Next Article in Journal
Fire Blight Disease Detection for Apple Trees: Hyperspectral Analysis of Healthy, Infected and Dry Leaves
Previous Article in Journal
Satellite-Based Drought Impact Assessment on Rice Yield in Thailand with SIMRIW−RS
Open AccessLetter

Air Pollution Scenario over China during COVID-19

1
Department of Geography, School of Global Studies, University of Sussex, Brighton BN19RH, UK
2
School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
*
Author to whom correspondence should be addressed.
Remote Sens. 2020, 12(13), 2100; https://doi.org/10.3390/rs12132100
Received: 4 June 2020 / Revised: 25 June 2020 / Accepted: 29 June 2020 / Published: 30 June 2020
The unprecedented slowdown in China during the COVID-19 period of November 2019 to April 2020 should have reduced pollution in smog-laden cities. However, moderate resolution imaging spectrometer (MODIS) satellite retrievals of aerosol optical depth (AOD) show a marked increase in aerosols over the Beijing–Tianjin–Hebei (BHT) region and most of Northeast and Central China, compared with the previous winter. Fine particulate (PM2.5) data from ground monitoring stations show an increase of 19.5% in Beijing during January and February 2020, and no reduction for Tianjin. In March and April 2020, a different spatial pattern emerges, with very high AOD levels observed over 50% of the Chinese mainland, and including peripheral regions in the northwest and southwest. At the same time, ozone monitoring instrument (OMI) satellite-derived NO2 concentrations fell drastically across China. The increase in PM2.5 while NO2 decreased in BTH and across China is likely due to enhanced production of secondary particulates. These are formed when reductions in NOx result in increased ozone formation, thus increasing the oxidizing capacity of the atmosphere. Support for this explanation is provided by ground level air quality data showing increased volume of fine mode aerosols throughout February and March 2020, and increased levels of PM2.5, relative humidity (RH), and ozone during haze episodes in the COVID-19 lockdown period. Backward trajectories show the origin of air masses affecting industrial centers of North and East China to be local. Other contributors to increased atmospheric particulates may include inflated industrial production in peripheral regions to compensate loss in the main population and industrial centers, and low wind speeds. Satellite monitoring of the extraordinary atmospheric conditions resulting from the COVID-19 shutdown could enhance understanding of smog formation and attempts to control it. View Full-Text
Keywords: air pollution; AOD; PM2.5; COVID-19; China air pollution; AOD; PM2.5; COVID-19; China
Show Figures

Figure 1

MDPI and ACS Style

Nichol, J.E.; Bilal, M.; Ali, M.A.; Qiu, Z. Air Pollution Scenario over China during COVID-19. Remote Sens. 2020, 12, 2100.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop