(5), 521; https://doi.org/10.3390/genes16050521 - 29 Apr 2025
Viewed by 874
Abstract
Background: Kleefstra syndrome 1(KLEFS1, OMIM#610253) is a rare neurodevelopmental disorder (NDD) instigated by heterozygous variants or microdeletions occurring in the 9q34.4 genomic region of the euchromatic histone methyltransferase-1 (EHMT1) gene and is inherited in an autosomal dominant (AD) manner. The clinical [...] Read more.
Background: Kleefstra syndrome 1(KLEFS1, OMIM#610253) is a rare neurodevelopmental disorder (NDD) instigated by heterozygous variants or microdeletions occurring in the 9q34.4 genomic region of the euchromatic histone methyltransferase-1 (EHMT1) gene and is inherited in an autosomal dominant (AD) manner. The clinical phenotype of KLEFS1 includes moderate to severe intellectual disability (ID), hypotonia, and distinctive facial features and additionally involves other organ systems (heart, renal, genitourinary, sensory) albeit with phenotypic heterogeneity between patients. The purpose of this study is to expand the genotypic spectrum of KLEFS1 and compare phenotypic features of the syndrome of already published cases. Methods: Exome sequencing (ES), chromosomal microarray analysis (CMA), as well as sanger sequencing, for confirmation of the de novo status of the frameshift variant, were used. Results: Here we describe two more cases, both males with a similar age and carriers of novel variants; one with a frameshift variant involving exon 13: p.Val692Glyfs*64 and the other with the smallest so far described, 11 Kb (exons 19-25), 9q34.4 microdeletion: 9q34.3 (140703393-140714454). Both presented with an NDD disorder with one showing more severe ID with significant social disabilities, while the other with the microdeletion had mild ID and following a normal education curriculum. Neither of them were obese nor had any other significant organ system disorder. Conclusions: The observed phenotypic variability due to genotypic differences in the two children contributes to the expanding spectrum of KLEFS1 disease phenotypes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 1387 KiB  
Review
Research Themes in KAT6A Syndrome: A Scoping Review
by Tanya Tripathi, Miya St John, Jordan Wright, Natacha Esber and David J. Amor
DNA 2025, 5(2), 21; https://doi.org/10.3390/dna5020021 - 27 Apr 2025
Viewed by 1720
Abstract
Pathogenic variants in the KAT6A gene cause KAT6A syndrome, a neurodevelopmental disorder characterised by intellectual disability (ID), developmental delay, speech and language challenges, feeding difficulties, and skeletal abnormalities. This scoping review synthesises current knowledge on KAT6A syndrome, identifies key research themes, and supports [...] Read more.
Pathogenic variants in the KAT6A gene cause KAT6A syndrome, a neurodevelopmental disorder characterised by intellectual disability (ID), developmental delay, speech and language challenges, feeding difficulties, and skeletal abnormalities. This scoping review synthesises current knowledge on KAT6A syndrome, identifies key research themes, and supports the mission of advocacy groups like the KAT6 Foundation. A systematic search of five databases (Ovid MEDLINE, Ovid EMBASE, PubMed, Web of Science, and Scopus) was conducted from 1990 to 2024, including peer-reviewed articles, preprints, and conference abstracts published from 2022 onward. Of 771 citations retrieved, 111 full-text articles were reviewed, with 62 meeting the inclusion criteria. Data were synthesised into six themes: (1) the genotype and phenotype map, revealing a broad phenotypic spectrum with common features like ID, absent speech, and craniofacial dysmorphism, as well as rare features such as severe aplastic anaemia and pancraniosynostosis; (2) the neurodevelopmental profile, detailing communication deficits, sleep disturbances, and impaired adaptive functioning; (3) the epigenetic and developmental roles of KAT6A, highlighting its critical function in histone acetylation, chromatin remodelling, and gene regulation; (4) molecular biomarkers, identifying distinct DNA methylation episignatures and dysregulated cellular pathways; (5) drug discovery, with preliminary studies suggesting