Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = higher spin gauge theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 623 KiB  
Article
Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
by I. L. Buchbinder and A. A. Reshetnyak
Symmetry 2023, 15(12), 2124; https://doi.org/10.3390/sym15122124 - 28 Nov 2023
Cited by 10 | Viewed by 1352 | Correction
Abstract
We develop the BRST approach to construct the general off-shell local Lorentz covariant cubic interaction vertices for irreducible massless and massive higher spin fields on d-dimensional Minkowski space. We consider two different cases for interacting higher spin fields: with one massive and [...] Read more.
We develop the BRST approach to construct the general off-shell local Lorentz covariant cubic interaction vertices for irreducible massless and massive higher spin fields on d-dimensional Minkowski space. We consider two different cases for interacting higher spin fields: with one massive and two massless; two massive, both with coinciding and with different masses and one massless field of spins s1,s2,s3. Unlike the previous results on cubic vertices we extend our earlier result in (Buchbinder, I.L.; et al. Phys. Lett. B 2021, 820, 136470) for massless fields and employ the complete BRST operator, including the trace constraints, which is used to formulate an irreducible representation with definite integer spin. We generalize the cubic vertices proposed for reducible higher spin fields in (Metsaev, R.R. Phys. Lett. B 2013, 720, 237) in the form of multiplicative and non-multiplicative BRST-closed constituents and calculate the new contributions to the vertex, which contains the additional terms with a smaller number of space-time derivatives. We prove that without traceless conditions for the cubic vertices in (Metsaev, R.R. Phys. Lett. B 2013, 720, 237) it is impossible to provide the noncontradictory Lagrangian dynamics and find explicit traceless solution for these vertices. As the examples, we explicitly construct the interacting Lagrangians for the massive spin of the s field and the massless scalars, both with and without auxiliary fields. The interacting models with different combinations of triples higher spin fields: massive spin s with massless scalar and vector fields and with two vector fields; massless helicity λ with massless scalar and massive vector fields; two massive fields of spins s, 0 and massless scalar is also considered. Full article
(This article belongs to the Special Issue Physics and Symmetry Section: Feature Papers 2023)
Show Figures

Figure 1

26 pages, 395 KiB  
Article
Duality, Generalized Global Symmetries and Jet Space Isometries
by Athanasios Chatzistavrakidis, Georgios Karagiannis and Arash Ranjbar
Universe 2022, 8(1), 10; https://doi.org/10.3390/universe8010010 - 24 Dec 2021
Cited by 4 | Viewed by 2656
Abstract
We revisit universal features of duality in linear and nonlinear relativistic scalar and Abelian 1-form theories with single or multiple fields, which exhibit ordinary or generalized global symmetries. We show that such global symmetries can be interpreted as generalized Killing isometries on a [...] Read more.
We revisit universal features of duality in linear and nonlinear relativistic scalar and Abelian 1-form theories with single or multiple fields, which exhibit ordinary or generalized global symmetries. We show that such global symmetries can be interpreted as generalized Killing isometries on a suitable, possibly graded, target space of fields or its jet space when the theory contains higher derivatives. This is realized via a generalized sigma model perspective motivated from the fact that higher spin particles can be Nambu–Goldstone bosons of spontaneously broken generalized global symmetries. We work out in detail the 2D examples of a compact scalar and the massless Heisenberg pion fireball model and the 4D examples of Maxwell, Born–Infeld, and ModMax electrodynamics. In all cases we identify the ’t Hooft anomaly that obstructs the simultaneous gauging of both global symmetries and confirm the anomaly matching under duality. These results readily generalize to higher gauge theories for p-forms. For multifield theories, we discuss the transformation of couplings under duality as two sets of Buscher rules for even or odd differential forms. Full article
(This article belongs to the Special Issue Dualities and Geometry)
51 pages, 565 KiB  
Review
BRST and Superfield Formalism—A Review
by Loriano Bonora and Rudra Prakash Malik
Universe 2021, 7(8), 280; https://doi.org/10.3390/universe7080280 - 1 Aug 2021
Cited by 12 | Viewed by 2660
Abstract
This article, which is a review with substantial original material, is meant to offer a comprehensive description of the superfield representations of BRST and anti-BRST algebras and their applications to some field-theoretic topics. After a review of the superfield formalism for gauge theories, [...] Read more.
