Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = high electrolyte affinity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1352 KiB  
Article
Free-Standing Composite Film Based on Zinc Powder and Nanocellulose Achieving Dendrite-Free Anode of Aqueous Zinc–Ion Batteries
by Guanwen Wang, Minfeng Chen and Jizhang Chen
Materials 2025, 18(12), 2696; https://doi.org/10.3390/ma18122696 - 8 Jun 2025
Viewed by 520
Abstract
Aqueous zinc–ion batteries (AZIBs) have garnered considerable attention owing to their inherent safety, cost-effectiveness, and promising electrochemical performance. However, challenges associated with Zn metal anodes, such as dendrite formation, corrosion, and hydrogen evolution, continue to impede their widespread adoption. To overcome these limitations, [...] Read more.
Aqueous zinc–ion batteries (AZIBs) have garnered considerable attention owing to their inherent safety, cost-effectiveness, and promising electrochemical performance. However, challenges associated with Zn metal anodes, such as dendrite formation, corrosion, and hydrogen evolution, continue to impede their widespread adoption. To overcome these limitations, a flexible and self-standing composite film anode (denoted ZCN) is engineered from a synergistic combination of Zn powder, nanocellulose, and carbon fiber to serve as a high-performance alternative to conventional Zn foil. These three constituents play the roles of enhancing the active area, improving mechanical properties and electrolyte affinity, and establishing a conductive network, respectively. This innovative design effectively mitigates dendrite growth and suppresses parasitic side reactions, thereby significantly improving the cycling stability of ZCN. As a result, this electrode enables the Zn//Zn cell to offer an ultralong lifespan of 2000 h. And the Zn-MnO2 battery with ZCN anode demonstrates remarkable performance, realizing over 80% capacity retention after 1000 cycles. This study presents a straightforward, scalable, and cost-effective strategy for the development of dendrite-free metal electrodes, paving the way for durable and high-performance AZIBs. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Graphical abstract

13 pages, 3626 KiB  
Article
Lithiophilic Modification of Self-Supporting Carbon-Based Hosts and Lithium Metal Plating/Stripping Behaviors
by Zipeng Jiang, Shoudong Xie, Guijun Yang, Huiyuan Chen, Jiahang Lv, Ang Li, Chengwei Fan and Huaihe Song
Nanomaterials 2025, 15(10), 746; https://doi.org/10.3390/nano15100746 - 15 May 2025
Viewed by 407
Abstract
Metallic lithium anodes possess the lowest redox potential (−3.04 V vs. SHE) and an ultra-high theoretical capacity (3860 mAh g−1, 2061 mAh cm−3). However, during electrochemical cycling, lithium metal tends to plate unevenly, leading to the formation of lithium [...] Read more.
Metallic lithium anodes possess the lowest redox potential (−3.04 V vs. SHE) and an ultra-high theoretical capacity (3860 mAh g−1, 2061 mAh cm−3). However, during electrochemical cycling, lithium metal tends to plate unevenly, leading to the formation of lithium dendrites. Moreover, severe electrochemical corrosion occurs at the interface between metallic lithium and traditional copper foil current collectors. To address these issues, we selected corrosion-resistant carbon paper as a lithium metal host and modified a uniform distribution of silver nanoparticles and a F-doped amorphous carbon structure as a highly lithiophilic F-CP@Ag host to enhance lithium-ion transport kinetics and achieve improved affinity with lithium metal. The silver nanoparticles reduced the lithium nucleation energy barrier, while F doping resulted in a LiF-rich solid electrolyte interphase that better accommodated volume changes in lithium metal. These two strategies worked together to ensure uniform and stable lithium metal plating/stripping on the F-CP@Ag host. Consequently, under the conditions of 1 mA cm−2 and 1 mAh cm−2, the symmetric cell exhibited stable cycling with a polarization voltage of 8 mV for up to 1400 h. This work highlights the corrosion problem of lithium metal on traditional copper foil current collectors and provides guidance for the long-term cycling stability of lithium metal anodes. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

