Contribution of Terpenes to Ozone Formation and Secondary Organic Aerosols in a Subtropical Forest Impacted by Urban Pollution
Abstract
:1. Introduction
2. Experiments
2.1. Site Description and Instrumentation
2.2. Characterization of the Particle-Bound Organic Compounds Using TD-PTR-ToF-MS
2.3. Mass Concentration and Organic Carbon Analysis
3. Results and Discussion
3.1. Terpene Mixing Ratios and Contribution to Ozone Formation
3.2. Oxidation Products of Monoterpenes in Gas and Particle-Phase
3.2.1. Gas Phase
3.2.2. Particle Phase
3.2.3. Influence of Precursor and Oxidants on Oxygenated BVOCs
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Zhou, P.; Ganzeveld, L.; Taipale, D.; Rannik, Ü.; Rantala, P.; Rissanen, M.P.; Chen, D.; Boy, M. Boreal forest BVOC exchange: Emissions versus in-canopy sinks. Atmos. Chem. Phys. 2017, 17, 14309–14332. [Google Scholar] [CrossRef] [Green Version]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Fall, R.; Monson, R.K. Isoprene emission rate and intercellular isoprene concentration as influenced by stomatal distribution and conductance. Plant Physiol. 1992, 100, 987–992. [Google Scholar] [CrossRef] [Green Version]
- von Kuhlmann, R.; Lawrence, M.G.; Pöschl, U.; Crutzen, P.J. Sensitivities in global scale modeling of isoprene. Atmos. Chem. Phys. 2004, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Schwantes, R.H.; Charan, S.M.; Bates, K.H.; Huang, Y.; Nguyen, T.B.; Mai, H.; Kong, W.; Flagan, R.C.; Seinfeld, J.H. Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NOx conditions. Atmos. Chem. Phys. 2019, 19, 7255–7278. [Google Scholar] [CrossRef] [Green Version]
- Pye, H.O.T.; Chan, A.W.H.; Barkley, M.P.; Seinfeld, J.H. Global modeling of organic aerosol: The importance of reactive nitrogen (NOx and NO3). Atmos. Chem. Phys. 2010, 10, 11261–11276. [Google Scholar] [CrossRef] [Green Version]
- Eddingsaas, N.C.; Loza, C.L.; Yee, L.D.; Chan, M.; Schilling, K.A.; Chhabra, P.S.; Seinfeld, J.H.; Wennberg, P.O. α-pinene photooxidation under controlled chemical conditions Part 2: SOA yield and composition in low- and high-NOx environments. Atmos. Chem. Phys. 2012, 12, 7413–7427. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A. Tropospheric chemistry and Composition|Biogenic hydrocarbons. In Encyclopedia of Atmospheric Sciences, 2nd ed.; North, G.R., Pyle, J., Zhang, F., Eds.; Academic Press: Oxford, UK, 2015; pp. 214–217. [Google Scholar] [CrossRef]
- Mutzel, A.; Rodigast, M.; Iinuma, Y.; Böge, O.; Herrmann, H. Monoterpene SOA—Contribution of first-generation oxidation products to formation and chemical composition. Atmos. Environ. 2016, 130, 136–144. [Google Scholar] [CrossRef]
- Matsunaga, S.N.; Mochizuki, T.; Ohno, T.; Endo, Y.; Kusumoto, D.; Tani, A. Monoterpene and sesquiterpene emissions from Sugi (Cryptomeria japonica) based on a branch enclosure measurements. Atmos. Pollut. Res. 2011, 2, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Jardine, K.; Yañez Serrano, A.; Arneth, A.; Abrell, L.; Jardine, A.; van Haren, J.; Artaxo, P.; Rizzo, L.V.; Ishida, F.Y.; Karl, T.; et al. Within-canopy sesquiterpene ozonolysis in Amazonia. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Yee, L.D.; Isaacman-VanWertz, G.; Wernis, R.A.; Meng, M.; Rivera, V.; Kreisberg, N.M.; Hering, S.V.; Bering, M.S.; Glasius, M.; Upshur, M.A.; et al. Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmos. Chem. Phys. 2018, 18, 10433–10457. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, M.; Clarke, N.; Paoletti, E.; Bytnerowicz, A.; Grulke, N.; Lukina, N.; Sase, H.; Staelens, J. Air pollution impacts on forests in a changing climate. In Forests and Society: Responding to Global Drivers of Change; International Union of Forest Research Organizations (IUFRO): Vienna, Austria, 2010; Volume 25, pp. 55–75. [Google Scholar]
- Kim, S.-Y.; Jiang, X.; Lee, M.; Turnipseed, A.; Guenther, A.; Kim, J.-C.; Lee, S.-J.; Kim, S. Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea. Atmos. Environ. 2013, 70, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, M.; Andreae, M.O.; Artaxo, P.; Barbosa, H.M.J.; Berg, L.K.; Brito, J.; Ching, J.; Easter, R.C.; Fan, J.; Fast, J.D.; et al. Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nat. Commun. 2019, 10, 1046. [Google Scholar] [CrossRef] [Green Version]
- Wildt, J.; Mentel, T.F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; et al. Suppression of new particle formation from monoterpene oxidation by NOx. Atmos. Chem. Phys. 2014, 14, 2789–2804. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Schmitt, S.H.; Wang, M.; Acir, I.H.; Tillmann, R.; Tan, Z.; Novelli, A.; Fuchs, H.; Pullinen, I.; Wegener, R.; et al. Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene. Atmos. Chem. Phys. 2018, 18, 1611–1628. [Google Scholar] [CrossRef] [Green Version]
- Salvador, C.M.; Chou, C.C.K.; Cheung, H.C.; Ho, T.T.; Tsai, C.Y.; Tsao, T.M.; Tsai, M.J.; Su, T.C. Measurements of submicron organonitrate particles: Implications for the impacts of NOx pollution in a subtropical forest. Atmos. Res. 2020, 245, 105080. [Google Scholar] [CrossRef]
- Lee, C.S.L.; Chou, C.C.K.; Cheung, H.C.; Tsai, C.Y.; Huang, W.R.; Huang, S.H.; Chen, M.J.; Liao, H.T.; Wu, C.F.; Tsao, T.M.; et al. Seasonal variation of chemical characteristics of fine particulate matter at a high-elevation subtropical forest in East Asia. Environ. Pollut. 2019, 246, 668–677. [Google Scholar] [CrossRef]
- Blake, R.S.; Monks, P.S.; Ellis, A.M. Proton-transfer reaction mass spectrometry. Chem. Rev. 2009, 109, 861–896. [Google Scholar] [CrossRef]
- Yuan, B.; Koss, A.R.; Warneke, C.; Coggon, M.; Sekimoto, K.; de Gouw, J.A. Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences. Chem. Rev. 2017, 117, 13187–13229. [Google Scholar] [CrossRef] [PubMed]
- Salvador, C.M.; Ho, T.T.; Chou, C.C.K.; Chen, M.J.; Huang, W.R.; Huang, S.H. Characterization of the organic matter in submicron urban aerosols using a Thermo-Desorption Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (TD-PTR-TOF-MS). Atmos. Environ. 2016, 140, 565–575. [Google Scholar] [CrossRef]
- Turpin, B.J.; Lim, H.-J. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 2001, 35, 602–610. [Google Scholar] [CrossRef]
- Ammann, C.; Spirig, C.; Neftel, A.; Steinbacher, M.; Komenda, M.; Schaub, A. Application of PTR-MS for measurements of biogenic VOC in a deciduous forest. Int. J. Mass Spectrom. 2004, 239, 87–101. [Google Scholar] [CrossRef]
- Batista, C.E.; Ye, J.; Ribeiro, I.O.; Guimarães, P.C.; Medeiros, A.S.S.; Barbosa, R.G.; Oliveira, R.L.; Duvoisin, S.; Jardine, K.J.; Gu, D.; et al. Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity. Proc. Natl. Acad. Sci. USA 2019, 116, 19318–19323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Riva, M.; Rantala, P.; Heikkinen, L.; Daellenbach, K.; Krechmer, J.E.; Flaud, P.M.; Worsnop, D.; Kulmala, M.; Villenave, E.; et al. Terpenes and their oxidation products in the French Landes forest: Insights from Vocus PTR-TOF measurements. Atmos. Chem. Phys. 2020, 20, 1941–1959. [Google Scholar] [CrossRef] [Green Version]
- Xiong, F.; McAvey, K.M.; Pratt, K.A.; Groff, C.J.; Hostetler, M.A.; Lipton, M.A.; Starn, T.K.; Seeley, J.V.; Bertman, S.B.; Teng, A.P.; et al. Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NOx. Atmos. Chem. Phys. 2015, 15, 11257–11272. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Fuentes, J.D.; Gerken, T.; Chamecki, M.; Trowbridge, A.M.; Stoy, P.C.; Katul, G.G.; Fisch, G.; Acevedo, O.; Manzi, A.; et al. Environmental and biological controls on seasonal patterns of isoprene above a rain forest in central Amazonia. Agric. For. Meteorol. 2018, 256–257, 391–406. [Google Scholar] [CrossRef]
- Jardine, K.J.; Jardine, A.B.; Holm, J.A.; Lombardozzi, D.L.; Negron-Juarez, R.I.; Martin, S.T.; Beller, H.R.; Gimenez, B.O.; Higuchi, N.; Chambers, J.Q. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming. Plant Cell Environ. 2017, 40, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Kontkanen, J.; Paasonen, P.; Aalto, J.; Bäck, J.; Rantala, P.; Petäjä, T.; Kulmala, M. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site. Atmos. Chem. Phys. 2016, 16, 13291–13307. [Google Scholar] [CrossRef] [Green Version]
- Hellén, H.; Praplan, A.P.; Tykkä, T.; Ylivinkka, I.; Vakkari, V.; Bäck, J.; Petäjä, T.; Kulmala, M.; Hakola, H. Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest. Atmos. Chem. Phys. 2018, 18, 13839–13863. [Google Scholar] [CrossRef] [Green Version]
- Carter, W.P.L. Development of ozone reactivity scales for volatile organic compounds. Air Waste 1994, 44, 881–899. [Google Scholar] [CrossRef] [Green Version]
- Carter, W.P.L. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications. Calif. Air Resour. Board Contract 2009, 2009, 339. [Google Scholar]
- Xie, X.; Shao, M.; Liu, Y.; Lu, S.; Chang, C.-C.; Chen, Z.-M. Estimate of initial isoprene contribution to ozone formation potential in Beijing, China. Atmos. Environ. 2008, 42, 6000–6010. [Google Scholar] [CrossRef]
- Gómez, M.C.; Durana, N.; García, J.A.; de Blas, M.; Sáez de Cámara, E.; García-Ruiz, E.; Gangoiti, G.; Torre-Pascual, E.; Iza, J. Long-term measurement of biogenic volatile organic compounds in a rural background area: Contribution to ozone formation. Atmos. Environ. 2020, 224, 117315. [Google Scholar] [CrossRef]
- Salo, K.; Hallquist, M.; Jonsson, A.M.; Saathoff, H.; Naumann, K.H.; Spindler, C.; Tillmann, R.; Fuchs, H.; Bohn, B.; Rubach, F.; et al. Volatility of secondary organic aerosol during OH radical induced ageing. Atmos. Chem. Phys. 2011, 11, 11055–11067. [Google Scholar] [CrossRef] [Green Version]
- Wagener, S.; Langner, M.; Hansen, U.; Moriske, H.J.; Endlicher, W.R. Spatial and seasonal variations of biogenic tracer compounds in ambient PM10 and PM1 samples in Berlin, Germany. Atmos. Environ. 2012, 47, 33–42. [Google Scholar] [CrossRef]
- Vestenius, M.; Hellen, H.; Levula, J.; Kuronen, P.; Helminen, K.J.; Nieminen, T.; Kulmala, M.; Hakola, H. Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest. Atmos. Chem. Phys. 2014, 14, 7883–7893. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Brook, J.R.; Li, S.-M.; Leithead, A. Seasonal variation in the biogenic secondary organic aerosol tracer cis-pinonic acid: Enhancement due to emissions from regional and local biomass burning. Atmos. Environ. 2011, 45, 7105–7112. [Google Scholar] [CrossRef]
- Kammer, J.; Flaud, P.M.; Chazeaubeny, A.; Ciuraru, R.; Le Menach, K.; Geneste, E.; Budzinski, H.; Bonnefond, J.M.; Lamaud, E.; Perraudin, E.; et al. Biogenic volatile organic compounds (BVOCs) reactivity related to new particle formation (NPF) over the Landes forest. Atmos. Res. 2020, 237, 104869. [Google Scholar] [CrossRef]
- Zhao, Y.; Kreisberg, N.M.; Worton, D.R.; Isaacman, G.; Weber, R.J.; Liu, S.; Day, D.A.; Russell, L.M.; Markovic, M.Z.; VandenBoer, T.C.; et al. Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds. Environ. Sci. Technol. 2013, 47, 3781–3787. [Google Scholar] [CrossRef] [PubMed]
Compound | Molecular Weight | Mixing Ratio (ppbv) | Source | OFP (ug m−3) | %Cont. to Total OFP |
---|---|---|---|---|---|
Propene (1-propene) | 42.08 | 2.16 | A/B | 43.91 | 19.13 |
Butene (1-butene) | 56.11 | 1.63 | A/B | 36.92 | 16.08 |
Acetaldehyde | 44.05 | 1.58 | A/B | 18.87 | 8.22 |
Formaldehyde | 30.03 | 1.52 | A/B | 17.87 | 7.78 |
Ethanol | 46.07 | 5.47 | A/B | 15.99 | 6.97 |
Acrylic acid | 72.06 | 0.41 | A/B | 13.86 | 6.04 |
Methacrylic acid | 86.09 | 0.19 | A | 12.42 | 5.41 |
Butanal | 72.11 | 0.52 | A/B | 9.33 | 4.06 |
Methyl Vinyl Ketone | 70.09 | 0.29 | B | 8.21 | 3.57 |
Pentanal | 84.12 | 0.43 | A/B | 7.55 | 3.29 |
Isoprene | 68.12 | 0.23 | B | 6.9 | 3 |
Hexanal | 100.16 | 0.34 | A/B | 6.07 | 2.64 |
Pentene (1-pentene) | 70.14 | 0.28 | A/B | 5.97 | 2.6 |
Monoterpene (a-pinene) | 136.23 | 0.22 | B | 5.61 | 2.44 |
Toluene | 92.14 | 0.28 | A | 4.25 | 1.85 |
Ethylbenzene | 106.17 | 0.1 | A | 2.87 | 1.25 |
Methanol | 32.04 | 2.87 | A/B | 2.56 | 1.11 |
1,2,3-trimethyl benzene | 120.19 | 0.04 | A | 2.27 | 0.99 |
Hexene (1-hexene) | 84.16 | 0.11 | A/B | 2.18 | 0.95 |
m-diethyl benzene | 134.22 | 0.05 | A | 1.94 | 0.85 |
Acetic acid | 60.05 | 1.0 | A/B | 1.7 | 0.74 |
Acetone | 58.08 | 0.97 | A/B | 0.84 | 0.37 |
Sesquiterpene (C15 alkene) | 204.35 | 0.02 | B | 1.71 | 0.29 |
Propionic acid | 74.08 | 0.17 | A/B | 0.62 | 0.27 |
Benzene | 78.11 | 0.23 | A | 0.53 | 0.23 |
Formic acid | 46.03 | 3.2 | A/B | 0.4 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvador, C.M.; Chou, C.C.-K.; Ho, T.-T.; Tsai, C.-Y.; Tsao, T.-M.; Tsai, M.-J.; Su, T.-C. Contribution of Terpenes to Ozone Formation and Secondary Organic Aerosols in a Subtropical Forest Impacted by Urban Pollution. Atmosphere 2020, 11, 1232. https://doi.org/10.3390/atmos11111232
Salvador CM, Chou CC-K, Ho T-T, Tsai C-Y, Tsao T-M, Tsai M-J, Su T-C. Contribution of Terpenes to Ozone Formation and Secondary Organic Aerosols in a Subtropical Forest Impacted by Urban Pollution. Atmosphere. 2020; 11(11):1232. https://doi.org/10.3390/atmos11111232
Chicago/Turabian StyleSalvador, Christian Mark, Charles C.-K. Chou, Tse-Tsung Ho, Chao-Yang Tsai, Tsung-Ming Tsao, Ming-Jer Tsai, and Ta-Chen Su. 2020. "Contribution of Terpenes to Ozone Formation and Secondary Organic Aerosols in a Subtropical Forest Impacted by Urban Pollution" Atmosphere 11, no. 11: 1232. https://doi.org/10.3390/atmos11111232
APA StyleSalvador, C. M., Chou, C. C.-K., Ho, T.-T., Tsai, C.-Y., Tsao, T.-M., Tsai, M.-J., & Su, T.-C. (2020). Contribution of Terpenes to Ozone Formation and Secondary Organic Aerosols in a Subtropical Forest Impacted by Urban Pollution. Atmosphere, 11(11), 1232. https://doi.org/10.3390/atmos11111232