This article, which is a review with substantial original material, is meant to offer a comprehensive description of the superfield representations of BRST and anti-BRST algebras and their applications to some field-theoretic topics. After a review of the superfield formalism for gauge theories, we present the same formalism for gerbes and diffeomorphism invariant theories. The application to diffeomorphisms leads, in particular, to a horizontal Riemannian geometry in the superspace. We then illustrate the application to the description of consistent gauge anomalies and Wess–Zumino terms for which the formalism seems to be particularly tailor-made. The next subject covered is the higher spin YM-like theories and their anomalies. Finally, we show that the BRST superfield formalism applies as well to the N=1 super-YM theories formulated in the supersymmetric superspace, for the two formalisms go along with each other very well. Full article
(This article belongs to the Special Issue Gauge Theory, Strings and Supergravity)
14 pages, 296 KiB  
Review
Frame- and Metric-Like Higher-Spin Fermions
by Rakibur Rahman
Universe 2018, 4(2), 34; https://doi.org/10.3390/universe4020034 - 11 Feb 2018
Cited by 9 | Viewed by 3221
Abstract
Conventional descriptions of higher-spin fermionic gauge fields appear in two varieties: the Aragone–Deser–Vasiliev frame-like formulation and the Fang–Fronsdal metric-like formulation. We review, clarify and elaborate on some essential features of these two. For frame-like free fermions in Anti-de Sitter space, one can present [...] Read more.
Conventional descriptions of higher-spin fermionic gauge fields appear in two varieties: the Aragone–Deser–Vasiliev frame-like formulation and the Fang–Fronsdal metric-like formulation. We review, clarify and elaborate on some essential features of these two. For frame-like free fermions in Anti-de Sitter space, one can present a gauge-invariant Lagrangian description such that the constraints on the field and the gauge parameters mimic their flat-space counterparts. This simplifies the explicit demonstration of the equivalence of the two formulations at the free level. We comment on the subtleties that may arise in an interacting theory. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
26 pages, 861 KiB  
Article
Higher Spin Extension of Fefferman-Graham Construction
by Xavier Bekaert, Maxim Grigoriev and Evgeny Skvortsov
Universe 2018, 4(2), 17; https://doi.org/10.3390/universe4020017 - 29 Jan 2018
Cited by 32 | Viewed by 3893
Abstract
Fefferman-Graham ambient construction can be formulated as sp ( 2 ) -algebra relations on three Hamiltonian constraint functions on ambient space. This formulation admits a simple extension that leads to higher-spin fields, both conformal gauge fields and usual massless fields on anti-de Sitter [...] Read more.
Fefferman-Graham ambient construction can be formulated as sp ( 2 ) -algebra relations on three Hamiltonian constraint functions on ambient space. This formulation admits a simple extension that leads to higher-spin fields, both conformal gauge fields and usual massless fields on anti-de Sitter spacetime. For the bulk version of the system, we study its possible on-shell version which is formally consistent and reproduces conformal higher-spin fields on the boundary. Interpretation of the proposed on-shell version crucially depends on the choice of the functional class. Although the choice leading to fully interacting higher-spin theory in the bulk is not known, we demonstrate that the system has a vacuum solution describing general higher-spin flat backgrounds. Moreover, we propose a functional class such that the system describes propagation of higher-spin fields over any higher-spin flat background, reproducing all the structures that determine the known nonlinear higher-spin equations. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
53 pages, 879 KiB  
Article
The ABC of Higher-Spin AdS/CFT
by Simone Giombi, Igor R. Klebanov and Zhong Ming Tan
Universe 2018, 4(1), 18; https://doi.org/10.3390/universe4010018 - 19 Jan 2018
Cited by 34 | Viewed by 4169
Abstract
In recent literature, one-loop tests of the higher-spin AdS d + 1 /CFT d correspondences were carried out. Here, we extend these results to a more general set of theories in d > 2 . First, we consider the Type B higher spin [...] Read more.
