Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = high brightness beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1896 KiB  
Article
A 6 kW Level Linearly Polarized Near-Diffraction-Limited Monolithic Fiber Laser with a 0.43 nm Linewidth
by Zixiang Gao, Qiang Shu, Fang Li, Chun Zhang, Fengyun Li, Xingchen Jiang, Yu Wen, Cheng Chen, Li Li, Qiuhui Chu, Rumao Tao, Honghuan Lin, Zhitao Peng and Jianjun Wang
Photonics 2025, 12(7), 701; https://doi.org/10.3390/photonics12070701 - 11 Jul 2025
Viewed by 399
Abstract
A high-power, narrow-linewidth, all-fiber polarization-maintaining (PM) amplifier has been demonstrated. A lasing power of 5870 W has been delivered in master oscillator power amplifier architecture with cascaded white noise source (WNS) phase modulation and bidirectional pumping schemes. The maximal power was limited by [...] Read more.
A high-power, narrow-linewidth, all-fiber polarization-maintaining (PM) amplifier has been demonstrated. A lasing power of 5870 W has been delivered in master oscillator power amplifier architecture with cascaded white noise source (WNS) phase modulation and bidirectional pumping schemes. The maximal power was limited by the onset of stimulated Brillouin scattering. At the maximum power operation, the amplifier exhibited a 3 dB spectral linewidth of 0.43 nm with beam quality being M2 < 1.33 and polarization extinction ratio (PER) being 16.3 dB. To the best of our knowledge, this represents the highest spectral brightness and PER achieved by PM fiber laser systems around 6 kW-level operation. Full article
(This article belongs to the Special Issue High-Power Fiber Lasers)
Show Figures

Figure 1

12 pages, 2567 KiB  
Article
High-Power 650 nm Dense Spectral Beam Combining System Based on a Compression Telescope and Imaging Module
by Bingxu Zhao, Lingqian Meng, Man Hu, Xuyan Zhou, Jing Liu, Nihui Zhang, Aiyi Qi, Fu Ting, Weiqiao Zhang, Ao Chen and Wanhua Zheng
Photonics 2025, 12(6), 605; https://doi.org/10.3390/photonics12060605 - 12 Jun 2025
Viewed by 546
Abstract
In this thesis, a 650 nm dense spectral beam combining (DSBC) system based on a compression telescope module (CM) and an imaging module (IM) is proposed (CM&IM DSBC system). Based on twenty-two (22) 650 nm COS (Chip on Submount) single-emitters, the system successfully [...] Read more.
In this thesis, a 650 nm dense spectral beam combining (DSBC) system based on a compression telescope module (CM) and an imaging module (IM) is proposed (CM&IM DSBC system). Based on twenty-two (22) 650 nm COS (Chip on Submount) single-emitters, the system successfully achieves the first high-power and non-crosstalk beam combining output in the visible red band, with a maximum beam output power of 29.984 W. Compared with the 650 nm traditional DSBC system we proposed last year, the system solves both the crosstalk problem due to its larger optical path and the beam combining power drop caused by the direct reduction in the optical path. The final output power and DSBC efficiency are improved by more than 53% and 10%, respectively. The final beam brightness is improved by nearly 30%. Compared to a COS single-emitter, the brightness increase is more than 22 times. This achievement provides a new idea for the subsequent experimental research and product development of higher-power visible red-light band DSBC systems that can be applied in the industrial field. Full article
Show Figures

