Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = high-temperature gas-cooled reactor (HTGR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1615 KiB  
Review
Economic Analysis of Nuclear Energy Cogeneration: A Comprehensive Review on Integrated Utilization
by Guobin Jia, Guifeng Zhu, Yang Zou, Yuwen Ma, Ye Dai, Jianhui Wu and Jian Tian
Energies 2025, 18(11), 2929; https://doi.org/10.3390/en18112929 - 3 Jun 2025
Viewed by 1076
Abstract
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of [...] Read more.
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of nuclear cogeneration as a cornerstone of low-carbon energy transitions. By categorizing applications based on temperature requirements (low: <250 °C, medium: 250–550 °C, high: >550 °C), the study highlights the adaptability of reactor technologies, including light water reactors (LWRs), high-temperature gas-cooled reactors (HTGRs), and molten salt reactors (MSRs), to sector-specific demands. Key findings reveal that nuclear cogeneration systems achieve thermal efficiencies exceeding 80% in low-temperature applications and reduce CO2 emissions by 1.5–2.5 million tons annually per reactor by displacing fossil fuel-based heat sources. Economic analyses emphasize the critical role of cost allocation methodologies, with exergy-based approaches reducing levelized costs by 18% in high-temperature applications. Policy instruments, such as carbon pricing, value-added tax (VAT) exemptions, and subsidized loans, enhance project viability, elevating net present values by 25–40% for district heating systems. Case studies from Finland, China, and Canada demonstrate operational successes, including 30% emission reductions in oil sands processing and hydrogen production costs as low as USD 3–5/kg via thermochemical cycles. Hybrid nuclear–renewable systems further stabilize energy supply, reducing the levelized cost of heat by 18%. The review underscores the necessity of integrating Generation IV reactors, thermal storage, and policy alignment to unlock nuclear cogeneration’s full potential in achieving global decarbonization and energy security goals. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

26 pages, 16194 KiB  
Article
Defect R-CNN: A Novel High-Precision Method for CT Image Defect Detection
by Zirou Jiang, Jintao Fu, Tianchen Zeng, Renjie Liu, Peng Cong, Jichen Miao and Yuewen Sun
Appl. Sci. 2025, 15(9), 4825; https://doi.org/10.3390/app15094825 - 26 Apr 2025
Viewed by 958
Abstract
Defect detection in industrial computed tomography (CT) images remains challenging due to small defect sizes, low contrast, and noise interference. To address these issues, we propose Defect R-CNN, a novel detection framework designed to capture the structural characteristics of defects in CT images. [...] Read more.
Defect detection in industrial computed tomography (CT) images remains challenging due to small defect sizes, low contrast, and noise interference. To address these issues, we propose Defect R-CNN, a novel detection framework designed to capture the structural characteristics of defects in CT images. The model incorporates an edge-prior convolutional block (EPCB) that guides to focus on extracting edge information, particularly along defect boundaries, improving both localization and classification. Additionally, we introduce a custom backbone, edge-prior net (EP-Net), to capture features across multiple spatial scales, enhancing the recognition of subtle and complex defect patterns. During inference, the multi-branch structure is consolidated into a single-branch equivalent to accelerate detection without compromising accuracy. Experiments conducted on a CT dataset of nuclear graphite components from a high-temperature gas-cooled reactor (HTGR) demonstrate that Defect R-CNN achieves average precision (AP) exceeding 0.9 for all defect types. Moreover, the model attains mean average precision (mAP) scores of 0.983 for bounding boxes (mAP-bbox) and 0.956 for segmentation masks (mAP-segm), surpassing established methods such as Faster R-CNN, Mask R-CNN, Efficient Net, RT-DETR, and YOLOv11. The inference speed reaches 76.2 frames per second (FPS), representing an optimal balance between accuracy and efficiency. This study demonstrates that Defect R-CNN offers a robust and reliable approach for industrial scenarios that require high-precision and real-time defect detection. Full article
(This article belongs to the Special Issue Advances in Image Recognition and Processing Technologies)
Show Figures