In recent literature, one-loop tests of the higher-spin AdS d + 1 /CFT d correspondences were carried out. Here, we extend these results to a more general set of theories in d > 2 . First, we consider the Type B higher spin theories, which have been conjectured to be dual to CFTs consisting of the singlet sector of N free fermion fields. In addition to the case of N Dirac fermions, we carefully study the projections to Weyl, Majorana, symplectic and Majorana–Weyl fermions in the dimensions where they exist. Second, we explore theories involving elements of both Type A and Type B theories, which we call Type AB. Their spectrum includes fields of every half-integer spin, and they are expected to be related to the U ( N ) / O ( N ) singlet sector of the CFT of N free complex/real scalar and fermionic fields. Finally, we explore the Type C theories, which have been conjectured to be dual to the CFTs of p-form gauge fields, where p = d 2 1 . In most cases, we find that the free energies at O ( N 0 ) either vanish or give contributions proportional to the free-energy of a single free field in the conjectured dual CFT. Interpreting these non-vanishing values as shifts of the bulk coupling constant G N 1 / ( N k ) , we find the values k = 1 , 1 / 2 , 0 , 1 / 2 , 1 , 2 . Exceptions to this rule are the Type B and AB theories in odd d; for them, we find a mismatch between the bulk and boundary free energies that has a simple structure, but does not follow from a simple shift of the bulk coupling constant. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
35 pages, 395 KiB  
Review
On Exact Solutions and Perturbative Schemes in Higher Spin Theory
by Carlo Iazeolla, Ergin Sezgin and Per Sundell
Universe 2018, 4(1), 5; https://doi.org/10.3390/universe4010005 - 1 Jan 2018
Cited by 20 | Viewed by 3201
Abstract
We review various methods for finding exact solutions of higher spin theory in four dimensions, and survey the known exact solutions of (non)minimal Vasiliev’s equations. These include instanton-like and black hole-like solutions in (A)dS and Kleinian spacetimes. A perturbative construction of solutions with [...] Read more.
We review various methods for finding exact solutions of higher spin theory in four dimensions, and survey the known exact solutions of (non)minimal Vasiliev’s equations. These include instanton-like and black hole-like solutions in (A)dS and Kleinian spacetimes. A perturbative construction of solutions with the symmetries of a domain wall is also described. Furthermore, we review two proposed perturbative schemes: one based on perturbative treatment of the twistor space field equations followed by inverting Fronsdal kinetic terms using standard Green’s functions; and an alternative scheme based on solving the twistor space field equations exactly followed by introducing the spacetime dependence using perturbatively defined gauge functions. Motivated by the need to provide a higher spin invariant characterization of the exact solutions, aspects of a proposal for a geometric description of Vasiliev’s equation involving an infinite dimensional generalization of anti de Sitter space are revisited and improved. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
36 pages, 545 KiB  
Article
A Note on Rectangular Partially Massless Fields
by Thomas Basile
Universe 2018, 4(1), 4; https://doi.org/10.3390/universe4010004 - 1 Jan 2018
Cited by 8 | Viewed by 3241
Abstract
We study a class of non-unitary so ( 2 , d ) representations (for even values of d), describing mixed-symmetry partially massless fields which constitute natural candidates for defining higher-spin singletons of higher order. It is shown that this class of [...] Read more.