Figure 1

24 pages, 3261 KiB  
Review
Some Insights on Kerr Lensing Effects
by Kamel Aït-Ameur and Abdelkrim Hasnaoui
Photonics 2025, 12(6), 596; https://doi.org/10.3390/photonics12060596 - 10 Jun 2025
Viewed by 1520
Abstract
The research on high-order transverse modes in lasers was largely abandoned a few years after the invention of the laser in 1960. The main reason for this was that high-order beams are more divergent and less bright than the Gaussian beam. In the [...] Read more.
The research on high-order transverse modes in lasers was largely abandoned a few years after the invention of the laser in 1960. The main reason for this was that high-order beams are more divergent and less bright than the Gaussian beam. In the present paper, we showed that the behaviour of LGp0 beams faced to the optical Kerr effect (OKE) varies considerably depending on the mode order (p = 0 or p1). We focused our attention on the properties of LG00 and LG10 beams when subject to OKE, and we found that the LG10 beam keeps its focusability much better than the LG00 beam. This property has at least two applications concerning first the conception of high-intensity laser chains not based on a Gaussian beam but on an LG10 beam and second, the use of an LG10 beam instead of the usual Gaussian beam which can reduce drastically the protection of optical limiters based on OKE; this constitutes a counter-measure against such limiters. Full article
Show Figures

Figure 1

9 pages, 1678 KiB  
Communication
High-Brightness 1940 nm Gallium Antimonide Diode Lasers with External-Cavity Spectral and Polarization Beam Combining
by Rong Zhao, Yufei Zhao, Bo Meng and Cunzhu Tong
Photonics 2025, 12(6), 594; https://doi.org/10.3390/photonics12060594 - 10 Jun 2025
Viewed by 580
Abstract
In this paper, we present a beam-combining technique to boost GaSb-based 1940 nm diode laser output power through spectral beam combining (SBC), spatial beam combining, and polarization beam combining (PBC). Four spectral beam-combining (SBC) configurations were developed using commercially available standard bars. The [...] Read more.
In this paper, we present a beam-combining technique to boost GaSb-based 1940 nm diode laser output power through spectral beam combining (SBC), spatial beam combining, and polarization beam combining (PBC). Four spectral beam-combining (SBC) configurations were developed using commercially available standard bars. The four SBC configurations were paired to perform PBC after spatial beam combining. The total output power of the 1940 nm laser reached 23.4 W, with the beam qualities of the combined beam achieving 10.6 in the slow axis and 11 in the fast axis. The brightness of the combined laser reached 5.4 MW·cm−2·sr−1. Full article
Show Figures

Figure 1

14 pages, 4123 KiB  
Article
Research on the Impact Toughness of 3D-Printed CoCrMo Alloy Components Based on Fractal Theory
by Guoqing Zhang, Junxin Li, Han Wang, Congcong Shangguan, Juanjuan Xie and Yongsheng Zhou
Biomimetics 2025, 10(5), 292; https://doi.org/10.3390/biomimetics10050292 - 6 May 2025
Viewed by 392
Abstract
In order to obtain high-performance 3D printed parts, this study focuses on the key performance indicator of impact toughness. The parametric modeling software Rhino 6 is used to design impact specimens, and the laser selective melting equipment DiMetal-100, independently developed by the South [...] Read more.
In order to obtain high-performance 3D printed parts, this study focuses on the key performance indicator of impact toughness. The parametric modeling software Rhino 6 is used to design impact specimens, and the laser selective melting equipment DiMetal-100, independently developed by the South China University of Technology, is used to manufacture impact specimens. Subsequently, the CoCrMo alloy parts were annealed using an MXQ1600-40 box-type atmosphere furnace and subjected to impact testing using a cantilever beam impact testing machine XJV-22. Fractal theory was applied to analyze the fractal behavior of the resulting impact fracture surfaces. The research results indicate that the 3D-printed impact specimens exhibited excellent surface quality, characterized by brightness, low roughness, and the absence of significant defects such as warping or deformation. In terms of annealing treatment, lower annealing temperatures did not improve the impact performance of SLM-formed CoCrMo alloy parts but instead led to a decrease in toughness. While increasing the annealing temperature can improve toughness to some extent, the effect is limited. Furthermore, the relationship between impact energy and heat treatment temperature exhibits a U-shaped trend. The fractal dimension analysis shows that the parts annealed in a 1200 °C furnace have the highest fractal dimension and better toughness performance. This study introduces a novel approach by comprehensively integrating advanced 3D printing technology, annealing processes, and fractal theory analysis to systematically investigate the influence of annealing temperature on the impact properties of 3D-printed CoCrMo alloy parts, thereby establishing a solid foundation for the application of high-performance 3D printed parts. Full article
Show Figures

Figure 1

41 pages, 2385 KiB  
Article
A Concept of a Para-Hydrogen-Based Cold Neutron Source for Simultaneous High Flux and High Brightness
by Alexander Ioffe, Petr Konik and Konstantin Batkov
J. Nucl. Eng. 2025, 6(1), 3; https://doi.org/10.3390/jne6010003 - 17 Jan 2025
Viewed by 962
Abstract
A novel concept of cold neutron source employing chessboard or staircase assemblies of high-aspect-ratio rectangular para-hydrogen moderators with well-developed and practically fully illuminated surfaces of the individual moderators is proposed. An analytic approach for calculating the brightness of para-hydrogen moderators is introduced. Because [...] Read more.
A novel concept of cold neutron source employing chessboard or staircase assemblies of high-aspect-ratio rectangular para-hydrogen moderators with well-developed and practically fully illuminated surfaces of the individual moderators is proposed. An analytic approach for calculating the brightness of para-hydrogen moderators is introduced. Because the brightness gain originates from a near-surface effect resulting from the prevailing single-collision process during thermal-to-cold neutron conversion, high-aspect-ratio rectangular cold moderators offer a significant increase, up to a factor of 10, in cold neutron brightness compared to a voluminous moderator. The obtained results are in excellent agreement with MCNP calculations. The chessboard or staircase assemblies of such moderators facilitate the generation of wide neutron beams with simultaneously higher brightness and intensity compared to a para-hydrogen-based cold neutron source made of a single moderator (either flat or voluminous) of the same cross-section. Analytic model calculations indicate that gains of up to approximately 2.5 in both brightness and intensity can be achieved compared to a source made of a single moderator of the same width. However, these gains are affected by details of the moderator–reflector assembly and should be estimated through dedicated Monte Carlo simulations, which can only be conducted for a particular neutron source and are beyond the scope of this general study. The gain reduction in our study, from a higher value to 2.5, is mostly caused by these two factors: the limited volume of the high-density thermal neutron region surrounding the reactor core or spallation target, which restricts the total length of the moderator assembly, and the finite width of moderator walls. The relatively large length of moderator assemblies results in a significant increase in pulse duration at short pulse neutron sources, making their straightforward use very problematic, though some applications are not excluded. The concept of “low-dimensionality” in moderators is explored, demonstrating that achieving a substantial increase in brightness necessitates moderators to be low-dimensional both geometrically, implying a high aspect ratio, and physically, requiring the moderator’s smallest dimension to be smaller than the characteristic scale of moderator medium (about the mean free path for thermal neutrons). This explains why additional compression of the moderator along the longest direction, effectively giving it a tube-like shape, does not result in a significant brightness increase comparable to the flattening of the moderator. Full article
Show Figures

Figure 1

18 pages, 2903 KiB  
Article
Testing and Validation of the Vehicle Front Camera Verification Method Using External Stimulation
by Robin Langer, Maximilian Bauder, Ghanshyam Tukarambhai Moghariya, Michael Clemens Georg Eckert, Tibor Kubjatko and Hans-Georg Schweiger
Sensors 2024, 24(24), 8166; https://doi.org/10.3390/s24248166 - 21 Dec 2024
Viewed by 1033
Abstract
The perception of the vehicle’s environment is crucial for automated vehicles. Therefore, environmental sensors’ reliability and correct functioning are becoming increasingly important. Current vehicle inspections and self-diagnostics must be adapted to ensure the correct functioning of environmental sensors throughout the vehicle’s lifetime. There [...] Read more.
The perception of the vehicle’s environment is crucial for automated vehicles. Therefore, environmental sensors’ reliability and correct functioning are becoming increasingly important. Current vehicle inspections and self-diagnostics must be adapted to ensure the correct functioning of environmental sensors throughout the vehicle’s lifetime. There are several promising approaches for developing new test methods for vehicle environmental sensors, one of which has already been developed in our previous work. A method for testing vehicle front cameras was developed. In this work, the method is improved and applied again. Various test vehicles, including the Tesla Model 3, Volkswagen ID.3, and Volkswagen T-Cross, are stimulated by simulating driving scenarios. The stimulation is carried out via a tablet positioned before the camera. The high beam assist is used to evaluate the vehicle’s reaction. It was observed whether the vehicle switched from high to low beam as expected in response to the stimulation. Although no general statement can be made, the principle of stimulation works. A vehicle reaction can be successfully induced using this method. In further test series, the influence of display brightness is examined for the first time in this work. The results show that the display brightness significantly influences the test procedure. In addition, the method is validated by stimulation with colored images. It is shown that no complex traffic simulation is necessary to trigger a vehicle reaction. In the following validation approach, the CAN data of the Tesla Model 3 is analyzed during the tests. Here, too, the assumption that the vehicle reaction is based solely on the detected brightness instead of identifying road users is confirmed. The final validation approach examines the method’s applicability to other vehicles and high beam assist technologies. Although the method could not be used on the Volkswagen T-Cross due to a fault detected by the vehicle’s self-diagnosis, it worked well on the Volkswagen ID.3. This vehicle has a dynamic light assist in which individual segments of the high beam are dimmed during stimulation. Although the method developed to stimulate vehicle front cameras is promising, the specific factors that trigger the vehicle responses remain to be seen. This uncertainty suggests that further research is needed better to understand the interaction of stimulation and sensor detection. Full article
(This article belongs to the Special Issue Sensors and Systems for Automotive and Road Safety (Volume 2))
Show Figures

Figure 1

8 pages, 5114 KiB  
Article
Advancing Towards Higher Contrast, Energy-Efficient Screens with Advanced Anti-Glare Manufacturing Technology
by Danielle van der Heijden, Anna Casimiro, Jan Matthijs ter Meulen, Kahraman Keskinbora and Erhan Ercan
Nanomanufacturing 2024, 4(4), 241-248; https://doi.org/10.3390/nanomanufacturing4040016 - 15 Dec 2024
Viewed by 1254
Abstract
The pervasive use of screens, averaging nearly 7 h per day globally between mobile phones, computers, notebooks and TVs, has sparked a growing desire to minimize reflections from ambient lighting and enhance readability in harsh lighting conditions, without the need to increase screen [...] Read more.
The pervasive use of screens, averaging nearly 7 h per day globally between mobile phones, computers, notebooks and TVs, has sparked a growing desire to minimize reflections from ambient lighting and enhance readability in harsh lighting conditions, without the need to increase screen brightness. This demand highlights a significant need for advanced anti-glare (AG) technologies, to increase comfort and eventually reduce energy consumption of the devices. Currently used production technologies are limited in their texture designs, which can lead to suboptimal performance of the anti-glare texture. To overcome this design limitation and improve the performance of the anti-glare feature, this work reports a new, cost-effective, high-volume production method that enables much needed design freedom over a large area. This is achieved by combining mastering via large-area Laser Beam Lithography (LBL) and replication by Nanoimprint Lithography (NIL) processes. The environmental impact of the production method, such as regards material consumption, are considered, and the full cycle from design to final imprint is discussed. Full article
(This article belongs to the Special Issue Nanoimprinting and Sustainability)
Show Figures

