Compact and High-Efficiency Liquid-Crystal-on-Silicon for Augmented Reality Displays
Abstract
:1. Introduction
2. Methods
3. Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azuma, R.T. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Burdea, G.C.; Coiffet, P. Virtual Reality Technology; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Augmented reality technologies, systems and applications. Multimed. Tools Appl. 2011, 51, 341–377. [Google Scholar] [CrossRef]
- Kress, B.C.; Cummings, W.J. Optical architecture of HoloLens mixed reality headset. In Proceedings of the Digital Optical Technologies 2017, Munich, Germany, 25–29 June 2017; Volume 10335, pp. 124–133. [Google Scholar]
- Chang, C.; Bang, K.; Wetzstein, G.; Lee, B.; Gao, L. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective. Optica 2020, 7, 1563–1578. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Hsiang, E.L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Hsiang, E.L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.-C.; Lin, C.-L.; Wu, S.-T. Advanced liquid crystal devices for augmented reality and virtual reality displays: Principles and applications. Light Sci. Appl. 2022, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-K.; Lee, S.W.-Y.; Chang, H.-Y.; Liang, J.-C. Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 2013, 62, 41–49. [Google Scholar] [CrossRef]
- Webel, S.; Bockholt, U.; Engelke, T.; Gavish, N.; Olbrich, M.; Preusche, C. An augmented reality training platform for assembly and maintenance skills. Robot. Auton. Syst. 2013, 61, 398–403. [Google Scholar] [CrossRef]
- Poushneh, A.; Vasquez-Parraga, A.Z. Discernible impact of augmented reality on retail customer’s experience, satisfaction and willingness to buy. J. Retail. Consum. Serv. 2017, 34, 229–234. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; Felix, R.; Hinsch, C. Augmented reality marketing: How mobile AR-apps can improve brands through inspiration. J. Retail. Consum. Serv. 2019, 49, 43–53. [Google Scholar] [CrossRef]
- Narzt, W.; Pomberger, G.; Ferscha, A.; Kolb, D.; Müller, R.; Wieghardt, J.; Hörtner, H.; Lindinger, C. Augmented reality navigation systems. Univers. Access Inf. Soc. 2005, 4, 177–187. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Q.; Li, Y.; Yang, Z.; Wang, Z.; Liang, H.; Wu, S.-T. Waveguide-based augmented reality displays: Perspectives and challenges. eLight 2023, 3, 24. [Google Scholar] [CrossRef]
- Hsiang, E.L.; Yang, Z.; Yang, Q.; Lai, P.C.; Lin, C.L.; Wu, S.T. AR/VR light engines: Perspectives and challenges. Adv. Opt. Photonics 2022, 14, 783–861. [Google Scholar] [CrossRef]
- Lee, V.W.; Twu, N.; Kymissis, I. Micro-LED technologies and applications. Inf. Disp. 2016, 32, 16–23. [Google Scholar] [CrossRef]
- Huang, Y.; Hsiang, E.-L.; Deng, M.-Y.; Wu, S.-T. Mini-LED, micro-LED and OLED displays: Present status and future perspectives. Light Sci. Appl. 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, Q. 55-4: Invited Paper: Monolithic MicroLED Display for AR Applications. SID Symp. Dig. Tech. Pap. 2023, 54, 1874–1877. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, E.; Chen, R.; Wu, S.-T. Liquid-Crystal-on-Silicon for Augmented Reality Displays. Appl. Sci. 2018, 8, 2366. [Google Scholar] [CrossRef]
- Li, Y.-W.; Chen, K.-Y.; Chen, W.-H.; Lin, C.-W.; Wang, C.-T.; Fan-Chiang, K.-H.; Kuo, H.-C.; Tsai, H.-C. 13-1: Invited Paper: Front-lit LCOS for AR Displays. SID Symp. Dig. Tech. Pap. 2023, 54, 154–517. [Google Scholar] [CrossRef]
- Tang, E. The smallest LCoS engine: Introducing the AG-30L2. In Proceedings of the SPIE AR, VR, MR Industry Talks 2023, San Francisco, CA, USA, 30 January–2 February 2023; Volume 12450, p. 124500O. [Google Scholar]
- Luo, Z.; Ding, Y.; Peng, F.; Wei, G.; Wang, Y.; Wu, S.-T. Ultracompact and high-efficiency liquid-crystal-on-silicon light engines for augmented reality glasses. Opto-Electron. Adv. 2024, 7, 240039. [Google Scholar] [CrossRef]
- Sieler, M.; Schreiber, P.; Foerster, E. Projection Display and Method of Displaying an Overall Picture. U.S. Patent 8,794,770, 5 August 2014. [Google Scholar]
- Fan-Chiang, K.-H.; Chen, S.-H.; Wu, S.-T. Diffraction effect on high-resolution liquid-crystal-on-silicon devices. Jpn. J. Appl. Phys. 2005, 44, 3068. [Google Scholar] [CrossRef]
HWP 0° | HWP 15° | |
---|---|---|
Full on * (lm) | 0.33876 | 0.36715 |
Full off * (lm) | 0.00223 | 0.00248 |
Contrast | 151.6 | 148.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Ding, Y.; Peng, F.; He, Z.; Wang, Y.; Wu, S.-T. Compact and High-Efficiency Liquid-Crystal-on-Silicon for Augmented Reality Displays. Photonics 2024, 11, 669. https://doi.org/10.3390/photonics11070669
Luo Z, Ding Y, Peng F, He Z, Wang Y, Wu S-T. Compact and High-Efficiency Liquid-Crystal-on-Silicon for Augmented Reality Displays. Photonics. 2024; 11(7):669. https://doi.org/10.3390/photonics11070669
Chicago/Turabian StyleLuo, Zhenyi, Yuqiang Ding, Fenglin Peng, Ziqian He, Yun Wang, and Shin-Tson Wu. 2024. "Compact and High-Efficiency Liquid-Crystal-on-Silicon for Augmented Reality Displays" Photonics 11, no. 7: 669. https://doi.org/10.3390/photonics11070669
APA StyleLuo, Z., Ding, Y., Peng, F., He, Z., Wang, Y., & Wu, S. -T. (2024). Compact and High-Efficiency Liquid-Crystal-on-Silicon for Augmented Reality Displays. Photonics, 11(7), 669. https://doi.org/10.3390/photonics11070669