Figure 1

17 pages, 3222 KiB  
Article
An Improved Dynamic Matrix Control Algorithm and Its Application in Cold Helium Temperature Control of a Modular High-Temperature Gas-Cooled Reactor (mHTGR)
by Zhendong Wu, Zhe Dong and Jilan Zhang
Energies 2025, 18(9), 2145; https://doi.org/10.3390/en18092145 - 22 Apr 2025
Viewed by 426
Abstract
As a model predictive control (MPC) technique, dynamic matrix control (DMC) has gained widespread industrial adoption due to its straightforward model construction and clear physical interpretation. However, its effectiveness relies on the accuracy of the predictive model, where measurement inaccuracies or excessive noise [...] Read more.
As a model predictive control (MPC) technique, dynamic matrix control (DMC) has gained widespread industrial adoption due to its straightforward model construction and clear physical interpretation. However, its effectiveness relies on the accuracy of the predictive model, where measurement inaccuracies or excessive noise in step-response coefficients may significantly degrade control performance. This study enhances robustness of DMC by implementing finite impulse response (FIR) filters on measured step-response coefficients while providing theoretical proof of its stability. The improved algorithm is applied to cold helium temperature control of the modular High-Temperature Gas-Cooled Reactor (mHTGR). A cascade control structure is adopted, where the inner loop uses a PID controller to ensure system stability, while the outer loop uses DMC to adjust the setpoint of the hot helium temperature, thereby controlling the cold helium temperature. Numerical simulation results demonstrate significant improvements in temperature control performance and enhanced robustness of the modified DMC method. Full article
(This article belongs to the Special Issue New Challenges in Safety Analysis of Nuclear Reactors)
Show Figures

Figure 1

19 pages, 2421 KiB  
Article
Economic Feasibility of Hydrogen Generation Using HTR-PM Technology in Saudi Arabia
by Saud A. Al-Shikh, Essam A. Al-Ammar and Abdullah S. Alomari
Sustainability 2025, 17(4), 1730; https://doi.org/10.3390/su17041730 - 19 Feb 2025
Cited by 3 | Viewed by 1409
Abstract
The global push for clean hydrogen production has identified nuclear energy, particularly high-temperature gas-cooled reactors (HTGRs), as a promising solution due to their ability to provide high-temperature heat. This study conducted a techno-economic analysis of hydrogen production in Saudi Arabia using the pebble [...] Read more.
The global push for clean hydrogen production has identified nuclear energy, particularly high-temperature gas-cooled reactors (HTGRs), as a promising solution due to their ability to provide high-temperature heat. This study conducted a techno-economic analysis of hydrogen production in Saudi Arabia using the pebble bed modular reactor (HTR-PM), focusing on two methods: high-temperature steam electrolysis (HTSE) and the sulfur–iodine (SI) thermochemical cycle. The Hydrogen Economic Evaluation Program (HEEP) was used to assess the economic viability of both methods, considering key production factors such as the discount rate, nuclear power plant (NPP) capital cost, and hydrogen plant efficiency. The results show that the SI cycle achieves a lower levelized cost of hydrogen (LCOH) at USD 1.22/kg H2 compared to HTSE at USD 1.47/kg H2, primarily due to higher thermal efficiency. Nonetheless, HTSE offers simpler system integration. Sensitivity analysis reveals that variations in the discount rate and NPP capital costs significantly impact both production methods, while hydrogen plant efficiency is crucial in determining overall economics. The findings contribute to the broader discourse on sustainable hydrogen production technologies by highlighting the potential of nuclear-driven methods to meet global decarbonization goals. The paper concludes that the HTR-PM offers a viable pathway for large-scale hydrogen production in Saudi Arabia, aligning with the Vision 2030 objectives. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

29 pages, 9515 KiB  
Article
Analysis of Gas-Steam CHP Plants Without and with Heat Accumulator and HTGR Reactor
by Ryszard Bartnik, Anna Hnydiuk-Stefan and Zbigniew Buryn
Energies 2024, 17(22), 5702; https://doi.org/10.3390/en17225702 - 14 Nov 2024
Viewed by 1083
Abstract
This study analyzes the thermodynamic and economic viability of modified high-temperature gas-cooled reactor (HTGR) gas-steam combined heat and power (CHP) systems compared to conventional CHP plants. The research addresses the critical need for efficient and sustainable energy production methods. Using comprehensive thermodynamic modeling [...] Read more.
This study analyzes the thermodynamic and economic viability of modified high-temperature gas-cooled reactor (HTGR) gas-steam combined heat and power (CHP) systems compared to conventional CHP plants. The research addresses the critical need for efficient and sustainable energy production methods. Using comprehensive thermodynamic modeling and economic analysis, the study evaluates system performance under various operating conditions. Key findings reveal that modified CHP plants with HTGR and turboexpanders (TEs) demonstrate significantly higher efficiency and lower heat generation costs compared to conventional gas turbine (GT) CHP plants, despite higher initial capital investments. The modified systems achieve electricity generation efficiencies up to 48%, surpassing traditional nuclear power plants. The absence of CO2 emissions and lower fuel costs in HTGR systems contribute to their economic advantage. This research provides novel insights into the potential of HTGR technology in CHP applications, offering a promising solution for future energy systems. The study’s originality lies in its comprehensive comparison of conventional and modified CHP systems, considering both thermodynamic and economic aspects, which has not been extensively explored in existing literature. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