Figure 1

11 pages, 4652 KiB  
Article
Improving 795 nm Single-Frequency Laser’s Frequency Stability by Means of the Bright-State Spectroscopy with Rubidium Vapor Cell
by Junye Zhao, Yongbiao Yang, Lulu Zhang, Yang Li and Junmin Wang
Photonics 2024, 11(12), 1165; https://doi.org/10.3390/photonics11121165 - 11 Dec 2024
Cited by 1 | Viewed by 1102
Abstract
The utilization of atomic or molecular spectroscopy for frequency locking of single-frequency laser to improve laser frequency stability plays an important role in the experimental investigation of optically pumped atomic magnetometers, atomic clocks, laser cooling and trapping of atoms, etc. We have experimentally [...] Read more.
The utilization of atomic or molecular spectroscopy for frequency locking of single-frequency laser to improve laser frequency stability plays an important role in the experimental investigation of optically pumped atomic magnetometers, atomic clocks, laser cooling and trapping of atoms, etc. We have experimentally demonstrated a technique for frequency stabilization of a single-frequency laser employing the bright state spectroscopy (BSS) with a rubidium atomic vapor cell. By utilizing the counter-propagating dual-frequency 795 nm laser beams with mutually orthogonal linear polarization and a frequency difference of 6.834 GHz, which is equal to the hyperfine splitting of rubidium-87 ground state 5S1/2, an absorption-enhanced signal with narrow linewidth at the center of Doppler-broadened transmission spectroscopy is observed when continuous scanning the laser frequency over rubidium-87 D1 transition. This is the so-called BSS. Amplitude of the absorption-enhanced signal in the BSS is much larger compared with the conventional saturation absorption spectroscopy (SAS). The relationship between linewidth and amplitude of the BSS signal and laser beam intensity has been investigated. This high-contrast absorption-enhanced BSS signal has been employed for the laser frequency stabilization. The experimental results show that the frequency stability is 4.4×1011 with an integration time of 40 s, near one order of magnitude better than that for using the SAS. Full article
Show Figures

Figure 1

10 pages, 5262 KiB  
Article
Adaptive Transverse Laser Shaping and Its Application in a Photocathode Gun
by Zhongqi Liu, Haoyan Jia, Hang Xu, Jinqiang Xu and Senlin Huang
Photonics 2024, 11(12), 1143; https://doi.org/10.3390/photonics11121143 - 5 Dec 2024
Viewed by 848
Abstract
In a high-brightness photocathode gun, the non-uniformity in both the transverse distribution of the photocathode drive laser and the quantum efficiency (QE) map can lead to degradation in electron beam quality. This study explores an adaptive transverse laser shaping technique and its application [...] Read more.
In a high-brightness photocathode gun, the non-uniformity in both the transverse distribution of the photocathode drive laser and the quantum efficiency (QE) map can lead to degradation in electron beam quality. This study explores an adaptive transverse laser shaping technique and its application to improve the uniformity of the electrons emitted from the photocathode. Utilizing a spatial light modulator (SLM) with a feedback algorithm, we effectively control the drive laser distribution and achieve single-shot QE map measurement and QE compensation. The experiments conducted on the DC-SRF-II gun demonstrate a rapid and efficient QE measurement process, as well as a notable improvement in electron beam uniformity. Our study offers a promising approach for improving beam quality in accelerator applications that demand high-brightness electron sources. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

6 pages, 1840 KiB  
Brief Report
Compact and High-Efficiency Liquid-Crystal-on-Silicon for Augmented Reality Displays
by Zhenyi Luo, Yuqiang Ding, Fenglin Peng, Ziqian He, Yun Wang and Shin-Tson Wu
Photonics 2024, 11(7), 669; https://doi.org/10.3390/photonics11070669 - 17 Jul 2024
Cited by 4 | Viewed by 2087
Abstract
Compact and high efficiency microdisplays are essential for lightweight augmented reality (AR) glasses to ensure longtime wearing comfort. Liquid-crystal-on-silicon (LCoS) is a promising candidate because of its high-resolution density, high brightness, and low cost. However, its bulky illumination system with a polarizing beam [...] Read more.
Compact and high efficiency microdisplays are essential for lightweight augmented reality (AR) glasses to ensure longtime wearing comfort. Liquid-crystal-on-silicon (LCoS) is a promising candidate because of its high-resolution density, high brightness, and low cost. However, its bulky illumination system with a polarizing beam splitter (PBS) cube remains an urgent issue to be overcome. To reduce the volume of the LCoS illumination system, here, we propose a compact structure with four thin PBS cuboids. Through simulations, the optical efficiency of 36.7% for an unpolarized input light can be achieved while maintaining reasonably good spatial uniformity. Such a novel design is expected to have a significant impact on future compact and lightweight AR glasses. Full article
(This article belongs to the Special Issue Liquid Crystals in Photonics II)
Show Figures

Figure 1

24 pages, 4910 KiB  
Article
Relations between Shot Noise, Gain Bandwidth, and Saturation of Instabilities
by Yichao Jing, Vladimir N. Litvinenko, Jun Ma and Gang Wang
Physics 2024, 6(3), 921-944; https://doi.org/10.3390/physics6030057 - 25 Jun 2024
Viewed by 1699
Abstract
There are numerous instabilities present in charged particle beams that undergo exponential growth and reach saturation. In various applications, such as free-electron lasers or micro-bunching light sources, achieving saturation is desirable. Conversely, there are applications where these instabilities are utilized as linear broad-band [...] Read more.
There are numerous instabilities present in charged particle beams that undergo exponential growth and reach saturation. In various applications, such as free-electron lasers or micro-bunching light sources, achieving saturation is desirable. Conversely, there are applications where these instabilities are utilized as linear broad-band amplifiers for signals embedded in the charged beam. In the latter scenario, the saturation of an instability induces non-linear distortions in the imprinted signal, thereby limiting the useful range of such amplifiers. Accurate evaluation of these instabilities necessitates a complete and comprehensive modeling approach that includes shot noise within the beam. Unfortunately, such modeling is not always feasible or practical. In this paper, we introduce a methodology utilizing the frequency and bandwidth of the instability as key parameters. Through this, we derive an estimation for the range of linear instability growth. Our derivation is conducted in a model-independent manner, making it applicable to a broad spectrum of instabilities. To validate our approach, we employ established and thoroughly benchmarked simulations with a free electron laser (FEL) code as well as self-consistent 3-dimensional simulation of plasma-cascade instability using code SPACE. Full article
(This article belongs to the Section Statistical Physics and Nonlinear Phenomena)
Show Figures

Figure 1

23 pages, 5717 KiB  
Review
Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging
by Liqing Qi, Songlin Liu, Jiantao Ping, Xingxing Yao, Long Chen, Dawei Yang, Yijun Liu, Chenjing Wang, Yating Xiao, Lubin Qi, Yifei Jiang and Xiaohong Fang
Biosensors 2024, 14(7), 314; https://doi.org/10.3390/bios14070314 - 21 Jun 2024
Cited by 4 | Viewed by 2382
Abstract
Stimulated emission depletion (STED) microscopy, as a popular super-resolution imaging technique, has been widely used in bio-structure analysis and resolving the dynamics of biological processes beyond the diffraction limit. The performance of STED critically depends on the optical properties of the fluorescent probes. [...] Read more.
Stimulated emission depletion (STED) microscopy, as a popular super-resolution imaging technique, has been widely used in bio-structure analysis and resolving the dynamics of biological processes beyond the diffraction limit. The performance of STED critically depends on the optical properties of the fluorescent probes. Ideally, the probe should process high brightness and good photostability, and exhibit a sensitive response to the depletion beam. Organic dyes and fluorescent proteins, as the most widely used STED probes, suffer from low brightness and exhibit rapid photobleaching under a high excitation power. Recently, luminescent nanoparticles (NPs) have emerged as promising fluorescent probes in biological imaging due to their high brightness and good photostability. STED imaging using various kinds of NPs, including quantum dots, polymer dots, carbon dots, aggregation-induced emission dots, etc., has been demonstrated. This review will comprehensively review recent advances in fluorescent NP-based STED probes, discuss their advantages and pitfalls, and outline the directions for future development. Full article
(This article belongs to the Special Issue Activatable Probes for Biosensing, Imaging, and Photomedicine)
Show Figures

