Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = hexameric ATPase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 15511 KiB  
Review
Recent Advances in the Structural Studies of the Proteolytic ClpP/ClpX Molecular Machine
by Astrid Audibert, Jerome Boisbouvier and Annelise Vermot
Biomolecules 2025, 15(8), 1097; https://doi.org/10.3390/biom15081097 - 29 Jul 2025
Viewed by 216
Abstract
AAA+ ATPases are ring-shaped hexameric protein complexes that operate as elaborate macromolecular motors, driving a variety of ATP-dependent cellular processes. AAA+ ATPases undergo large-scale conformational changes that lead to the conversion of chemical energy from ATP into mechanical work to perform a wide [...] Read more.
AAA+ ATPases are ring-shaped hexameric protein complexes that operate as elaborate macromolecular motors, driving a variety of ATP-dependent cellular processes. AAA+ ATPases undergo large-scale conformational changes that lead to the conversion of chemical energy from ATP into mechanical work to perform a wide range of functions, such as unfolding and translocation of the protein substrate inside a proteolysis chamber of an AAA+-associated protease. Despite extensive biochemical studies on these macromolecular assemblies, the mechanism of substrate unfolding and degradation has long remained elusive. Indeed, until recently, structural characterization of AAA+ protease complexes remained hampered by the size and complexity of the machinery, harboring multiple protein subunits acting together to process proteins to be degraded. Additionally, the major structural rearrangements involved in the mechanism of this complex represent a crucial challenge for structural biology. Here, we report the main advances in deciphering molecular details of the proteolytic reaction performed by AAA+ proteases, based on the remarkable progress in structural biology techniques. Particular emphasis is placed on the latest findings from high-resolution structural analysis of the ClpXP proteolytic complex, using crystallographic and cryo-EM investigations. In addition, this review presents some additional dynamic information obtained using solution-state NMR. This information provides molecular details that help to explain the protein degradation process by such molecular machines. Full article
(This article belongs to the Special Issue Structural Biology of Protein)
Show Figures

Figure 1

12 pages, 9997 KiB  
Article
Molecular Characterization of the MoxR AAA+ ATPase of Synechococcus sp. Strain NKBG15041c
by Kota Mano, Kentaro Noi, Kumiko Oe, Takahiro Mochizuki, Ken Morishima, Rintaro Inoue, Masaaki Sugiyama, Keiichi Noguchi, Kyosuke Shinohara, Masafumi Yohda and Akiyo Yamada
Int. J. Mol. Sci. 2024, 25(18), 9955; https://doi.org/10.3390/ijms25189955 - 15 Sep 2024
Cited by 2 | Viewed by 1540
Abstract
We isolated a stress-tolerance-related gene from a genome library of Synechococcus sp. NKBG15041c. The expression of the gene in E. coli confers resistance against various stresses. The gene encodes a MoxR AAA+ ATPase, which was designated SyMRP since it belongs to the MRP [...] Read more.
We isolated a stress-tolerance-related gene from a genome library of Synechococcus sp. NKBG15041c. The expression of the gene in E. coli confers resistance against various stresses. The gene encodes a MoxR AAA+ ATPase, which was designated SyMRP since it belongs to the MRP subfamily. The recombinant SyMRP showed weak ATPase activity and protected citrate synthase from thermal aggregation. Interestingly, the chaperone activity of SyMRP is ATP-dependent. SyMRP exists as a stable hexamer, and ATP-dependent conformation changes were not detected via analytical ultracentrifugation (AUC) or small-angle X-ray scattering (SAXS). Although the hexameric structure predicted by AlphaFold 3 was the canonical flat-ring structure, the structures observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM) were not the canonical ring structure. In addition, the experimental SAXS profiles did not show a peak that should exist in the symmetric-ring structure. Therefore, SyMRP seems to form a hexameric structure different from the canonical hexameric structure of AAA+ ATPase. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 4201 KiB  
Review
Fungal Plasma Membrane H+-ATPase: Structure, Mechanism, and Drug Discovery
by Chao-Ran Zhao, Zi-Long You and Lin Bai
J. Fungi 2024, 10(4), 273; https://doi.org/10.3390/jof10040273 - 8 Apr 2024
Cited by 2 | Viewed by 2644
Abstract
The fungal plasma membrane H+-ATPase (Pma1) pumps protons out of the cell to maintain the transmembrane electrochemical gradient and membrane potential. As an essential P-type ATPase uniquely found in fungi and plants, Pma1 is an attractive antifungal drug target. Two recent [...] Read more.
The fungal plasma membrane H+-ATPase (Pma1) pumps protons out of the cell to maintain the transmembrane electrochemical gradient and membrane potential. As an essential P-type ATPase uniquely found in fungi and plants, Pma1 is an attractive antifungal drug target. Two recent Cryo-EM studies on Pma1 have revealed its hexameric architecture, autoinhibitory and activation mechanisms, and proton transport mechanism. These structures provide new perspectives for the development of antifungal drugs targeting Pma1. In this article, we review the history of Pma1 structure determination, the latest structural insights into Pma1, and drug discoveries targeting Pma1. Full article
Show Figures

Figure 1

20 pages, 5263 KiB  
Article
Analysis of the Conformational Landscape of the N-Domains of the AAA ATPase p97: Disentangling the Continuous Conformational Variability in Partially Symmetrical Complexes
by Sepideh Valimehr, Rémi Vuillemot, Mohsen Kazemi, Slavica Jonic and Isabelle Rouiller
Int. J. Mol. Sci. 2024, 25(6), 3371; https://doi.org/10.3390/ijms25063371 - 16 Mar 2024
Cited by 1 | Viewed by 2242
Abstract
Single-particle cryo-electron microscopy (cryo-EM) has been shown to be effective in defining the structure of macromolecules, including protein complexes. Complexes adopt different conformations and compositions to perform their biological functions. In cryo-EM, the protein complexes are observed in solution, enabling the recording of [...] Read more.
Single-particle cryo-electron microscopy (cryo-EM) has been shown to be effective in defining the structure of macromolecules, including protein complexes. Complexes adopt different conformations and compositions to perform their biological functions. In cryo-EM, the protein complexes are observed in solution, enabling the recording of images of the protein in multiple conformations. Various methods exist for capturing the conformational variability through analysis of cryo-EM data. Here, we analyzed the conformational variability in the hexameric AAA + ATPase p97, a complex with a six-fold rotational symmetric core surrounded by six flexible N-domains. We compared the performance of discrete classification methods with our recently developed method, MDSPACE, which uses 3D-to-2D flexible fitting of an atomic structure to images based on molecular dynamics (MD) simulations. Our analysis detected a novel conformation adopted by approximately 2% of the particles in the dataset and determined that the N-domains of p97 sway by up to 60° around a central position. This study demonstrates the application of MDSPACE in analyzing the continuous conformational changes in partially symmetrical protein complexes, systems notoriously difficult to analyze due to the alignment errors caused by their partial symmetry. Full article
Show Figures

Figure 1

18 pages, 2374 KiB  
Article
Generation of Lasso Peptide-Based ClpP Binders
by Imran T. Malik, Julian D. Hegemann and Heike Brötz-Oesterhelt
Int. J. Mol. Sci. 2022, 23(1), 465; https://doi.org/10.3390/ijms23010465 - 31 Dec 2021
Cited by 4 | Viewed by 4652
Abstract
The Clp protease system fulfills a plethora of important functions in bacteria. It consists of a tetradecameric ClpP barrel holding the proteolytic centers and two hexameric Clp-ATPase rings, which recognize, unfold, and then feed substrate proteins into the ClpP barrel for proteolytic degradation. [...] Read more.
The Clp protease system fulfills a plethora of important functions in bacteria. It consists of a tetradecameric ClpP barrel holding the proteolytic centers and two hexameric Clp-ATPase rings, which recognize, unfold, and then feed substrate proteins into the ClpP barrel for proteolytic degradation. Flexible loops carrying conserved tripeptide motifs protrude from the Clp-ATPases and bind into hydrophobic pockets (H-pockets) on ClpP. Here, we set out to engineer microcin J25 (MccJ25), a ribosomally synthesized and post-translationally modified peptide (RiPP) of the lasso peptide subfamily, by introducing the conserved tripeptide motifs into the lasso peptide loop region to mimic the Clp-ATPase loops. We studied the capacity of the resulting lasso peptide variants to bind to ClpP and affect its activity. From the nine variants generated, one in particular (12IGF) was able to activate ClpP from Staphylococcus aureus and Bacillus subtilis. While 12IGF conferred stability to ClpP tetradecamers and stimulated peptide degradation, it did not trigger unregulated protein degradation, in contrast to the H-pocket-binding acyldepsipeptide antibiotics (ADEPs). Interestingly, synergistic interactions between 12IGF and ADEP were observed. Full article
(This article belongs to the Special Issue Therapeutic Targeting of the Proteolytic Enzymes)
Show Figures