We study a class of non-unitary so ( 2 , d ) representations (for even values of d), describing mixed-symmetry partially massless fields which constitute natural candidates for defining higher-spin singletons of higher order. It is shown that this class of so ( 2 , d ) modules obeys of natural generalisation of a couple of defining properties of unitary higher-spin singletons. In particular, we find out that upon restriction to the subalgebra so ( 2 , d - 1 ) , these representations branch onto a sum of modules describing partially massless fields of various depths. Finally, their tensor product is worked out in the particular case of d = 4 , where the appearance of a variety of mixed-symmetry partially massless fields in this decomposition is observed. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
Show Figures

Figure 1

35 pages, 656 KiB  
Article
Exploring Free Matrix CFT Holographies at One-Loop
by Jin-Beom Bae, Euihun Joung and Shailesh Lal
Universe 2017, 3(4), 77; https://doi.org/10.3390/universe3040077 - 9 Nov 2017
Cited by 7 | Viewed by 3788
Abstract
We extend our recent study on the duality between stringy higher spin theories and free conformal field theories (CFTs) in the S U ( N ) adjoint representation to other matrix models, namely the free S O ( N ) and [...] Read more.
We extend our recent study on the duality between stringy higher spin theories and free conformal field theories (CFTs) in the S U ( N ) adjoint representation to other matrix models, namely the free S O ( N ) and S p ( N ) adjoint models as well as the free U ( N ) × U ( M ) bi-fundamental and O ( N ) × O ( M ) bi-vector models. After determining the spectrum of the theories in the planar limit by Polya counting, we compute the one loop vacuum energy and Casimir energy for their respective bulk duals by means of the Character Integral Representation of the Zeta Function (CIRZ) method, which we recently introduced. We also elaborate on possible ambiguities in the application of this method. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
Show Figures

Figure 1

24 pages, 338 KiB  
Article
Three Point Functions in Higher Spin AdS3 Holography with 1/N Corrections
by Yasuaki Hikida and Takahiro Uetoko
Universe 2017, 3(4), 70; https://doi.org/10.3390/universe3040070 - 9 Oct 2017
Cited by 9 | Viewed by 3368
Abstract
We examine three point functions with two scalar operators and a higher spin current in 2d W N minimal model to the next non-trivial order in 1 / N expansion. The minimal model was proposed to be dual to a 3d higher spin [...] Read more.
We examine three point functions with two scalar operators and a higher spin current in 2d W N minimal model to the next non-trivial order in 1 / N expansion. The minimal model was proposed to be dual to a 3d higher spin gauge theory, and 1 / N corrections should be interpreted as quantum effects in the dual gravity theory. We develop a simple and systematic method to obtain three point functions by decomposing four point functions of scalar operators with Virasoro conformal blocks. Applying the method, we reproduce known results at the leading order in 1 / N and obtain new ones at the next leading order. As confirmation, we check that our results satisfy relations among three point functions conjectured before. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
31 pages, 402 KiB  
Article
Higher Derivative Gravity and Conformal Gravity from Bimetric and Partially Massless Bimetric Theory
by Sayed Fawad Hassan, Angnis Schmidt-May and Mikael Von Strauss
Universe 2015, 1(2), 92-122; https://doi.org/10.3390/universe1020092 - 20 Jul 2015
Cited by 84 | Viewed by 5260
Abstract
In this paper, we establish the correspondence between ghost-free bimetric theory and a class of higher derivative gravity actions, including conformal gravity and new massive gravity. We also characterize the relation between the respective equations of motion and classical solutions. We illustrate that, [...] Read more.
In this paper, we establish the correspondence between ghost-free bimetric theory and a class of higher derivative gravity actions, including conformal gravity and new massive gravity. We also characterize the relation between the respective equations of motion and classical solutions. We illustrate that, in this framework, the spin-2 ghost of higher derivative gravity at the linear level is an artifact of the truncation to a four-derivative theory. The analysis also gives a relation between the proposed partially massless (PM) bimetric theory and conformal gravity, showing, in particular, the equivalence of their equations of motion at the four-derivative level. For the PM bimetric theory, this provides further evidence for the existence of an extra gauge symmetry and the associated loss of a propagating mode away from de Sitter backgrounds. The new symmetry is an extension of Weyl invariance, which may suggest the candidate PM bimetric theory as a possible ghost-free completion of conformal gravity. Full article
(This article belongs to the Special Issue Modified Gravity Cosmology: From Inflation to Dark Energy)
Back to TopTop