Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = high-resolution aerosol mass spectrometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2390 KiB  
Article
Examination of the Influence of Alternative Fuels on Particulate Matter Properties Emitted from a Non-Proprietary Combustor
by Liam D. Smith, Joseph Harper, Eliot Durand, Andrew Crayford, Mark Johnson, Hugh Coe and Paul I. Williams
Atmosphere 2024, 15(3), 308; https://doi.org/10.3390/atmos15030308 - 29 Feb 2024
Viewed by 1657
Abstract
The aviation sector, like most other sectors, is moving towards becoming net zero. In the medium to long term, this will mean an increase in the use of sustainable aviation fuels. Research exists on the impact of fuel composition on non-volatile particulate matter [...] Read more.
The aviation sector, like most other sectors, is moving towards becoming net zero. In the medium to long term, this will mean an increase in the use of sustainable aviation fuels. Research exists on the impact of fuel composition on non-volatile particulate matter (nvPM) emissions. However, there is more sparsity when considering the impact on volatile particulate matter (vPM) emissions. Here, nine different fuels were tested using an open-source design combustor rig. An aerosol mass spectrometer (AMS) was used to examine the mass-loading and composition of vPM, with a simple linear regression algorithm used to compare relative mass spectrum similarity. The diaromatic, cycloalkane and aromatic contents of the fuels were observed to correlate with the measured total number concentration and nvPM mass concentrations, resulting in an inverse correlation with increasing hydrogen content. The impacts of fuel properties on other physical properties within the combustion process and how they might impact the particulate matter (PM) are considered for future research. Unlike previous studies, fuel had a very limited impact on the organic aerosol’s composition at the combustor exit measurement location. Using a novel combination of Positive Matrix Factorization (PMF) and high-resolution AMS analysis, new insight has been provided into the organic composition. Both the alkane organic aerosol (AlkOA) and quenched organic aerosol (QOA) factors contained CnH2n+1, CnH2n−1 and CnH2n ion series, implying alkanes and alkenes in both, and approximately 12% oxygenated species in the QOA factor. These results highlight the emerging differences in the vPM compositional data observed between combustor rigs and full engines. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

14 pages, 3865 KiB  
Article
Differences in Secondary Organic Aerosol Formation from α-Pinene Photooxidation in a Chamber with Purified Air and Ambient Air as Matrices: Preliminary Results
by Xinyi Li, Zhuoyue Ren, Xiangyu Zhang, Xiaodie Pang, Wei Song, Yanli Zhang and Xinming Wang
Atmosphere 2024, 15(2), 204; https://doi.org/10.3390/atmos15020204 - 6 Feb 2024
Cited by 2 | Viewed by 1877
Abstract
α-Pinene is a biogenic volatile organic compound (BVOC) that significantly contributes to secondary organic aerosols (SOA) in the atmosphere due to its high emission rate, reactivity, and SOA yield. However, the SOA yield measured in chamber studies from α-pinene photooxidation is limited in [...] Read more.
α-Pinene is a biogenic volatile organic compound (BVOC) that significantly contributes to secondary organic aerosols (SOA) in the atmosphere due to its high emission rate, reactivity, and SOA yield. However, the SOA yield measured in chamber studies from α-pinene photooxidation is limited in a purified air matrix. Assessing SOA formation from α-pinene photooxidation in real urban ambient air based on studies conducted in purified air matrices may be subject to uncertainties. In this study, α-pinene photooxidation and SOA yield were investigated in a smog chamber in the presence of NO and SO2 under purified air and ambient air matrices. With the accumulation of ozone (O3) during the photooxidation, an increasing part of α-pinene was consumed by O3 and finally nearly half of the α-pinene was oxidized by O3, facilitating the production of highly oxidized organic molecules and thereby SOA formation. Although the ambient air we introduced as matrix air was largely clean, with initial organic aerosol mass concentrations of ~1.5 μg m−3, the α-pinene SOA yield in the ambient air matrix was 42.3 ± 5.3%, still higher than that of 32.4 ± 0.4% in the purified air matrix. The chemical characterization of SOA by the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) revealed that CxHy accounted for 53.7 ± 1.1% of the total signal in the ambient air matrix experiments, higher than 48.1 ± 0.3% in the purified air, while CxHyO and CxHyO>1 together constituted 45.0 ± 0.9% in the ambient air matrix, lower than 50.1 ± 1.0% in the purified air. The O:C ratio in the ambient air matrix experiments was 0.41 ± 0.01, lower than 0.46 ± 0.01 in the purified air. The higher SOA yield of α-pinene in the ambient air matrix compared to that in the purified air matrix was partly due to the presence of initial aerosols in the ambient air, which facilitated the low volatile organic compounds produced from photochemical oxidation to enter the aerosol phase through gas-particle partitioning. The in-situ aerosol acidity calculated by the ISORROPIA-II model in the ambient air matrix experiments was approximately six times higher than that in purified air, and the higher SOA yield in the ambient air matrix experiments might also be attributed to acid-catalyzed SOA formation. Full article
(This article belongs to the Special Issue Haze and Related Aerosol Air Pollution in Remote and Urban Areas)
Show Figures