Figure 1

25 pages, 12993 KiB  
Article
Analysis of the Structural Mechanism of ATP Inhibition at the AAA1 Subunit of Cytoplasmic Dynein-1 Using a Chemical “Toolkit”
by Sayi’Mone Tati and Laleh Alisaraie
Int. J. Mol. Sci. 2021, 22(14), 7704; https://doi.org/10.3390/ijms22147704 - 19 Jul 2021
Cited by 3 | Viewed by 3080
Abstract
Dynein is a ~1.2 MDa cytoskeletal motor protein that carries organelles via retrograde transport in eukaryotic cells. The motor protein belongs to the ATPase family of proteins associated with diverse cellular activities and plays a critical role in transporting cargoes to the minus [...] Read more.
Dynein is a ~1.2 MDa cytoskeletal motor protein that carries organelles via retrograde transport in eukaryotic cells. The motor protein belongs to the ATPase family of proteins associated with diverse cellular activities and plays a critical role in transporting cargoes to the minus end of the microtubules. The motor domain of dynein possesses a hexameric head, where ATP hydrolysis occurs. The presented work analyzes the structure–activity relationship (SAR) of dynapyrazole A and B, as well as ciliobrevin A and D, in their various protonated states and their 46 analogues for their binding in the AAA1 subunit, the leading ATP hydrolytic site of the motor domain. This study exploits in silico methods to look at the analogues’ effects on the functionally essential subsites of the motor domain of dynein 1, since no similar experimental structural data are available. Ciliobrevin and its analogues bind to the ATP motifs of the AAA1, namely, the walker-A (W-A) or P-loop, the walker-B (W-B), and the sensor I and II. Ciliobrevin A shows a better binding affinity than its D analogue. Although the double bond in ciliobrevin A and D was expected to decrease the ligand potency, they show a better affinity to the AAA1 binding site than dynapyrazole A and B, lacking the bond. In addition, protonation of the nitrogen atom in ciliobrevin A and D, as well as dynapyrazole A and B, at the N9 site of ciliobrevin and the N7 of the latter increased their binding affinity. Exploring ciliobrevin A geometrical configuration suggests the E isomer has a superior binding profile over the Z due to binding at the critical ATP motifs. Utilizing the refined structure of the motor domain obtained through protein conformational search in this study exhibits that Arg1852 of the yeast cytoplasmic dynein could involve in the “glutamate switch” mechanism in cytoplasmic dynein 1 in lieu of the conserved Asn in AAA+ protein family. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 4698 KiB  
Review
AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms
by Shuwen Zhang and Youdong Mao
Biomolecules 2020, 10(4), 629; https://doi.org/10.3390/biom10040629 - 18 Apr 2020
Cited by 40 | Viewed by 9821
Abstract
Adenosine triphosphatases (ATPases) associated with a variety of cellular activities (AAA+), the hexameric ring-shaped motor complexes located in all ATP-driven proteolytic machines, are involved in many cellular processes. Powered by cycles of ATP binding and hydrolysis, conformational changes in AAA+ ATPases can generate [...] Read more.
Adenosine triphosphatases (ATPases) associated with a variety of cellular activities (AAA+), the hexameric ring-shaped motor complexes located in all ATP-driven proteolytic machines, are involved in many cellular processes. Powered by cycles of ATP binding and hydrolysis, conformational changes in AAA+ ATPases can generate mechanical work that unfolds a substrate protein inside the central axial channel of ATPase ring for degradation. Three-dimensional visualizations of several AAA+ ATPase complexes in the act of substrate processing for protein degradation have been resolved at the atomic level thanks to recent technical advances in cryogenic electron microscopy (cryo-EM). Here, we summarize the resulting advances in structural and biochemical studies of AAA+ proteases in the process of proteolysis reactions, with an emphasis on cryo-EM structural analyses of the 26S proteasome, Cdc48/p97 and FtsH-like mitochondrial proteases. These studies reveal three highly conserved patterns in the structure–function relationship of AAA+ ATPase hexamers that were observed in the human 26S proteasome, thus suggesting common dynamic models of mechanochemical coupling during force generation and substrate translocation. Full article
Show Figures