13 pages, 5092 KiB  
Article
An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions
by Yosuke Nishimura, Anna Gubarevich, Katsumi Yoshida and Koji Okamoto
Energies 2024, 17(21), 5366; https://doi.org/10.3390/en17215366 - 28 Oct 2024
Cited by 1 | Viewed by 1173
Abstract
Preventing severe corrosion incidents caused by air ingress accidents in high-temperature gas-cooled reactors (HTGRs) while improving heat removal efficiency from the core is of paramount importance. To enhance both safety and efficiency, a sleeveless silicon carbide (SiC)-matrix fuel compact has been proposed. This [...] Read more.
Preventing severe corrosion incidents caused by air ingress accidents in high-temperature gas-cooled reactors (HTGRs) while improving heat removal efficiency from the core is of paramount importance. To enhance both safety and efficiency, a sleeveless silicon carbide (SiC)-matrix fuel compact has been proposed. This study evaluates the 10-hour oxidation of reaction-sintered SiC (RS-SiC)-matrix fuel compact under the conditions of an air ingress accident within the temperature range of 1000 to 1400 °C. The oxidation tests were conducted in a stagnant air environment without flow. As a result, it is demonstrated that RS-SiC exhibits exceptional resistance to air oxidation up to 1400 °C, as shown by the thermogravimetric analysis (TGA), with minimal mass loss due to the oxidation of free carbon. Scanning electron microscopy with energy-dispersive X-Ray spectroscopy (SEM–EDX) analysis reveals that the morphology and thickness of the SiO2 layer formed on the RS-SiC surface vary with temperature. At 1400 °C, uniform oxide layer thickness ranging from 1.59 to 4.10 μm and localized nodule-like oxide formations of approximately 10 μm are observed. In contrast, at 1000–1200 °C, thinner oxide layers are identified, indicating that oxide growth accelerates at higher temperatures. The oxidation rates measured provide insights into the mechanisms of oxide growth. Full article
(This article belongs to the Special Issue New Trends and Challenges for Nuclear Fuels)
Show Figures

Figure 1

26 pages, 3131 KiB  
Article
Study on Conventional Island Retrofit Strategies for Converting Coal-Fired Power Plants to Nuclear Power Stations in China
by Bixiong Luo, Li Zhang, Wei Li, Xinwei Zhu, Yongjian Ye and Yanlin Su
Energies 2024, 17(12), 2912; https://doi.org/10.3390/en17122912 - 13 Jun 2024
Cited by 6 | Viewed by 1883
Abstract
The conversion of coal-fired power plants to nuclear power stations is a potential method for decarbonizing coal power and offers a pathway for low-carbon development in China’s power industry. This paper focuses on retrofitting China’s coastal coal-fired power stations and compares the potential [...] Read more.
The conversion of coal-fired power plants to nuclear power stations is a potential method for decarbonizing coal power and offers a pathway for low-carbon development in China’s power industry. This paper focuses on retrofitting China’s coastal coal-fired power stations and compares the potential nuclear reactor technologies for the retrofit: China’s mainstream pressurized water reactor and the commercially operated fourth-generation high-temperature gas-cooled reactor (HTGR). The analysis compares the degree of matching between the two technologies and coal-fired power stations in terms of unit capacity, thermal system parameters, unit speed, structural dimensions, and weight, which significantly impact the retrofit scheme. The results indicate that HTGR is more compatible with coal-fired power plants and is recommended as the type of nuclear reactor technology to be retrofitted. The study selected the 210 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) as the reactor technology for retrofitting a typical 300 MW class subcritical coal-fired unit. Based on the concept of subcritical parameters upgrading, the potential analysis and strategy study of retrofit is carried out in terms of the turbine, the main heat exchange equipment, the main pumps, and the main thermal system pipelines in the conventional island. The results indicate that the conventional island of the HTR-PM nuclear power plant has significant potential for retrofitting, which can be a crucial research direction for nuclear retrofitting of coal-fired power plants. Full article
(This article belongs to the Special Issue Repurposing Coal Power Plants with Nuclear Power Plants)
Show Figures