8 pages, 2424 KiB  
Article
A Modified Acrylic Binder Used for the Graphite Negative Electrode in LithiumIon Batteries
by Lianxiang Feng, Wenting Chen, Feng Hai, Xin Gao, Yuyu Ban, Weicheng Xue, Wentao Yan, Yunxiao Yang and Mingtao Li
Batteries 2025, 11(5), 190; https://doi.org/10.3390/batteries11050190 - 13 May 2025
Viewed by 575
Abstract
The water-based binder has the advantages of non-toxic, non-flammable, small odor, and no pollution to the environment. However, there are problems such as low bond strength and poor battery cycle life of commonly used binders on the market. In this paper, the acrylic [...] Read more.
The water-based binder has the advantages of non-toxic, non-flammable, small odor, and no pollution to the environment. However, there are problems such as low bond strength and poor battery cycle life of commonly used binders on the market. In this paper, the acrylic binder is modified. In addition, acrylic acid/methacrylic acid, acrylonitrile, and octadecyl acrylate/octadecyl methacrylate are copolymerized at high temperature, and a new binder for graphite anode is successfully developed. The binder can significantly improve the affinity between the graphite anode and the electrolyte and the integrity of the graphite particles during the cycle, so that the battery has better electrochemical performance. During the charge and discharge cycle of 1 C, the graphite anode coated with PAANa as a binder was able to cycle 360 cycles and remain stable, which is far better than the 192 cycles of the commercial binder LA133. It is proved that the experimental formula has a certain commercial application prospect. Full article
(This article belongs to the Special Issue Functional Binders and Additives for Rechargeable Batteries)
Show Figures

Figure 1

16 pages, 2744 KiB  
Article
Prolonged Diuretic, Natriuretic, and Potassium- and Calcium-Sparing Effect of Hesperidin in Hypertensive Rats
by Sabrina Lucietti Dick Orengo, Rita de Cássia Vilhena da Silva, Anelise Felício Macarini, Valdir Cechinel Filho and Priscila de Souza
Plants 2025, 14(9), 1324; https://doi.org/10.3390/plants14091324 - 27 Apr 2025
Viewed by 574
Abstract
Systemic hypertension is a major global health concern, significantly contributing to the risk of cardiovascular, cerebrovascular, and renal diseases. Antihypertensive medications play a crucial role in lowering blood pressure, with diuretics serving as a particularly effective first-line therapy. However, the development of new [...] Read more.
Systemic hypertension is a major global health concern, significantly contributing to the risk of cardiovascular, cerebrovascular, and renal diseases. Antihypertensive medications play a crucial role in lowering blood pressure, with diuretics serving as a particularly effective first-line therapy. However, the development of new compounds with diuretic properties, renal protective effects, and unique mechanisms of action remains a critical area of research for improving clinical outcomes. In this context, the present study investigated the diuretic and renal protective potential of the citrus flavonoid hesperidin in rats. Male spontaneously hypertensive and normotensive rats were treated with hesperidin at a dose of 3.0 mg/kg daily for seven days. Urine samples were analyzed for electrolytes (Na+, K+, Cl, and Ca2+), biochemical parameters, and crystal precipitation, while renal tissues were examined histologically. Hesperidin treatment resulted in significant diuretic and natriuretic effects, along with potassium- and calcium-sparing properties. Furthermore, a marked reduction in calcium oxalate crystal formation was observed in the hesperidin-treated group. Histological analysis indicated a protective effect on renal tissue, with structural preservation observed in hypertensive rats. Docking studies revealed that hesperetin, the active metabolite of hesperidin formed upon oral administration, exhibited a high binding affinity for the calcium-sensing receptor (CaSR). This hypothesis may explain its role in preventing urinary crystalluria and contributing to calcium-sparing effects. Full article
Show Figures