that pantothenate and L-carnitine may mitigate mitochondrial dysfunction and histone acetylation deficits, while RSPO2 overexpression reverses cognitive impairment in animal models; (6) phenotypic overlap with Rett syndrome and KAT6B-related disorders. This review underscores the complexity and variability of KAT6A syndrome, highlighting the need for multidisciplinary approaches to improving diagnosis, management, and development of therapies. Future research should focus on longitudinal studies, underrepresented phenotypes, biomarker identification, and robust therapeutic trials to enhance outcomes for affected individuals and their families. Full article
Show Figures

Figure 1

22 pages, 17696 KiB  
Article
The Yeast HMGB Protein Hmo1 Is a Multifaceted Regulator of DNA Damage Tolerance
by Jinlong Huo, Anhui Wei, Na Guo, Ruotong Wang and Xin Bi
Int. J. Mol. Sci. 2025, 26(7), 3255; https://doi.org/10.3390/ijms26073255 - 1 Apr 2025
Viewed by 622
Abstract
The Saccharomyces cerevisiae chromosomal architectural protein Hmo1 is categorized as an HMGB protein, as it contains two HMGB motifs that bind DNA in a structure-specific manner. However, Hmo1 has a basic C-terminal domain (CTD) that promotes DNA bending instead of an acidic one [...] Read more.
The Saccharomyces cerevisiae chromosomal architectural protein Hmo1 is categorized as an HMGB protein, as it contains two HMGB motifs that bind DNA in a structure-specific manner. However, Hmo1 has a basic C-terminal domain (CTD) that promotes DNA bending instead of an acidic one found in a canonical HMGB protein. Hmo1 has diverse functions in genome maintenance and gene regulation. It is implicated in DNA damage tolerance (DDT) that enables DNA replication to bypass lesions on the template. Hmo1 is believed to direct DNA lesions to the error-free template switching (TS) pathway of DDT and to aid in the formation of the key TS intermediate sister chromatid junction (SCJ), but the underlying mechanisms have yet to be resolved. In this work, we used genetic and molecular biology approaches to further investigate the role of Hmo1 in DDT. We found extensive functional interactions of Hmo1 with components of the genome integrity network in cellular response to the genotoxin methyl methanesulfonate (MMS), implicating Hmo1 in the execution or regulation of homology-directed DNA repair, replication-coupled chromatin assembly, and the DNA damage checkpoint. Notably, our data pointed to a role for Hmo1 in directing SCJ to the nuclease-mediated resolution pathway instead of the helicase/topoisomerase mediated dissolution pathway for processing/removal. They also suggested that Hmo1 modulates both the recycling of parental histones and the deposition of newly synthesized histones on nascent DNA at the replication fork to ensure proper chromatin formation. We found evidence that Hmo1 counteracts the function of histone H2A variant H2A.Z (Htz1 in yeast) in DDT possibly due to their opposing effects on DNA resection. We showed that Hmo1 promotes DNA negative supercoiling as a proxy of chromatin structure and MMS-induced DNA damage checkpoint signaling, which is independent of the CTD of Hmo1. Moreover, we obtained evidence indicating that whether the CTD of Hmo1 contributes to its function in DDT is dependent on the host’s genetic background. Taken together, our findings demonstrated that Hmo1 can contribute to, or regulate, multiple processes of DDT via different mechanisms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 2980 KiB  
Article
H2AJ Is a Direct Androgen Receptor Target Gene That Regulates Androgen-Induced Cellular Senescence and Inhibits Mesenchymal Markers in Prostate Cancer Cells
by Mehdi Heidari Horestani, Golnaz Atri Roozbahani and Aria Baniahmad
Cancers 2025, 17(5), 791; https://doi.org/10.3390/cancers17050791 - 25 Feb 2025
Viewed by 1094
Abstract
Background: Prostate cancer (PCa) is a significant public health issue, particularly in developed countries. The androgen receptor (AR) plays a key role in regulating both the normal development and the proliferation of PCa. Bipolar androgen therapy, which involves treatment with supraphysiological androgen levels [...] Read more.
Background: Prostate cancer (PCa) is a significant public health issue, particularly in developed countries. The androgen receptor (AR) plays a key role in regulating both the normal development and the proliferation of PCa. Bipolar androgen therapy, which involves treatment with supraphysiological androgen levels (SALs), has been shown to inhibit PCa growth. SAL induces cellular senescence in AR-positive PCa cell lines, human tumor samples, and xenografted mouse models. Methods: Transcriptome and chromatin immunoprecipitation (ChIP)-seq analysis, ChIP-qPCR, knockdown (KD), overexpression (OE), qRT-PCR, immunodetection, in situ histochemistry. Results: Here, we show using ChIP-seq and RNA-seq that H2AJ, a variant of the canonical histone H2A, is a direct target gene of AR that regulates cellular senescence and the formation of senescence-associated heterochromatin foci (SAHF). Accordingly, bioinformatic analyses reveal a large overlap of the H2AJ transcriptome with the cellular senescence score of PCa. Analyzing a large cohort of patient samples, the expression of H2AJ is higher in tumor samples compared to normal samples suggesting growth-promoting activity. Interestingly, however, the expression is diminished in metastatic tumor samples, indicating that H2AJ inhibits the mesenchymal transition in PCa cells. Functionally, the KD of H2AJ inhibits growth, whereas the H2AJ overexpression promotes cell growth. Furthermore, these data suggest that H2AJ inhibits the expression of mesenchymal markers, in agreement with the low expression of H2AJ in metastatic forms of tumors from patient cohorts. Conclusion:H2AJ is a direct positively AR-regulated target gene induced by SALs that regulates cellular senescence, promotes growth, and inhibits the expression of mesenchymal markers. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

18 pages, 2370 KiB  
Review
Chromatin Remodulator CHD4: A Potential Target for Cancer Interception
by Krishnendu Goswami, Karthikkumar Venkatachalam, Surya P. Singh, Chinthalapally V. Rao and Venkateshwar Madka
Genes 2025, 16(2), 225; https://doi.org/10.3390/genes16020225 - 15 Feb 2025
Cited by 1 | Viewed by 1732
Abstract
Cancer initiation and progression are associated with numerous somatic mutations, genomic rearrangements, and structure variants. The transformation of a normal cell into a cancer cell involves spatio-temporal changes in the regulation of different gene networks. The accessibility of these genes within the cell [...] Read more.
Cancer initiation and progression are associated with numerous somatic mutations, genomic rearrangements, and structure variants. The transformation of a normal cell into a cancer cell involves spatio-temporal changes in the regulation of different gene networks. The accessibility of these genes within the cell nucleus is manipulated via nucleosome remodeling ATPases, comprising one of the important mechanisms. Here, we reviewed studies of an ATP-dependent chromatin remodulator, chromodomain helicase DNA-binding 4 (CHD4), in cancer. Multiple domains of CHD4 are known to take part in nucleosome mobilization and histone binding. By binding with other proteins, CHD4 plays a vital role in transcriptional reprogramming and functions as a key component of Nucleosome Remodeling and Deacetylase, or NuRD, complexes. Here, we revisit data that demonstrate the role of CHD4 in cancer progression, tumor cell proliferation, DNA damage responses, and immune modulation. Conclusively, CHD4-mediated chromatin accessibility is essential for transcriptional reprogramming, which in turn is associated with tumor cell proliferation and cancer development. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 801 KiB  
Review
Syndromic and Non-Syndromic Primary Failure of Tooth Eruption: A Genetic Overview
by Clarissa Modafferi, Elisabetta Tabolacci, Cristina Grippaudo and Pietro Chiurazzi
Genes 2025, 16(2), 147; https://doi.org/10.3390/genes16020147 - 24 Jan 2025
Cited by 1 | Viewed by 1820
Abstract
Primary failure of tooth eruption (PFE) is a rare genetic disorder characterized by the failure of teeth to erupt in the absence of obvious physical obstructions, often resulting in a progressive open bite that is resistant to orthodontic treatment. While PFE can be [...] Read more.