Figure 1

27 pages, 1121 KiB  
Article
Energy, Exergy and Thermoeconomic Analyses on Hydrogen Production Systems Using High-Temperature Gas-Cooled and Water-Cooled Nuclear Reactors
by Taehun Kim, Won-Yong Lee, Seok-Ho Seo, Si-Doek Oh and Ho-Young Kwak
Energies 2023, 16(24), 8090; https://doi.org/10.3390/en16248090 - 15 Dec 2023
Cited by 1 | Viewed by 1617
Abstract
The use of nuclear energy is inevitable to reduce the dependence on fossil fuels in the energy sector. High-temperature gas-cooled reactors (HTGRs) are considered as a system suitable for the purpose of reducing the use of fossil fuels. Furthermore, eco-friendly mass production of [...] Read more.
The use of nuclear energy is inevitable to reduce the dependence on fossil fuels in the energy sector. High-temperature gas-cooled reactors (HTGRs) are considered as a system suitable for the purpose of reducing the use of fossil fuels. Furthermore, eco-friendly mass production of hydrogen is crucial because hydrogen is emerging as a next-generation energy carrier. The unit cost of hydrogen production by the levelized cost of energy (LCOE) method varies widely depending on the energy source and system configuration. In this study, energy, exergy, and thermoeconomic analyses were performed on the hydrogen production system using the HTGR and high-temperature water-cooled nuclear reactor (HTWR) to calculate reasonable unit cost of the hydrogen produced using a thermoeconomic method called modified production structure analysis (MOPSA). A flowsheet analysis was performed to confirm the energy conservation in each component. The electricity generated from the 600 MW HTGR system was used to produce 1.28 kmol/s of hydrogen by electrolysis to split hot water vapor. Meanwhile, 515 MW of heat from the 600 MW HTWR was used to produce 8.10 kmol/s of hydrogen through steam reforming, and 83.6 MW of electricity produced by the steam turbine was used for grid power. The estimated unit cost of hydrogen from HTGR is approximately USD 35.6/GJ with an initial investment cost of USD 2.6 billion. If the unit cost of natural gas is USD 10/GJ, and the carbon tax is USD 0.08/kg of carbon dioxide, the unit cost of hydrogen produced from HTWR is approximately USD 13.92/GJ with initial investment of USD 2.32 billion. The unit cost of the hydrogen produced in the scaled-down plant was also considered. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

14 pages, 4280 KiB  
Article
Research on Initiating Events Analysis of Small Helium-Xenon Gas Cooled Nuclear Reactor
by Jun Zhou, Jianhui Wu, Yong Cui, Hongkai Zhao, Chunyan Zou and Jingen Chen
Energies 2023, 16(19), 6769; https://doi.org/10.3390/en16196769 - 22 Sep 2023
Cited by 5 | Viewed by 1673
Abstract
Initiating event analysis is an essential prerequisite of conducting probabilistic safety assessment for nuclear reactors, which plays an important role in improving the core design, identifying fault, and guiding operation. In order to determine the initiating event list of SIMONS (Small Innovative helium-xenon [...] Read more.
Initiating event analysis is an essential prerequisite of conducting probabilistic safety assessment for nuclear reactors, which plays an important role in improving the core design, identifying fault, and guiding operation. In order to determine the initiating event list of SIMONS (Small Innovative helium-xenon cooled Mobile Nuclear power System), preliminary researches on the initial event of SIMONS were carried out using the MLD (Main Logic Diagram) analysis method and referring to the initial event list and initial event analysis theory of other nuclear reactors such as HTGR (High Temperature Gas-cooled Reactor), MSR (Molten Salt Reactor), and PWR (Pressurized water reactor). With employing these methods, a total of 31 initial events are identified for SIMONS based on its latest conceptual design. These initial events are then divided into six groups according to the accident types, which are core heat removal increase, core heat removal decrease, abnormal reactivity and power distribution, pipeline crevasse and equipment leakage, anticipated transients without scram, and disasters (internal and external). The obtained results can provide a theoretical basis for the further safety analysis of SIMONS. Full article
(This article belongs to the Special Issue New Advances and Novel Technologies in the Nuclear Industry)
Show Figures