Figure 1

13 pages, 6597 KiB  
Article
Batch Preparation and Performance Study of Boehmite-Based Electrospun Nanofiber Separators for Lithium-Ion Batteries
by Wenfei Ding, Yuxing Liu and Lan Xu
Molecules 2024, 29(16), 3938; https://doi.org/10.3390/molecules29163938 - 21 Aug 2024
Viewed by 1089
Abstract
The design and preparation of high-performance separators for lithium-ion batteries (LIBs) have far-reaching practical significance in enhancing the overall performance of LIBs. Electrospun nanofiber separators (ENSs) have the characteristics of large specific surface area, high porosity, small pore size and good affinity with [...] Read more.
The design and preparation of high-performance separators for lithium-ion batteries (LIBs) have far-reaching practical significance in enhancing the overall performance of LIBs. Electrospun nanofiber separators (ENSs) have the characteristics of large specific surface area, high porosity, small pore size and good affinity with the electrolyte, making them become ideal candidates for LIB separators. In this work, polyacrylonitrile (PAN)/polyurethane (PU) (PAU) ENSs loaded with boehmite (BM) particles (BM/PAU ENSs) were mass-produced using spherical section free surface electrospinning (SSFSE), and used as LIB separators. Their morphology, structures and performances were tested and characterized. The results showed that all BM/PAU ENSs maintained excellent thermal dimensional stability in the range of 140–180 °C, and had good electrolyte wettability and high porosity. The composite BM/PAU-2 ENS with the best performance had a porosity of 52.5%, an electrolyte uptake rate of 822.1%, and an ionic conductivity of 1.97 mS/cm. Additionally, the battery assembled with BM/PAU-2 separator also demonstrated best electrochemical performance, cycling performance, and rate capability, with a capacity retention rate of 94.4% after 80 cycles at 0.5 C, making it a promising high-performance separator for LIBs. Full article
Show Figures

Figure 1

26 pages, 5075 KiB  
Review
Enhancing Electrode Efficiency in Proton Exchange Membrane Fuel Cells with PGM-Free Catalysts: A Mini Review
by Ioanna Martinaiou and Maria K. Daletou
Energies 2024, 17(14), 3443; https://doi.org/10.3390/en17143443 - 12 Jul 2024
Cited by 5 | Viewed by 1947
Abstract
Proton Exchange Membrane Fuel Cells (PEMFCs) represent a promising green solution for energy production, traditionally relying on platinum-group-metal (PGM) electrocatalysts. However, the increasing cost and limited global availability of PGMs have motivated extensive research into alternative catalyst materials. PGM-free oxygen reduction reaction (ORR) [...] Read more.
Proton Exchange Membrane Fuel Cells (PEMFCs) represent a promising green solution for energy production, traditionally relying on platinum-group-metal (PGM) electrocatalysts. However, the increasing cost and limited global availability of PGMs have motivated extensive research into alternative catalyst materials. PGM-free oxygen reduction reaction (ORR) catalysts typically consist of first-row transition metal ions (Fe, Co) embedded in a nitrogen-doped carbon framework. Key factors affecting their efficacy include intrinsic activity and catalyst degradation. Thus, alternative materials with improved characteristics and the elucidation of reaction and degradation mechanisms have been the main concerns and most frequently explored research paths. High intrinsic activity and active site density can ensure efficient reaction rates, while durability towards corrosion, carbon oxidation, demetallation, and deactivation affects cell longevity. However, when moving to the actual application in PEMFCs, electrode engineering, which involves designing the catalyst layer, and other critical operational factors affecting fuel cell performance play a critical role. Electrode fabrication parameters such as ink formulation and deposition techniques are thoroughly discussed herein, explicating their impact on the electrode microstructure and formed electrochemical interface and subsequent performance. Adjusting catalyst loading, ionomer content, and porosity are part of the optimization. More specifically, porosity and hydrophobicity determine reactant transport and water removal. High catalyst loadings can enhance performance but result in thicker layers that hinder mass transport and water management. Moreover, the interaction between ionomer and catalyst affects proton conductivity and catalyst utilization. Strategies to improve the three-phase boundary through the proper ionomer amount and distribution influence catalyst utilization and water management. It is critical to find the right balance, which is influenced by the catalyst–ionomer ratio and affinity, the catalyst properties, and the layer fabrication. Overall, understanding how composition and fabrication parameters impact electrode properties and behaviour such as proton conductivity, mass transport, water management, and electrode–electrolyte interfaces is essential to maximize electrochemical performance. This review highlights the necessity for integrated approaches to unlock the full potential of PGM-free materials in PEMFC technology. Clear prospects for integrating PGM-free catalysts will drive cleaner and more cost-effective, sustainable, and commercially viable energy solutions. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