Primary failure of tooth eruption (PFE) is a rare genetic disorder characterized by the failure of teeth to erupt in the absence of obvious physical obstructions, often resulting in a progressive open bite that is resistant to orthodontic treatment. While PFE can be caused by genetic or systemic factors (such as cysts, tumors, and endocrine imbalances), the non-syndromic causes are primarily genetic, with an autosomal dominant inheritance pattern with variable expressivity. Several genes have been closely associated with the non-syndromic PFE form. The PTH1R (parathyroid hormone 1 receptor) is the most commonly PFE-associated gene. Additional genes associated with minor frequency are Transmembrane protein 119 (TMEM119), which reduces the glycolytic efficiency of bone cells, limiting their mineralization capacity and causing bone fragility; Periostin (POSTN), which regulates the extracellular matrix and the bone’s response to mechanical stress; and Lysine (K)-specific methyltransferase 2C (KMT2C), which establishes histone methylation near the Wnt Family Member 5A (WNT5A) gene involved in dental development (odontogenesis). Syndromic forms of PFE are typically associated with complex multisystem disorders, where dental eruption failure is one of the clinical features of the spectrum. These syndromes are often linked to genetic variants that affect ectodermal development, craniofacial patterning, and skeletal growth, leading to abnormal tooth development and eruption patterns. Notable syndromes include GAPO syndrome, ectodermal dysplasia, and cleidocranial dysplasia, each contributing to PFE through distinct molecular mechanisms, such as disruptions in dental structure development, cranial abnormalities, or systemic developmental delays. The main aim of this review is to provide a comprehensive overview of the genetic basis underlying both syndromic and non-syndromic forms of PFE to facilitate precision diagnosis, foster the development of personalized therapeutic strategies, and offer new insights into managing this complex dental anomaly. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 1306 KiB  
Review
Metabolic Rewiring in the Face of Genomic Assault: Integrating DNA Damage Response and Cellular Metabolism
by Wenjian Ma and Sa Zhou
Biomolecules 2025, 15(2), 168; https://doi.org/10.3390/biom15020168 - 23 Jan 2025
Cited by 4 | Viewed by 1556
Abstract
The DNA damage response (DDR) and cellular metabolism exhibit a complex, bidirectional relationship crucial for maintaining genomic integrity. Studies across multiple organisms, from yeast to humans, have revealed how cells rewire their metabolism in response to DNA damage, supporting repair processes and cellular [...] Read more.
The DNA damage response (DDR) and cellular metabolism exhibit a complex, bidirectional relationship crucial for maintaining genomic integrity. Studies across multiple organisms, from yeast to humans, have revealed how cells rewire their metabolism in response to DNA damage, supporting repair processes and cellular homeostasis. We discuss immediate metabolic shifts upon damage detection and long-term reprogramming for sustained genomic stability, highlighting key signaling pathways and participating molecules. Importantly, we examine how DNA repair processes can conversely induce metabolic changes and oxidative stress through specific mechanisms, including the histone H2A variant X (H2AX)/ataxia telangiectasia mutated (ATM)/NADPH oxidase 1 (Nox1) pathway and repair-specific ROS signatures. The review covers organelle-specific responses and metabolic adaptations associated with different DNA repair mechanisms, with a primary focus on human cells. We explore the implications of this DDR–metabolism crosstalk in cancer, aging, and neurodegenerative diseases, and discuss emerging therapeutic opportunities. By integrating recent findings, this review provides a comprehensive overview of the intricate interplay between DDR and cellular metabolism, offering new perspectives on cellular resilience and potential avenues for therapeutic intervention. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Figure 1

Back to TopTop