Figure 1

14 pages, 3178 KiB  
Article
High Harmonic Generation Seeding Echo-Enabled Harmonic Generation toward a Storage Ring-Based Tender and Hard X-ray-Free Electron Laser
by Xi Yang, Lihua Yu, Victor Smaluk and Timur Shaftan
Instruments 2024, 8(2), 35; https://doi.org/10.3390/instruments8020035 - 2 Jun 2024
Cited by 1 | Viewed by 1820
Abstract
To align with the global trend of integrating synchrotron light source (SLS) and free electron laser (FEL) facilities on one site, in line with examples such as SPring-8 and SACLA in Japan and ELETTRA and FERMI in Italy, we actively explore FEL options [...] Read more.
To align with the global trend of integrating synchrotron light source (SLS) and free electron laser (FEL) facilities on one site, in line with examples such as SPring-8 and SACLA in Japan and ELETTRA and FERMI in Italy, we actively explore FEL options leveraging the ultralow-emittance electron beam of the NSLS-II upgrade. These options show promising potential for synergy with storage ring (SR) operations, thereby significantly enhancing our facility’s capabilities. Echo-enabled harmonic generation (EEHG) is well-suited to SR-based FELs, and has already been demonstrated with the capability of generating extremely narrow bandwidth as well as high brightness, realized using diffraction-limited short pulses in transverse planes and Fourier transform-limited bandwidth in the soft X-ray spectrum. However, regarding a conventional EEHG scheme, the combination of the shortest seed laser wavelength (256 nm) and highest harmonic (200) sets the short wavelength limit to λ = 1.28 nm. To further extend the short wavelength limit down to the tender and hard X-ray region, a vital option is to shorten the seed laser wavelength. Thanks to recent advances in high harmonic generation (HHG), packing 109 photons at one harmonic within a few-femtosecond pulse could turn such a novel HHG source into an ideal seeding for EEHG. Thus, compared to the cascaded EEHG, the HHG seeding option could not only lower the cost, but also free the SR space for accommodating more user beamlines. Moreover, to mitigate the SASE background noise on the sample and detector, we combine the HHG seeding EEHG with the crab cavity short pulse scheme for maximum benefit. Full article
Show Figures

Figure 1

13 pages, 6715 KiB  
Article
Power Enhancement and Spot Homogenization Design for Arrayed Semiconductor Lasers
by Shunshun Zhong, Jun Xiong, Cong Xu, Fan Zhang and Ji’an Duan
Micromachines 2024, 15(6), 744; https://doi.org/10.3390/mi15060744 - 31 May 2024
Cited by 1 | Viewed by 910
Abstract
Improving the spot brightness and uniformity of arrangement of the array laser is conducive to ensuring the beam quality of the fiber laser. Based on the light tracing principle, the optical model performance of two common fiber lasers was first analyzed. Then, a [...] Read more.
Improving the spot brightness and uniformity of arrangement of the array laser is conducive to ensuring the beam quality of the fiber laser. Based on the light tracing principle, the optical model performance of two common fiber lasers was first analyzed. Then, a novel rotationally polarized optical model with high power and spot uniformity was designed and optimized on the basis of the aforementioned analysis. The results of the evaluation metrics of the multi-indicator optical model show that the spot uniformity of our proposed model improved by 24.03%, the power improved by 0.55%, and the maximum light distance was shortened from 120 mm to 82.58 mm. Further, the results of the coupling tolerance analysis of the optical elements show that the total coupling efficiency was 89.04%. The coupling power and tolerance relationships did not produce degradation compared with the traditional model. Extensive comparative results show that the designed rotationally polarized optical path model can effectively improve the optical coupling efficiency and spot uniformity of arrayed semiconductor lasers. Full article
(This article belongs to the Special Issue Laser and Photoelectronics in Optical Communication)
Show Figures

Figure 1

Back to TopTop