17 pages, 8971 KiB  
Article
Functionalized γ-Boehmite Covalent Grafting Modified Polyethylene for Lithium-Ion Battery Separator
by Yuanxin Man, Hui Nan, Jianzhe Ma, Zhike Li, Jingyuan Zhou, Xianlan Wang, Heqi Li, Caihong Xue and Yongchun Yang
Materials 2024, 17(9), 2162; https://doi.org/10.3390/ma17092162 - 6 May 2024
Cited by 2 | Viewed by 2551
Abstract
In the field of lithium-ion batteries, the challenges posed by the low melting point and inadequate wettability of conventional polyolefin separators have increased the focus on ceramic-coated separators. This study introduces a highly efficient and stable boehmite/polydopamine/polyethylene (AlOOH-PDA-PE) separator. It is crafted by [...] Read more.
In the field of lithium-ion batteries, the challenges posed by the low melting point and inadequate wettability of conventional polyolefin separators have increased the focus on ceramic-coated separators. This study introduces a highly efficient and stable boehmite/polydopamine/polyethylene (AlOOH-PDA-PE) separator. It is crafted by covalently attaching functionalized nanosized boehmite (γ-AlOOH) whiskers onto polyethylene (PE) surfaces. The presence of a covalent bond increases the stability at the interface, while amino groups on the surface of the separator enhance the infiltration of the electrolyte and facilitate the diffusion of lithium ions. The PE-PDA-AlOOH separator, when used in lithium-ion batteries, achieves a discharge capacity of 126 mAh g−1 at 5 C and retains 97.1% capacity after 400 cycles, indicating superior cycling stability due to its covalently bonded ceramic surface. Thus, covalent interface modification is a promising strategy to prevent delamination of ceramic coatings in separators. Full article
(This article belongs to the Topic Advanced Nanomaterials for Lithium-Ion Batteries)
Show Figures

Figure 1

18 pages, 3354 KiB  
Article
Thin Reinforced Anion-Exchange Membranes for Non-Aqueous Redox Flow Battery Employing Fe/Co-Metal Complex Redox Species
by Hyeon-Bee Song, Do-Hyeong Kim, Myung-Jin Lee and Moon-Sung Kang
Batteries 2024, 10(1), 9; https://doi.org/10.3390/batteries10010009 - 27 Dec 2023
Cited by 2 | Viewed by 2740
Abstract
Non-aqueous redox flow batteries (NARFBs) have been attracting much attention because they can significantly increase power and energy density compared to conventional RFBs. In this study, novel pore-filled anion-exchange membranes (PFAEMs) for application to a NAPFB employing metal polypyridyl complexes (i.e., Fe(bpy)3 [...] Read more.
Non-aqueous redox flow batteries (NARFBs) have been attracting much attention because they can significantly increase power and energy density compared to conventional RFBs. In this study, novel pore-filled anion-exchange membranes (PFAEMs) for application to a NAPFB employing metal polypyridyl complexes (i.e., Fe(bpy)32+/Fe(bpy)33+ and Co(bpy)32+/Co(bpy)33+) as the redox species are successfully developed. A porous polyethylene support with excellent solvent resistance and mechanical strength is used for membrane fabrication. The PFAEMs are prepared by filling an ionic liquid monomer containing an imidazolium group and a crosslinking agent into the pores of the support film and then performing in situ photopolymerization. As a result, the prepared membranes exhibit excellent mechanical strength and stability in a non-aqueous medium as well as high ion conductivity. In addition, a low crossover rate for redox ion species is observed for the prepared membranes because they have relatively low swelling characteristics in non-aqueous electrolyte solutions and low affinity for the metal-complex redox species compared to a commercial membrane. Consequently, the PFAEM is revealed to possess superior battery performance than a commercial membrane in the NARFB tests, showing high energy efficiency of about 85% and stable operation for 100 cycles. Full article
(This article belongs to the Special Issue Redox Flow Batteries: Recent Advances and Perspectives)
Show Figures

Graphical abstract

13 pages, 2679 KiB  
Article
Batch Fabrication of Electrospun PAN/PU Composite Separators for Safe Lithium-Ion Batteries
by Wenfei Ding and Lan Xu
Batteries 2024, 10(1), 6; https://doi.org/10.3390/batteries10010006 - 25 Dec 2023
Cited by 5 | Viewed by 3188
Abstract
As an important element of lithium-ion batteries (LIBs), the separator plays a critical role in the safety and comprehensive performance of the battery. Electrospun nanofiber separators have a high porosity and good electrolyte affinity, which are favorable to the transference of lithium ions. [...] Read more.
As an important element of lithium-ion batteries (LIBs), the separator plays a critical role in the safety and comprehensive performance of the battery. Electrospun nanofiber separators have a high porosity and good electrolyte affinity, which are favorable to the transference of lithium ions. In this paper, the batch preparation of polyacrylonitrile (PAN)-based nanofiber separators are obtained via spherical section free surface electrospinning (SSFSE). Introducing an appropriate amount of polyester polyurethane (PU) can effectively enhance the mechanical property of PAN nanofiber separators and help the separators resist the external force extrusion. The results show that when PAN:PU = 8:2, the porosity and electrolyte uptake rate of the composite nanofiber separator (PAN-2) are 62.9% and 643.3%, respectively, exhibiting a high ionic conductivity (1.90 mS/cm). Additionally, the coin battery assembled with PAN-2 as a separator (LiFePO4/PAN-2/lithium metal) shows good cycling performance and good rate performance, with a capacity retention rate of 93.9% after 100 cycles at 0.5 C, indicating that the battery with PAN-2 has a good application potential in advanced energy storage. Full article
Show Figures

Graphical abstract

15 pages, 9125 KiB  
Review
Electropolymerisation Technologies for Next-Generation Lithium–Sulphur Batteries
by Soochan Kim and Youngkwan Lee
Polymers 2023, 15(15), 3231; https://doi.org/10.3390/polym15153231 - 29 Jul 2023
Cited by 3 | Viewed by 1983
Abstract
Lithium–sulphur batteries (LiSBs) have garnered significant attention as the next-generation energy storage device because of their high theoretical energy density, low cost, and environmental friendliness. However, the undesirable “shuttle effect” by lithium polysulphides (LPSs) severely inhibits their practical application. To alleviate the shuttle [...] Read more.
Lithium–sulphur batteries (LiSBs) have garnered significant attention as the next-generation energy storage device because of their high theoretical energy density, low cost, and environmental friendliness. However, the undesirable “shuttle effect” by lithium polysulphides (LPSs) severely inhibits their practical application. To alleviate the shuttle effect, conductive polymers have been used to fabricate LiSBs owing to their improved electrically conducting pathways, flexible mechanical properties, and high affinity to LPSs, which allow the shuttle effect to be controlled. In this study, the applications of various conductive polymers prepared via the simple yet sophisticated electropolymerisation (EP) technology are systematically investigated based on the main components of LiSBs (cathodes, anodes, separators, and electrolytes). Finally, the potential application of EP technology in next-generation batteries is comprehensively discussed. Full article
(This article belongs to the Special Issue Advanced Conductive Polymers for Electrochemical Applications)
Show Figures