Figure 1

13 pages, 4644 KiB  
Article
A Comprehensive Situation Awareness Measurement Method for Analyzing the Operators’ Situation Awareness of Multi-Module High Temperature Gas-Cooled Reactor Plants
by Runfa Miao, Qianqian Jia, Duo Li and Zhe Dong
Energies 2023, 16(15), 5601; https://doi.org/10.3390/en16155601 - 25 Jul 2023
Cited by 2 | Viewed by 1500
Abstract
For multi-modular nuclear power plants under the scheme of multiple nuclear steam supply system (NSSS) modules driving a single steam turbine, the NSSS modules are coupled tightly with each other by the common turbine, giving more complex normal operation with respect to the [...] Read more.
For multi-modular nuclear power plants under the scheme of multiple nuclear steam supply system (NSSS) modules driving a single steam turbine, the NSSS modules are coupled tightly with each other by the common turbine, giving more complex normal operation with respect to the single-modular plants. To limit the operation cost of multi-modular plants, one operator is assigned to monitor and control two or more modules, whose feasibility should be verified. Combined with the characteristics of multi-module control rooms and multi-module running tasks, this paper designs a comprehensive situation awareness measurement method that combines SART, NASA-TLX (NASA Task Load Index), and eye movement tracking methods. The SART, NASA-TLX, and gaze entropy are adopted to measure the operators’ SA, and a series of accident handling experiments are performed on a full-scale simulator to gain enough data for analysis. The operators’ eye trajectories on the human–machine interface (HMI) during the experiments are all recorded for calculating the gaze entropy. Both the SART and NASA-TLX scales are filled by the operators after finishing the experiments. The experiment results show that the difference in operators’ workload and SA amongst all the experimental scenarios is limited, even between the toughest and tenderest scenarios, indicating the feasibility of one operator driving two NSSS modules simultaneously. Full article
(This article belongs to the Special Issue Nuclear Power Instrumentation and Control)
Show Figures

Figure 1

16 pages, 7627 KiB  
Article
Hybrid Surrogate Model-Based Multi-Objective Lightweight Optimization of Spherical Fuel Element Canister
by Yuchen Hao, Jinhua Wang, Musen Lin, Menghang Gong, Wei Zhang, Bin Wu, Tao Ma, Haitao Wang, Bing Liu and Yue Li
Energies 2023, 16(8), 3587; https://doi.org/10.3390/en16083587 - 21 Apr 2023
Cited by 2 | Viewed by 2002
Abstract
A number of canisters need to be lightweight designed to store the spherical fuel elements (SFE) used in high-temperature gas-cooled reactors (HTGR). The main challenge for engineering is pursuing high-accuracy and high-efficiency optimization simultaneously. Accordingly, a hybrid surrogate model-based multi-objective optimization method with [...] Read more.
A number of canisters need to be lightweight designed to store the spherical fuel elements (SFE) used in high-temperature gas-cooled reactors (HTGR). The main challenge for engineering is pursuing high-accuracy and high-efficiency optimization simultaneously. Accordingly, a hybrid surrogate model-based multi-objective optimization method with the numerical method for the lightweight and safe design of the SFE canister is proposed. To be specific, the drop analysis model of the SFE canister is firstly established where the finite element method—discrete element method (FEM–DEM) coupled method is integrated to simulate the interaction force between the SFE and canister. Through simulation, the design variables, optimization objectives, and constraints are identified. Then the hybrid radial basis function—response surface method (RBF–RSM) surrogate method is carried out to approximate and simplify the accurate numerical model. A non-dominated sorting genetic algorithm (NSGA-II) is used for resolving this multi-objective model. Optimal design is validated using comprehensive comparison, and the reduction of weight and maximum strain can be up to 2.46% and 44.65%, respectively. High-accuracy simulation with high-efficiency optimization is successfully demonstrated to perform the lightweight design on nuclear facilities. Full article
(This article belongs to the Topic Nuclear Energy Systems)
Show Figures