Figure 1

12 pages, 2372 KiB  
Review
Bacterial Enhancer Binding Proteins—AAA+ Proteins in Transcription Activation
by Forson Gao, Amy E. Danson, Fuzhou Ye, Milija Jovanovic, Martin Buck and Xiaodong Zhang
Biomolecules 2020, 10(3), 351; https://doi.org/10.3390/biom10030351 - 25 Feb 2020
Cited by 32 | Viewed by 6216
Abstract
Bacterial enhancer-binding proteins (bEBPs) are specialised transcriptional activators. bEBPs are hexameric AAA+ ATPases and use ATPase activities to remodel RNA polymerase (RNAP) complexes that contain the major variant sigma factor, σ54 to convert the initial closed complex to the transcription competent [...] Read more.
Bacterial enhancer-binding proteins (bEBPs) are specialised transcriptional activators. bEBPs are hexameric AAA+ ATPases and use ATPase activities to remodel RNA polymerase (RNAP) complexes that contain the major variant sigma factor, σ54 to convert the initial closed complex to the transcription competent open complex. Earlier crystal structures of AAA+ domains alone have led to proposals of how nucleotide-bound states are sensed and propagated to substrate interactions. Recently, the structure of the AAA+ domain of a bEBP bound to RNAP-σ54-promoter DNA was revealed. Together with structures of the closed complex, an intermediate state where DNA is partially loaded into the RNAP cleft and the open promoter complex, a mechanistic understanding of how bEBPs use ATP to activate transcription can now be proposed. This review summarises current structural models and the emerging understanding of how this special class of AAA+ proteins utilises ATPase activities to allow σ54-dependent transcription initiation. Full article
Show Figures

Figure 1

17 pages, 3797 KiB  
Article
The Oligomeric State of the Plasma Membrane H+-ATPase from Kluyveromyces lactis
by Yadira G. Ruiz-Granados, Valentín De La Cruz-Torres and José G. Sampedro
Molecules 2019, 24(5), 958; https://doi.org/10.3390/molecules24050958 - 8 Mar 2019
Cited by 12 | Viewed by 3923
Abstract
The plasma membrane H+-ATPase was purified from the yeast K. lactis. The oligomeric state of the H+-ATPase is not known. Size exclusion chromatography displayed two macromolecular assembly states (MASs) of different sizes for the solubilized enzyme. Blue native [...] Read more.
The plasma membrane H+-ATPase was purified from the yeast K. lactis. The oligomeric state of the H+-ATPase is not known. Size exclusion chromatography displayed two macromolecular assembly states (MASs) of different sizes for the solubilized enzyme. Blue native electrophoresis (BN-PAGE) showed the H+-ATPase hexamer in both MASs as the sole/main oligomeric state—in the aggregated and free state. The hexameric state was confirmed in dodecyl maltoside-treated plasma membranes by Western-Blot. Tetramers, dimers, and monomers were present in negligible amounts, thus depicting the oligomerization pathway with the dimer as the oligomerization unit. H+-ATPase kinetics was cooperative (n~1.9), and importantly, in both MASs significant differences were determined in intrinsic fluorescence intensity, nucleotide affinity and Vmax; hence suggesting the large MAS as the activated state of the H+-ATPase. It is concluded that the quaternary structure of the H+-ATPase is the hexamer and that a relationship seems to exist between ATPase function and the aggregation state of the hexamer. Full article
(This article belongs to the Special Issue Enzyme-Catalyzed Reactions II)
Show Figures