Figure 1

12 pages, 5304 KiB  
Article
Lithiophilic Quinone Lithium Salt Formed by Tetrafluoro-1,4-Benzoquinone Guides Uniform Lithium Deposition to Stabilize the Interface of Anode and PVDF-Based Solid Electrolytes
by Yinglu Hu, Li Liu, Jingwei Zhao, Dechao Zhang, Jiadong Shen, Fangkun Li, Yan Yang, Zhengbo Liu, Weixin He, Weiming Zhao and Jun Liu
Batteries 2023, 9(6), 322; https://doi.org/10.3390/batteries9060322 - 12 Jun 2023
Cited by 2 | Viewed by 1969
Abstract
Poly(vinylidene fluoride) (PVDF)-based composite solid electrolytes (CSEs) are attracting widespread attention due to their superior electrochemical and mechanical properties. However, the PVDF has a strong polar group -CF2-, which easily continuously reacts with lithium metal, resulting in the instability of the [...] Read more.
Poly(vinylidene fluoride) (PVDF)-based composite solid electrolytes (CSEs) are attracting widespread attention due to their superior electrochemical and mechanical properties. However, the PVDF has a strong polar group -CF2-, which easily continuously reacts with lithium metal, resulting in the instability of the solid electrolyte interface (SEI), which intensifies the formation of lithium dendrites. Herein, Tetrafluoro-1,4-benzoquinone (TFBQ) was selected as an additive in trace amounts to the PVDF/Li-based electrolytes. TFBQ uniformly formed lithophilic quinone lithium salt (Li2TFBQ) in the SEI. Li2TFBQ has high lithium-ion affinity and low potential barrier and can be used as the dominant agent to guide uniform lithium deposition. The results showed that PVDF/Li-TFBQ 0.05 with a mass ratio of PVDF to TFBQ of 1:0.05 had the highest ionic conductivity of 2.39 × 10−4 S cm−1, and the electrochemical stability window reached 5.0 V. Moreover, PVDF/Li-TFBQ CSE demonstrated superior lithium dendrite suppression, which was confirmed by long-term lithium stripping/sedimentation tests over 2000 and 650 h at a current of 0.1 and 0.2 mA cm−2, respectively. The assembled solid-state LiNi0.6Co0.2Mn0.2O2||Li cell showed an excellent performance rate and cycle stability at 30 °C. This study greatly promotes the practical research of solid-state electrolytes. Full article
(This article belongs to the Special Issue Electrode Materials for Rechargeable Lithium Batteries)
Show Figures

Figure 1

16 pages, 4024 KiB  
Article
Asymmetric Alternative Current Electrochemical Method Coupled with Amidoxime-Functionalized Carbon Felt Electrode for Fast and Efficient Removal of Hexavalent Chromium from Wastewater
by Yunze Yang, Lun Lu, Yi Shen, Jun Wang, Liangzhong Li, Ruixue Ma, Zahid Ullah, Mingdeng Xiang and Yunjiang Yu
Nanomaterials 2023, 13(5), 952; https://doi.org/10.3390/nano13050952 - 6 Mar 2023
Cited by 7 | Viewed by 2848
Abstract
A large amount of Cr (VI)-polluted wastewater produced in electroplating, dyeing and tanning industries seriously threatens water ecological security and human health. Due to the lack of high-performance electrodes and the coulomb repulsion between hexavalent chromium anion and cathode, the traditional DC-mediated electrochemical [...] Read more.
A large amount of Cr (VI)-polluted wastewater produced in electroplating, dyeing and tanning industries seriously threatens water ecological security and human health. Due to the lack of high-performance electrodes and the coulomb repulsion between hexavalent chromium anion and cathode, the traditional DC-mediated electrochemical remediation technology possesses low Cr (VI) removal efficiency. Herein, by modifying commercial carbon felt (O-CF) with amidoxime groups, amidoxime-functionalized carbon felt electrodes (Ami-CF) with high adsorption affinity for Cr (VI) were prepared. Based on Ami-CF, an electrochemical flow-through system powered by asymmetric AC was constructed. The mechanism and influencing factors of efficient removal of Cr (VI) contaminated wastewater by an asymmetric AC electrochemical method coupling Ami-CF were studied. Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) characterization results showed that Ami-CF was successfully and uniformly loaded with amidoxime functional groups, and the adsorption capacity of Cr (VI) was more than 100 times higher than that of O-CF. In particular, the Coulomb repulsion effect and the side reaction of electrolytic water splitting were inhibited by the high-frequency anode and cathode switching (asymmetric AC), the mass transfer rate of Cr (VI) from electrode solution was increased, the reduction efficiency of Cr (VI) to Cr (III) was significantly promoted and a highly efficient removal of Cr (VI) was achieved. Under optimal operating conditions (positive bias 1 V, negative bias 2.5 V, duty ratio 20%, frequency 400 Hz, solution pH = 2), the asymmetric AC electrochemistry based on Ami-CF can achieve fast (30 s) and efficient removal (>99.11%) for 0.5–100 mg·L−1 Cr (VI) with a high flux of 300 L h−1 m−2. At the same time, the durability test verified the sustainability of the AC electrochemical method. For Cr (VI)-polluted wastewater with an initial concentration of 50 mg·L−1, the effluent concentration could still reach drinking water grade (<0.05 mg·L−1) after 10 cycling experiments. This study provides an innovative approach for the rapid, green and efficient removal of Cr (VI) containing wastewater at low and medium concentrations. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

30 pages, 6230 KiB  
Review
Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations
by Andrew Kim, Jatis Kumar Dash and Rajkumar Patel
Membranes 2023, 13(2), 183; https://doi.org/10.3390/membranes13020183 - 2 Feb 2023
Cited by 12 | Viewed by 4116
Abstract
Lithium-Sulfur batteries (LSBs) are one of the most promising next-generation batteries to replace Li-ion batteries that power everything from small portable devices to large electric vehicles. LSBs boast a nearly five times higher theoretical capacity than Li-ion batteries due to sulfur’s high theoretical [...] Read more.
Lithium-Sulfur batteries (LSBs) are one of the most promising next-generation batteries to replace Li-ion batteries that power everything from small portable devices to large electric vehicles. LSBs boast a nearly five times higher theoretical capacity than Li-ion batteries due to sulfur’s high theoretical capacity, and LSBs use abundant sulfur instead of rare metals as their cathodes. In order to make LSBs commercially viable, an LSB’s separator must permit fast Li-ion diffusion while suppressing the migration of soluble lithium polysulfides (LiPSs). Polyolefin separators (commonly used in Li-ion batteries) fail to block LiPSs, have low thermal stability, poor mechanical strength, and weak electrolyte affinity. Novel nanofiber (NF) separators address the aforementioned shortcomings of polyolefin separators with intrinsically superior properties. Moreover, NF separators can easily be produced in large volumes, fine-tuned via facile electrospinning techniques, and modified with various additives. This review discusses the design principles and performance of LSBs with exemplary NF separators. The benefits of using various polymers and the effects of different polymer modifications are analyzed. We also discuss the conversion of polymer NFs into carbon NFs (CNFs) and their effects on rate capability and thermal stability. Finally, common and promising modifiers for NF separators, including carbon, metal oxide, and metal-organic framework (MOF), are examined. We highlight the underlying properties of the composite NF separators that enhance the capacity, cyclability, and resilience of LSBs. Full article
Show Figures