Figure 1

19 pages, 2920 KiB  
Article
Simultaneous Solution of Helical Coiled Once-Through Steam Generator with High-Speed Water Property Library
by Yingjie Wu, Zhuo Jiang, Han Zhang, Lixun Liu, Huanran Tang, Jiong Guo and Fu Li
Energies 2023, 16(4), 1627; https://doi.org/10.3390/en16041627 - 6 Feb 2023
Cited by 1 | Viewed by 1837
Abstract
Efficient simulation of the helical coiled once-through steam generator (H-OTSG) is crucial in the design and safety analysis of the high-temperature gas-cooled reactor (HTGR). The physical property and phase transformation of water in the steam generator brings great challenges during simulation. The water [...] Read more.
Efficient simulation of the helical coiled once-through steam generator (H-OTSG) is crucial in the design and safety analysis of the high-temperature gas-cooled reactor (HTGR). The physical property and phase transformation of water in the steam generator brings great challenges during simulation. The water properties calculation routine occupies a large part of the computational time in the steam generator solution process. Thus, a thermohydraulic property library is developed based on the IAPWS-IF97 formulation in this work to reduce the computational cost. Here the formulation adopts the backward equation method to avoid iterations in thermodynamic property calculation. Moreover, two Newton-method-based simultaneous solutions are implemented as implicitly nonlinear solvers, including Jacobian-Free Newton–Krylov (JFNK) and Newton–Krylov (NK) methods, due to its excellent computational performance. These simultaneous solution algorithms are combined with the developed water property library to simulate the H-OTSG efficiently. The numerical analysis is performed based on the transient and steady-state cases of the HTR-10 steam generator. Successful simulations of HTR-10 steam generator cases demonstrate the capability of the newly developed method. Full article
Show Figures

Figure 1

18 pages, 11925 KiB  
Article
The Influence of High-Temperature Helium and the Amount of Revert Material on the Material Properties of Inconel 738
by Daniela Marušáková, Cinthia Antunes Corrêa, Claudia Aparicio, Ondřej Libera, Jan Berka, Monika Vilémová and Petra Gávelová
Coatings 2023, 13(1), 45; https://doi.org/10.3390/coatings13010045 - 27 Dec 2022
Cited by 7 | Viewed by 2850
Abstract
Nickel-based alloys are considered promising materials for primary circuits of high-temperature gas reactors (HTGRs), specifically for gas turbines. The primary helium (He) coolant in the gas-turbine-based HTGRs is expected to reach temperatures of up to 900 °C; therefore, the selected materials should adequately [...] Read more.
Nickel-based alloys are considered promising materials for primary circuits of high-temperature gas reactors (HTGRs), specifically for gas turbines. The primary helium (He) coolant in the gas-turbine-based HTGRs is expected to reach temperatures of up to 900 °C; therefore, the selected materials should adequately perform over a long service life at such an environment. A promising manufacturing method in the production of reactor components is precision casting, where the content of revert (recyclate) material in the alloy differs and can influence the material behavior. In our study, Inconel alloy 738 was manufactured by casting 50% and 100% of revert material and tested in HTGR conditions to examine the influence of helium coolant on the material’s properties. Tensile specimens were exposed at 900 °C for 1000 h in helium containing a specified amount of gaseous impurities. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), in combination with X-ray diffraction (XRD) and nano-, microhardness methods, were used for material characterization after performing the tensile tests at room temperature. The presence of three types of layers was observed: a thin layer formed by aluminum and chromium oxides on the surface; non-uniform surface oxides Ti3O5 with inner (Al,Cr)2O3; and the inner fine-grained Inconel Cr-enriched phase (approx. 10–20 µm below the surface), which can act as a protective surface layer. Mechanical properties of both revert materials decreased after exposure to HTGR conditions but did not show a significant difference as a result of the content of the revert material. The increase of nano-hardness in line profiles throughout the specimen’s cross-section was observed locally at the surface oxides and in the precipitates and grain boundaries. After exposure, Rp0.2 values decreased by 20% and 17.7%, and Rm values by 12.3% and 20.8% in samples with 50 and 100% revert content, respectively. Furthermore, a decrease in microhardness values (HV0.1) was detected by 4.98% in longitude and 5.80% in cross-section for samples with 50% revert material and by 3.85% in longitude and 7.86% in cross-section for samples with 100% revert material. It can be concluded that both revert materials have similar corrosion resistance in HTGR conditions. The presented results complement the knowledge about the degradation of alloys in the coolant environment of advanced gas-cooled reactors. Full article
Show Figures

Figure 1

17 pages, 8776 KiB  
Article
Computational Fluid Dynamics Modeling of Single Isothermal and Non-Isothermal Impinging Jets in a Scaled-Down High-Temperature Gas-Cooled Reactor Facility
by Anas M. Alwafi, Salman M. Alshehri and Salman M. Alzahrani
Processes 2023, 11(1), 46; https://doi.org/10.3390/pr11010046 - 25 Dec 2022
Cited by 4 | Viewed by 1837
Abstract
In the current work, the flow characteristics of single isothermal and non-isothermal jets discharging into the upper plenum of a 1/16th scaled-down high-temperature gas-cooled reactor (HTGR) facility were studied. ANSYS Fluent simulations were carried out in the central plane of the jet water [...] Read more.
In the current work, the flow characteristics of single isothermal and non-isothermal jets discharging into the upper plenum of a 1/16th scaled-down high-temperature gas-cooled reactor (HTGR) facility were studied. ANSYS Fluent simulations were carried out in the central plane of the jet water flow and the upper plenum for different Reynolds numbers (Re) ranging from 3413 to 12,819. Then, the statistical jet water flow characteristics, such as the mean velocity, root-mean-square fluctuating velocity, Reynolds stress, and the mean temperature in the upper plenum, were computed and presented. The current study’s results showed that the flow maximum velocity occurred far from the jet inlet. Finally, the temperature profiles were plotted, and it was found that the maximum temperature of the flow occurred close to the plume inlet and after that decreased downstream. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

12 pages, 3266 KiB  
Article
Uncertainty Propagation of Fission Product Yields from Uranium and Plutonium in Pebble-Bed HTGR Burnup Calculation
by Menglei Cui, Yizhen Wang, Jiong Guo, Han Zhang and Fu Li
Energies 2022, 15(22), 8369; https://doi.org/10.3390/en15228369 - 9 Nov 2022
Cited by 4 | Viewed by 1912
Abstract
Quantifying fission product yield uncertainty contribution to reactor burnup calculation is an important aspect of pebble-bed High Temperature Gas-cooled Reactor (pebble-bed HTGR) uncertainty analysis. In this work, uncertainty propagation of fission product yield to pebble-bed HTGR burnup calculation is conducted. Uncertainty of fission [...] Read more.
Quantifying fission product yield uncertainty contribution to reactor burnup calculation is an important aspect of pebble-bed High Temperature Gas-cooled Reactor (pebble-bed HTGR) uncertainty analysis. In this work, uncertainty propagation of fission product yield to pebble-bed HTGR burnup calculation is conducted. Uncertainty of fission product yields from four fissile isotopes, namely 233U, 235U, 239Pu and 241Pu, are considered. The stochastic sampling-based uncertainty analysis method is adopted and fission product yield covariance matrices are estimated from ENDF/B-VII.1. The covariance matrix for each fissile actinide is estimated based on the Bayesian method and fission product yields are assigned with log-normal distribution in the sampling process with the Latin Hypercube Sampling (LHS) method. Since the fission fraction from 239Pu plays an important role in fissions of fuels with high burnup value in pebble-bed HTGR, the fission product yield uncertainty contribution from 239Pu is highlighted in this work. The result shows that, in the burnup equilibrium state of pebble-bed HTGR, fission product yield uncertainty contributions from 235U and 239Pu to relative uncertainty of keff are 0.027% and 0.026%, respectively. The overall uncertainty contribution from four fissile isotopes (233U, 235U, 239Pu and 241Pu) to relative uncertainty of equilibrium core keff is 0.038%. Furthermore, fission product yield uncertainty has an important contribution to the nuclide density uncertainty of fission products. The most relative uncertainty, 10.82%, is observed in 109Ag contributed from the fission product yield uncertainty of 239Pu at the burnup equilibrium state. This indicates the uncertainty contribution from the fission product yield of 239Pu cannot be neglected in pebble-bed HTGR burnup uncertainty analysis. Full article
(This article belongs to the Special Issue Mathematics and Computational Methods in Nuclear Energy Technology)
Show Figures

Figure 1

Back to TopTop