Figure 1

19 pages, 2571 KiB  
Article
Characteristics and Oxidative Potential of Ambient PM2.5 in the Yangtze River Delta Region: Pollution Level and Source Apportionment
by Yaojia Cui, Longwei Zhu, Hui Wang, Zhuzi Zhao, Shuaishuai Ma and Zhaolian Ye
Atmosphere 2023, 14(3), 425; https://doi.org/10.3390/atmos14030425 - 21 Feb 2023
Cited by 7 | Viewed by 2463
Abstract
Fine particulate matter (PM2.5) is a major contributor to the degree of air pollution, and it is associated with a range of adverse health impacts. Moreover, the oxidative potential (OP, as a tracer of oxidative stress) of PM2.5 has been [...] Read more.
Fine particulate matter (PM2.5) is a major contributor to the degree of air pollution, and it is associated with a range of adverse health impacts. Moreover, the oxidative potential (OP, as a tracer of oxidative stress) of PM2.5 has been thought to be a possible determinant of its health impact. In this study, the OP of 136 fine aerosol filter samples collected in Changzhou in two seasons (spring and summer) were determined using a dithiothreitol (DTT) assay. Source apportionments of the PM2.5 and DTT activity were further performed. Our results showed that the daily average ± standard deviation of the DTTv (volume-normalized DTT activity) in the PM2.5 was 1.16 ± 0.58 nmol/min/m3 and 0.85 ± 0.16 nmol/min/m3 in the spring and summer, respectively, and the DTTm (mass-normalized DTT activity) was 13.56 ± 5.45 pmol/min/μg and 19.97 ± 6.54 pmol/min/μg in the spring and summer, respectively. The DTTv was higher in the spring compared to the summer while the opposite was true for the DTTm. Most of the detected components (including the organic component, element component, NH4+, Mn, Cu, Zn, etc.) exhibited a moderately positive correlation with the DTTv, but the opposite was found with the DTTm. An aerodyne high-resolution aerosol mass spectrometer (HP-AMS) was deployed to probe the chemical properties of the water-soluble organic matter (WSOA). Positive matrix factorization (PMF) coupled with multiple linear regression was used to obtain the relative source contributions to the DTT activity for the WSOA in the PM2.5. The results showed that the sensitivity sequences of the DTTv to the WSOA sources were oxygenated organic aerosol (OOA) > biomass burning OA (BBOA) > hydrocarbon-like OA (HOA) in the spring and HOA > nitrogen-enriched OA (NOA) > OOA in the summer. The PMF suggested the highest contribution from traffic emissions to the DTTv of the PM2.5 in both seasons. Our findings point to the importance of both organic components from secondary formation and transition metals to adverse health effects in this region. This study can provide an important reference for adopting appropriate public health policies regarding the detrimental outcomes of exposure to PM2.5. Full article
(This article belongs to the Special Issue Air Pollution, Air Quality and Human Health)
Show Figures

Figure 1

15 pages, 3100 KiB  
Article
Seasonal Variation of Aerosol Composition and Sources of Water-Soluble Organic Carbon in an Eastern City of China
by Jiameng Li, Linghong Chen, Zhier Bao, Xin Zhang, Huifeng Xu, Xiang Gao and Kefa Cen
Atmosphere 2022, 13(12), 1968; https://doi.org/10.3390/atmos13121968 - 25 Nov 2022
Viewed by 2048
Abstract
The mitigation of aerosol pollution is a great challenge in many cities in China, due to the complex sources and formation mechanism of particulate matter (PM) in different seasons. To understand the particular features of pollution in China and formulate different targeted policies, [...] Read more.
The mitigation of aerosol pollution is a great challenge in many cities in China, due to the complex sources and formation mechanism of particulate matter (PM) in different seasons. To understand the particular features of pollution in China and formulate different targeted policies, aerosol samples of PM2.5 were collected from January to October of 2018 in Longyou. The temporal profile of the meteorological parameters and the concentrations of water-soluble inorganic ions (WSIs) and organic matter (OM) were characterized. An Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS) was also applied to further analyze the composition of water-soluble organic carbon (WSOC). The sources of WSOC were resolved by positive matrix factorization (PMF) analysis. The origin of air parcels and potential sources of WSOC were analyzed using a backward trajectory and potential source contribution function (PSCF). Winds from the northeast dominated each sampling period, and the relative humidity did not show a significant difference. The results showed that the proportion of OM in PM2.5 was the highest in summer and decreased in spring, autumn, and winter in turn. Four organic aerosol (OA) factors, including a hydrocarbon-like factor, a coal combustion factor, and two oxygenated OA factors, were identified in the WSOC by means of PMF analysis. The hydrocarbon-like OA (HOA) contributed the majority of the WSOC in summer, while the contribution of the coal-combustion OA (CCOA) increased significantly in winter, suggesting the presence of different sources of WSOC in different seasons. The air parcels from the north of China and Zhejiang province contributed to the CCOA in winter, while those from the marine regions in the south and southeast of China mainly contributed to the HOA during spring and summer. The weighted PSCF (WPSCF) analysis showed that the regions of east Zhejiang province were the main contributors, which means that local and regional emissions were the most probable source areas of WSOC. It implied that not only were the emissions control of both local and regional emissions important but also that the transport of pollutants needed to be sufficiently well accounted for to ensure the successful implementation of air pollution mitigation in Longyou. Full article
Show Figures

Figure 1

13 pages, 2367 KiB  
Article
Contribution of Terpenes to Ozone Formation and Secondary Organic Aerosols in a Subtropical Forest Impacted by Urban Pollution
by Christian Mark Salvador, Charles C.-K. Chou, Tse-Tsung Ho, Chao-Yang Tsai, Tsung-Ming Tsao, Ming-Jer Tsai and Ta-Chen Su
Atmosphere 2020, 11(11), 1232; https://doi.org/10.3390/atmos11111232 - 16 Nov 2020
Cited by 19 | Viewed by 4406
Abstract
The highly reactive nature of biogenic volatile organic compounds (BVOCs) impacts the biosphere by acting as a precursor of ozone and aerosols that influence air quality and climate. Here, we assess the influence of BVOCs and their oxidation products on ozone formation and [...] Read more.
The highly reactive nature of biogenic volatile organic compounds (BVOCs) impacts the biosphere by acting as a precursor of ozone and aerosols that influence air quality and climate. Here, we assess the influence of BVOCs and their oxidation products on ozone formation and to submicron secondary organic aerosol (SOA) mass in a subtropical forest. A high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) was employed for the continuous measurement of VOCs. Isoprene, monoterpene, and sesquiterpene mixing ratios in the forest were 0.23, 0.22, and 0.03 ppb, respectively. The total ozone formation potential (OFP) of the terpenes was 12.8 μg m−3, which accounted for only 5.6% of the total OFP. Particle phase bound oxidation products were characterized using a thermal-desorption PTR-ToF-MS. Mass spectra analysis revealed the presence pinonaldehyde, pinonic, norpinonic, and pinic acid in both gas and particle phase. The overall daytime (nighttime) mixing ratio of the oxidized BVOCs in gas phases was 0.062(0.023) ppbv. On the other hand, the mean fraction of the four monoterpene oxidation products in condensed phase was estimated at 42%. Overall, the results of this study evidenced quantitatively the contribution of BVOCs to the total reactivity and SOA mass in the subtropical forest. Full article
Show Figures

Graphical abstract

12 pages, 2640 KiB  
Letter
Air Pollution Scenario over China during COVID-19
by Janet E. Nichol, Muhammad Bilal, Md. Arfan Ali and Zhongfeng Qiu
Remote Sens. 2020, 12(13), 2100; https://doi.org/10.3390/rs12132100 - 30 Jun 2020
Cited by 86 | Viewed by 8154
Abstract
The unprecedented slowdown in China during the COVID-19 period of November 2019 to April 2020 should have reduced pollution in smog-laden cities. However, moderate resolution imaging spectrometer (MODIS) satellite retrievals of aerosol optical depth (AOD) show a marked increase in aerosols over the [...] Read more.
The unprecedented slowdown in China during the COVID-19 period of November 2019 to April 2020 should have reduced pollution in smog-laden cities. However, moderate resolution imaging spectrometer (MODIS) satellite retrievals of aerosol optical depth (AOD) show a marked increase in aerosols over the Beijing–Tianjin–Hebei (BHT) region and most of Northeast and Central China, compared with the previous winter. Fine particulate (PM2.5) data from ground monitoring stations show an increase of 19.5% in Beijing during January and February 2020, and no reduction for Tianjin. In March and April 2020, a different spatial pattern emerges, with very high AOD levels observed over 50% of the Chinese mainland, and including peripheral regions in the northwest and southwest. At the same time, ozone monitoring instrument (OMI) satellite-derived NO2 concentrations fell drastically across China. The increase in PM2.5 while NO2 decreased in BTH and across China is likely due to enhanced production of secondary particulates. These are formed when reductions in NOx result in increased ozone formation, thus increasing the oxidizing capacity of the atmosphere. Support for this explanation is provided by ground level air quality data showing increased volume of fine mode aerosols throughout February and March 2020, and increased levels of PM2.5, relative humidity (RH), and ozone during haze episodes in the COVID-19 lockdown period. Backward trajectories show the origin of air masses affecting industrial centers of North and East China to be local. Other contributors to increased atmospheric particulates may include inflated industrial production in peripheral regions to compensate loss in the main population and industrial centers, and low wind speeds. Satellite monitoring of the extraordinary atmospheric conditions resulting from the COVID-19 shutdown could enhance understanding of smog formation and attempts to control it. Full article
Show Figures

Figure 1

16 pages, 1926 KiB  
Article
Wintertime Residential Biomass Burning in Las Vegas, Nevada; Marker Components and Apportionment Methods
by Steven G. Brown, Taehyoung Lee, Paul T. Roberts and Jeffrey L. Collett
Atmosphere 2016, 7(4), 58; https://doi.org/10.3390/atmos7040058 - 19 Apr 2016
Cited by 21 | Viewed by 6312
Abstract
We characterized residential biomass burning contributions to fine particle concentrations via multiple methods at Fyfe Elementary School in Las Vegas, Nevada, during January 2008: with levoglucosan on quartz fiber filters; with water soluble potassium (K+) measured using a particle-into-liquid system with [...] Read more.
We characterized residential biomass burning contributions to fine particle concentrations via multiple methods at Fyfe Elementary School in Las Vegas, Nevada, during January 2008: with levoglucosan on quartz fiber filters; with water soluble potassium (K+) measured using a particle-into-liquid system with ion chromatography (PILS-IC); and with the fragment C2H4O2+ from an Aerodyne High Resolution Aerosol Mass Spectrometer (HR-AMS). A Magee Scientific Aethalometer was also used to determine aerosol absorption at the UV (370 nm) and black carbon (BC, 880 nm) channels, where UV-BC difference is indicative of biomass burning (BB). Levoglucosan and AMS C2H4O2+ measurements were strongly correlated (r2 = 0.92); K+ correlated well with C2H4O2+ (r2 = 0.86) during the evening but not during other times. While K+ may be an indicator of BB, it is not necessarily a unique tracer, as non-BB sources appear to contribute significantly to K+ and can change from day to day. Low correlation was seen between UV-BC difference and other indicators, possibly because of an overwhelming influence of freeway emissions on BC concentrations. Given the sampling location—next to a twelve-lane freeway—urban-scale biomass burning was found to be a surprisingly large source of aerosol: overnight BB organic aerosol contributed between 26% and 33% of the organic aerosol mass. Full article
(This article belongs to the Special Issue Air Quality and Source Apportionment)
Show Figures

Figure 1

20 pages, 533 KiB  
Article
Inland Concentrations of Cl2 and ClNO2 in Southeast Texas Suggest Chlorine Chemistry Significantly Contributes to Atmospheric Reactivity
by Cameron B. Faxon, Jeffrey K. Bean and Lea Hildebrandt Ruiz
Atmosphere 2015, 6(10), 1487-1506; https://doi.org/10.3390/atmos6101487 - 14 Oct 2015
Cited by 63 | Viewed by 9732
Abstract
Measurements of molecular chlorine (Cl2), nitryl chloride (ClNO2), and dinitrogen pentoxide (N2O5) were taken as part of the DISCOVER-AQ Texas 2013 campaign with a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS) using iodide (I-) [...] Read more.
Measurements of molecular chlorine (Cl2), nitryl chloride (ClNO2), and dinitrogen pentoxide (N2O5) were taken as part of the DISCOVER-AQ Texas 2013 campaign with a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS) using iodide (I-) as a reagent ion. ClNO2 concentrations exceeding 50 ppt were regularly detected with peak concentrations typically occurring between 7:00 a.m. and 10:00 am. Hourly averaged Cl2 concentrations peaked daily between 3:00 p.m. and 4:00 p.m., with a 29-day average of 0.9 ± 0.3 (1σ) ppt. A day-time Cl2 source of up to 35 ppt∙h−1 is required to explain these observations, corresponding to a maximum chlorine radical (Cl) production rate of 70 ppt∙h−1. Modeling of the Cl2 source suggests that it can enhance daily maximum O3 and RO2concentrations by 8%–10% and 28%–50%, respectively. Modeling of observed ClNO2 assuming a well-mixed nocturnal boundary layer indicates O3 and RO2 enhancements of up to 2.1% and 38%, respectively, with a maximum impact in the early morning. These enhancements affect the formation of secondary organic aerosol and compliance with air quality standards for ozone and particulate matter. Full article
(This article belongs to the Special Issue Atmospheric Composition Observations)
Show Figures

Figure 1

Back to TopTop