Figure 1

15 pages, 5310 KiB  
Article
A PEGylated Chitosan as Gel Polymer Electrolyte for Lithium Ion Batteries
by Anqi Wang, Yue Tu, Sijie Wang, Hongbing Zhang, Feng Yu, Yong Chen and De Li
Polymers 2022, 14(21), 4552; https://doi.org/10.3390/polym14214552 - 27 Oct 2022
Cited by 20 | Viewed by 4778
Abstract
Due to their safety and sustainability, polysaccharides such as cellulose and chitosan have great potential to be the matrix of gel polymer electrolytes (GPE) for lithium-based batteries. However, they easily form hydrogels due to the large numbers of hydrophilic hydroxyl or amino functional [...] Read more.
Due to their safety and sustainability, polysaccharides such as cellulose and chitosan have great potential to be the matrix of gel polymer electrolytes (GPE) for lithium-based batteries. However, they easily form hydrogels due to the large numbers of hydrophilic hydroxyl or amino functional groups within their macromolecules. Therefore, a polysaccharide-based amphiphilic gel, or organogel, is urgently necessary to satisfy the anhydrous requirement of lithium ion batteries. In this study, a PEGylated chitosan was initially designed using a chemical grafting method to make an GPE for lithium ion batteries. The significantly improved affinity of PEGylated chitosan to organic liquid electrolyte makes chitosan as a GPE for lithium ion batteries possible. A reasonable ionic conductivity (1.12 × 10−3 S cm−1) and high lithium ion transport number (0.816) at room temperature were obtained by replacing commercial battery separator with PEG-grafted chitosan gel film. The assembled Li/GPE/LiFePO4 coin cell also displayed a high initial discharge capacity of 150.8 mA h g−1. The PEGylated chitosan-based GPE exhibits great potential in the field of energy storage. Full article
(This article belongs to the Special Issue Chitosan-Based Nanocomposite Materials and Their Applications)
Show Figures

Figure 1

12 pages, 3294 KiB  
Article
Oxygen Vacancies in Bismuth Tantalum Oxide to Anchor Polysulfide and Accelerate the Sulfur Evolution Reaction in Lithium–Sulfur Batteries
by Chong Wang, Jian-Hao Lu, An-Bang Wang, Hao Zhang, Wei-Kun Wang, Zhao-Qing Jin and Li-Zhen Fan
Nanomaterials 2022, 12(20), 3551; https://doi.org/10.3390/nano12203551 - 11 Oct 2022
Viewed by 2288
Abstract
The shuttling effect of soluble lithium polysulfides (LiPSs) and the sluggish conversion kinetics of polysulfides into insoluble Li2S2/Li2S severely hinders the practical application of Li-S batteries. Advanced catalysts can capture and accelerate the liquid–solid conversion of polysulfides. [...] Read more.
The shuttling effect of soluble lithium polysulfides (LiPSs) and the sluggish conversion kinetics of polysulfides into insoluble Li2S2/Li2S severely hinders the practical application of Li-S batteries. Advanced catalysts can capture and accelerate the liquid–solid conversion of polysulfides. Herein, we try to make use of bismuth tantalum oxide with oxygen vacancies as an electrocatalyst to catalyze the conversion of LiPSs by reducing the sulfur reduction reaction (SRR) nucleation energy barrier. Oxygen vacancies in Bi4TaO7 nanoparticles alter the electron band structure to improve instinct electronic conductivity and catalytic activity. In addition, the defective surface could provide unsaturated bonds around the vacancies to enhance the chemisorption capability with LiPSs. Hence, a multidimensional carbon (super P/CNT/Graphene) standing sulfur cathode is prepared by coating oxygen vacancies Bi4TaO7−x nanoparticles, in which the multidimensional carbon (MC) with micropores structure can host sulfur and provide a fast electron/ion pathway, while the outer-coated oxygen vacancies with Bi4TaO7−x with improved electronic conductivity and strong affinities for polysulfides can work as an adsorptive and conductive protective layer to achieve the physical restriction and chemical immobilization of lithium polysulfides as well as speed up their catalytic conversion. Benefiting from the synergistic effects of different components, the S/C@Bi3TaO7−x coin cell cathode shows superior cycling and rate performance. Even under a high level of sulfur loading of 9.6 mg cm−2, a relatively high initial areal capacity of 10.20 mAh cm−2 and a specific energy density of 300 Wh kg−1 are achieved with a low electrolyte/sulfur ratio of 3.3 µL mg−1. Combined with experimental results and theoretical calculations, the mechanism by which the Bi4TaO7 with oxygen vacancies promotes the kinetics of polysulfide conversion reactions has been revealed. The design of the multiple confined cathode structure provides physical and chemical adsorption, fast charge transfer, and catalytic conversion for polysulfides. Full article
Show Figures

Figure 1

Back to TopTop