Graphical abstract

20 pages, 5125 KiB  
Article
The HslV Protease from Leishmania major and Its Activation by C-terminal HslU Peptides
by Ndeye Mathy Kebe, Krishnananda Samanta, Priyanka Singh, Joséphine Lai-Kee-Him, Viviana Apicella, Nadine Payrot, Noémie Lauraire, Baptiste Legrand, Vincent Lisowski, Diane-Ethna Mbang-Benet, Michel Pages, Patrick Bastien, Andrey V. Kajava, Patrick Bron, Jean-François Hernandez and Olivier Coux
Int. J. Mol. Sci. 2019, 20(5), 1021; https://doi.org/10.3390/ijms20051021 - 26 Feb 2019
Cited by 7 | Viewed by 3735
Abstract
HslVU is an ATP-dependent proteolytic complex present in certain bacteria and in the mitochondrion of some primordial eukaryotes, including deadly parasites such as Leishmania. It is formed by the dodecameric protease HslV and the hexameric ATPase HslU, which binds via the C-terminal [...] Read more.
HslVU is an ATP-dependent proteolytic complex present in certain bacteria and in the mitochondrion of some primordial eukaryotes, including deadly parasites such as Leishmania. It is formed by the dodecameric protease HslV and the hexameric ATPase HslU, which binds via the C-terminal end of its subunits to HslV and activates it by a yet unclear allosteric mechanism. We undertook the characterization of HslV from Leishmania major (LmHslV), a trypanosomatid that expresses two isoforms for HslU, LmHslU1 and LmHslU2. Using a novel and sensitive peptide substrate, we found that LmHslV can be activated by peptides derived from the C-termini of both LmHslU1 and LmHslU2. Truncations, Ala- and D-scans of the C-terminal dodecapeptide of LmHslU2 (LmC12-U2) showed that five out of the six C-terminal residues of LmHslU2 are essential for binding to and activating HslV. Peptide cyclisation with a lactam bridge allowed shortening of the peptide without loss of potency. Finally, we found that dodecapeptides derived from HslU of other parasites and bacteria are able to activate LmHslV with similar or even higher efficiency. Importantly, using electron microscopy approaches, we observed that the activation of LmHslV was accompanied by a large conformational remodeling, which represents a yet unidentified layer of control of HslV activation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 4030 KiB  
Article
Role of Archaeal HerA Protein in the Biology of the Bacterium Thermus thermophilus
by Alba Blesa, Nieves G. Quintans, Ignacio Baquedano, Carlos P. Mata, José R. Castón and José Berenguer
Genes 2017, 8(5), 130; https://doi.org/10.3390/genes8050130 - 27 Apr 2017
Cited by 9 | Viewed by 5999
Abstract
Intense gene flux between prokaryotes result in high percentage of archaeal genes in the genome of the thermophilic bacteria Thermus spp. Among these archaeal genes a homolog to the Sulfolobus spp. HerA protein appears in all of the Thermus spp. strains so far [...] Read more.
Intense gene flux between prokaryotes result in high percentage of archaeal genes in the genome of the thermophilic bacteria Thermus spp. Among these archaeal genes a homolog to the Sulfolobus spp. HerA protein appears in all of the Thermus spp. strains so far sequenced (HepA). The role of HepA in Thermus thermophilus HB27 has been analyzed using deletion mutants, and its structure resolved at low resolution by electron microscopy. Recombinant HepA shows DNA-dependent ATPase activity and its structure revealed a double ring, conically-shaped hexamer with an upper diameter of 150 Å and a bottom module of 95 Å. A central pore was detected in the structure that ranges from 13 Å at one extreme, to 30 Å at the other. Mutants lacking HepA show defective natural competence and DNA donation capability in a conjugation-like process termed “transjugation”, and also high sensitivity to UV and dramatic sensitivity to high temperatures. These data support that acquisition of an ancestral archaeal HerA has been fundamental for the adaptation of Thermus spp. to high temperatures. Full article
(This article belongs to the Special Issue Horizontal Gene Transfer)
Show Figures

Figure 1

12 pages, 415 KiB  
Article
Vma8p-GFP Fusions Can Be Functionally Incorporated into V-ATPase, Suggesting Structural Flexibility at the Top of V1
by Szczepan Nowakowski, Dalibor Mijaljica, Mark Prescott and Rodney J. Devenish
Int. J. Mol. Sci. 2011, 12(7), 4693-4704; https://doi.org/10.3390/ijms12074693 - 20 Jul 2011
Cited by 2 | Viewed by 7435
Abstract
The vacuolar ATPase (V-ATPase) complex of yeast (Saccharomyces cerevisiae) is comprised of two sectors, V1 (catalytic) and VO (proton transfer). The hexameric (A3B3) cylinder of V1 has a central cavity that must accommodate at [...] Read more.
The vacuolar ATPase (V-ATPase) complex of yeast (Saccharomyces cerevisiae) is comprised of two sectors, V1 (catalytic) and VO (proton transfer). The hexameric (A3B3) cylinder of V1 has a central cavity that must accommodate at least part of the rotary stalk of V-ATPase, a key component of which is subunit D (Vma8p). Recent electron microscopy (EM) data for the prokaryote V-ATPase complex (Thermus thermophilus) suggest that subunit D penetrates deeply into the central cavity. The functional counterpart of subunit D in mitochondrial F1FO-ATP synthase, subunit γ, occupies almost the entire length of the central cavity. To test whether the structure of yeast Vma8p mirrors that of subunit g, we probed the location of the C-terminus of Vma8p by attachment of a large protein adduct, green fluorescent protein (GFP). We found that truncated Vma8p proteins lacking up to 40 C-terminal residues fused to GFP can be incorporated into functional V-ATPase complexes, and are able to support cell growth under alkaline conditions. We conclude that large protein adducts can be accommodated at the top of the central cavity of V1 without compromising V-ATPase function, arguing for structural flexibility of the V1 sector. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop